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Abstract. Separability is one of the most basic and important topological properties. In this paper,
the separability in (strongly) topological gyrogroups is studied. It is proved that every first-countable
left ω-narrow strongly topological gyrogroup is separable. Furthermore, it is shown that if a feathered
strongly topological gyrogroup G is isomorphic to a subgyrogroup of a separable strongly topological
gyrogroup, then G is separable. Therefore, if a metrizable strongly topological gyrogroup G is isomorphic to
a subgyrogroup of a separable strongly topological gyrogroup, then G is separable, and if a locally compact
strongly topological gyrogroup G is isomorphic to a subgyrogroup of a separable strongly topological
gyrogroup, then G is separable.

1. Introduction

In 2002, A.A. Ungar studied the c-ball of relativistically admissible velocities with Einstein velocity
addition in [21] and he posed the concept of a gyrogroup. As we all know, the Einstein velocity addition
⊕E is given as the following:

u ⊕E v =
1

1 + u·v
c2

(u +
1
γu

v +
1
c2

γu

1 + γu
(u · v)u),

where u,v ∈ R3
c = {v ∈ R3 : ||v|| < c} and γu is given by

γu =
1√

1 − u·u
c2

.

It is well-known that the gyrogroup has a weaker algebraic structure than a group. In 2017, W. Atiponrat
[2] introduced the topological gyrogroups. A gyrogroup G is endowed with a topology such that the binary
operation ⊕ : G × G → G is jointly continuous and the inverse mapping 	(·) : G → G, i.e. x → 	x, is also
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continuous. He claimed that T0 and T3 are equivalent with each other in topological gyrogroups. Then
Z. Cai, S. Lin and W. He in [7] proved that every topological gyrogroup is a rectifiable space. In 2019,
the authors [3] defined the concept of strongly topological gyrogroups and found that Möbius gyrogroups,
Einstein gyrogroups, and Proper Velocity gyrogroups are all strongly topological gyrogroups. Furthermore,
the authors gave a characterization for a strongly topological gyrogroup being a feathered space, that is, a
strongly topological gyrogroup G is feathered if and only if it contains a compact L-subgyrogroup H such
that the quotient space G/H is metrizable. Therefore, the authors proved that every feathered strongly
topological gyrogroup is paracompact. Moreover, the authors proved that every strongly topological
gyrogroup with a countable pseudocharacter is submetrizable and every locally paracompact strongly
topological gyrogroup is paracompact, see [4, 5].

A topological gyrogroup G is called left (right) ω-narrow if, for every open neighborhood V of the
identity element 0 in G, there exists a countable subset A of G such that G = A ⊕ V (G = V ⊕ A). If G is
left ω-narrow and right ω-narrow, then G is ω-narrow. Moreover, a topological gyrogroup G is feathered
if it contains a non-empty compact subset K of countable character in G. In Section 3, we show that the
topological product of an arbitrary family of ω-narrow topological gyrogroups is an ω-narrow topological
gyrogroup and the product of countably many feathered topological gyrogroups is a feathered topological
gyrogroup. Furthermore, we also investigate the relationship between the property of (left) ω-narrow and
separability in strongly topological gyrogroups, and prove that every first-countable leftω-narrow strongly
topological gyrogroup is separable, which gives a partial answer to [13, Question 6.13].

A topological space which has a dense countable subspace is called separable. It is well-known that
a subspace of a separable metrizable space is separable, but a closed subspace of a separable Hausdorff
topological space is not necessarily separable [16]. Even though Y is a closed linear subspace of a separable
Hausdorff topological vector space X, Y is not necessarily separable [17]. Therefore, it is meaningful to
study the relative properties in topological gyrogroups or strongly topological gyrogroups. In particular,
we want to know under what conditions a (closed) subgyrogroup of a (strongly) topological gyrogroup is
separable. In Section 4, we show that if a feathered strongly topological gyrogroup G is isomorphic to a
subgyrogroup of a separable strongly topological gyrogroup, then G is separable. Therefore, we deduce that
if a metrizable strongly topological gyrogroup G is isomorphic to a subgyrogroup of a separable strongly
topological gyrogroup, then G is separable, and if a locally compact strongly topological gyrogroup G is
isomorphic to a subgyrogroup of a separable strongly topological gyrogroup, then G is separable.

2. Preliminaries

In this section, we introduce the necessary notations, terminologies and some facts about topological
gyrogroups.

Throughout this paper, all topological spaces are assumed to be Hausdorff, unless otherwise is explicitly
stated. LetN be the set of all positive integers and ω the first infinite ordinal. Let X be a topological space
and A ⊆ X be a subset of X. The closure of A in X is denoted by A and the interior of A in X is denoted by
Int(A). The readers may consult [1, 9, 14] for notation and terminology not explicitly given here.

Definition 2.1. ([2]) Let G be a nonempty set, and let ⊕ : G × G → G be a binary operation on G. Then
the pair (G,⊕) is called a groupoid. A function f from a groupoid (G1,⊕1) to a groupoid (G2,⊕2) is called
a groupoid homomorphism if f (x ⊕1 y) = f (x) ⊕2 f (y) for any elements x, y ∈ G1. Furthermore, a bijective
groupoid homomorphism from a groupoid (G,⊕) to itself will be called a groupoid automorphism. We write
Aut(G,⊕) for the set of all automorphisms of a groupoid (G,⊕).

Definition 2.2. ([20]) Let (G,⊕) be a groupoid. The system (G,⊕) is called a gyrogroup, if its binary operation
satisfies the following conditions:

(G1) There exists a unique identity element 0 ∈ G such that 0 ⊕ a = a = a ⊕ 0 for all a ∈ G.
(G2) For each x ∈ G, there exists a unique inverse element 	x ∈ G such that 	x ⊕ x = 0 = x ⊕ (	x).
(G3) For all x, y ∈ G, there exists gyr[x, y] ∈ Aut(G,⊕) with the property that x⊕(y⊕z) = (x⊕y)⊕gyr[x, y](z)

for all z ∈ G.
(G4) For any x, y ∈ G, gyr[x ⊕ y, y] = gyr[x, y].
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Notice that a group is a gyrogroup (G,⊕) such that gyr[x, y] is the identity function for all x, y ∈ G. The
definition of a subgyrogroup is given as follows.

Definition 2.3. ([18]) Let (G,⊕) be a gyrogroup. A nonempty subset H of G is called a subgyrogroup, denoted
by H ≤ G, if H forms a gyrogroup under the operation inherited from G and the restriction of 1yr[a, b] to H
is an automorphism of H for all a, b ∈ H.

Furthermore, a subgyrogroup H of G is said to be an L-subgyrogroup, denoted by H ≤L G, if 1yr[a, h](H) =
H for all a ∈ G and h ∈ H.

Definition 2.4. ([2]) A triple (G, τ,⊕) is called a topological gyrogroup if the following statements hold:
(1) (G, τ) is a topological space.
(2) (G,⊕) is a gyrogroup.
(3) The binary operation ⊕ : G × G→ G is jointly continuous while G × G is endowed with the product

topology, and the operation of taking the inverse 	(·) : G→ G, i.e. x→ 	x, is also continuous.

Obviously, every topological group is a topological gyrogroup. However, every topological gyrogroup
whose gyrations are not identically equal to the identity is not a topological group. In particular, it was
proved in [2] that the Einstein gyrogroup with the standard topology is a topological gyrogroup but not
a topological group. Next, we introduce the definition of a strongly topological gyrogroup, it is very
important in this paper.

Definition 2.5. ([3]) Let G be a topological gyrogroup. We say that G is a strongly topological gyrogroup if
there exists a neighborhood base U of 0 such that, for every U ∈ U , gyr[x, y](U) = U for any x, y ∈ G. For
convenience, we say that G is a strongly topological gyrogroup with neighborhood base U of 0.

For each U ∈ U , we can set V = U ∪ (	U). Then,

1yr[x, y](V) = 1yr[x, y](U ∪ (	U)) = 1yr[x, y](U) ∪ (	1yr[x, y](U)) = U ∪ (	U) = V,

for all x, y ∈ G. Obviously, the family {U ∪ (	U) : U ∈ U } is also a neighborhood base of 0. Therefore, we
may assume that U is symmetric for each U ∈ U in Definition 2.5.

It is easy to see that every topological group is a strongly topological gyrogroup, and every strongly
topological gyrogroup is a topological gyrogroup. Moreover, it was shown in [3] that there is a strongly
topological gyrogroup which is not a topological group. Indeed, we know that Möbius gyrogroups, Einstein
gyrogroups, and Proper Velocity gyrogroups, that were studied in [11, 12, 20], are all strongly topological
gyrogroups. Therefore, they are all topological gyrogroups and rectifiable spaces. But all of them are not
topological groups. Further, it was also proved in [3, Example 3.2] that there exists a strongly topological
gyrogroup which has an infinite L-subgyrogroup.

Moreover, in [4], the authors proved that every T0 strongly topological gyrogroup is completely regular.
Then, we will give an example to show that there is a completely regular strongly topological gyrogroups
which is not a normal space.

Example 2.6. There is a completely regular but not normal strongly topological gyrogroup.

Indeed, let X be an arbitrary T0 strongly topological gyrogroup (such us [3, Example 3.1]), and let Y
be a T0 but not normal topological group. Put G = X × Y with the product topology and the operation
with coordinate. Then G is a completely regular strongly topological gyrogroup since X and Y both are
completely regular. However, G is not a normal space.

3. Products of two classes of topological gyrogroups

In this section, we mainly study the products of ω-narrow topological gyrogroups and feathered topo-
logical gyrogroups. We show that the topological product of an arbitrary family of ω-narrow topological
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gyrogroups is an ω-narrow topological gyrogroup and the product of countably many feathered topolog-
ical gyrogroups is a feathered topological gyrogroup. Moreover, we prove that every first-countable left
ω-narrow strongly topological gyrogroup is separable, which gives a partial answer to [13, Question 6.13].

A topological gyrogroup G is called left (right) ω-narrow [1] if, for every open neighborhood V of the
identity element 0 in G, there exists a countable subset A of G such that G = A ⊕ V (G = V ⊕ A). If G is left
ω-narrow and right ω-narrow, then G is ω-narrow. Moreover, it was proved that the quotient space G/H is
homogeneous in [4] if G is a strongly topological gyrogroup with a symmetric neighborhood base U and
H is an L-subgyrogroup generated from U . Therefore, the definition of ω-narrow of G/H is the same with
gyrogroups’.

Proposition 3.1. If a topological gyrogroup H is a continuous homomorphic image of an ω-narrow topological
gyrogroup G, then H is also ω-narrow.

Proof. We just prove the situation of left ω-narrow. For the situation of right ω-narrow, the proof is similar.
For an arbitrary open neighborhood V of the identity element 0 in H, since f is a continuous homomorphism
from G onto H, it follows that f−1(V) is an open neighborhood of 0 in G. It follows from the left ω-narrow
property of G that there exists a countable subset A of G such that G = A ⊕ f−1(V). Therefore,

H = f (G) = f (A ⊕ f−1(V)) = f (A) ⊕ f ( f−1(V)) ⊂ f (A) ⊕ V.

Since f (A) is countable, it is clear that H is left ω-narrow.

Proposition 3.2. The topological product of an arbitrary family of ω-narrow topological gyrogroups is an ω-narrow
topological gyrogroup.

Proof. We also just prove the situation of left ω-narrow. For the situation of right ω-narrow, the proof is
similar. Let {(Gi, τi,⊕i) : i ∈ I} be an indexed family of leftω-narrow topological gyrogroups. It follows from
Theorem 2.1 in [19] and Theorem 5 in [2] that G = (

∏
i∈I Gi,⊕) is a topological gyrogroup equipped with the

product topology. Then we show that (
∏

i∈I Gi,⊕) is left ω-narrow. Let U be a basic open subset of
∏

i∈I Gi.
Then U =

∏
i∈I Ui, where Ui is open in Gi for each i ∈ I. For the product topology, we know that Ui , Gi for

only finitely many i ∈ I. Therefore let U =
∏

i∈J Ui ×
∏

i∈I\J Gi, where J is a finite subset of I. Since every Gi is
left ω-narrow, it follows that there exists a countable subset Ai of Gi such that Gi = Ai ⊕Ui. Set A =

⋃
i∈J Ai.

It is obvious that A is countable. Moreover, G ⊂ A ⊕U and the proof is completed.

Theorem 3.3. Suppose that (G, τ,⊕) is a strongly topological gyrogroup with a synmetric neighborhood base U at
0. If G contains a dense subgyrogroup H such that H is left ω-narrow, then G is also left ω-narrow.

Proof. If U is an open neighborhood of 0 in G, we can choose V ∈ U such that V ⊕ V ⊂ U. Since H is left
ω-narrow, there is a countable subset A of H such that H ⊂ A ⊕ V. Therefore, by [2, Lemma 9], we have

G = H ⊂ (A ⊕ V) ⊕ V = A ⊕ (V ⊕ 1yr[V,A](V)) = A ⊕ (V ⊕ V) ⊂ A ⊕U.

Therefore, G = A ⊕U and G is left ω-narrow.

In [6], the authors gave the following result.

Proposition 3.4. ([6]) Every separable strongly topological gyrogroup G is left ω-narrow.

Then, we will show that the left ω-narrow strongly topological gyrogroups need not be separable, that
is, there exists a left ω-narrow strongly topological gyrogroup which is not separable.

Example 3.5. There exists a left ω-narrow strongly topological gyrogroup which is not separable.
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Let X be an arbitrary leftω-narrow strongly topological gyrogroup, and let Y be anω-narrow topological
group which has uncountable cellularity, i.e., there is an uncountable family of disjoint non-empty open
subsets in Y (such as [1, Example 5.4.13]). Set G = X × Y with the product topology and the operation with
coordinate. Then G is a left ω-narrow strongly topological gyrogroup by Proposition 3.2 and there is an
uncountable family of disjoint non-empty open subsets in G.

Next, a family γ of open sets in a space X is called a base [9] for X at a set F ⊂ X if all elements of γ contains
F and, for each open set V that contains F, there exists U ∈ γ such that U ⊂ V. The character [9] of X at a set
F is the smallest cardinality of a base for X at F. We recall the definition of the feathered (strongly) topological
gyrogroup. A (strongly) topological gyrogroup G is feathered if it contains a non-empty compact subset K of
countable character in G. In [3], it was proved that a strongly topological gyrogroup G is feathered if and
only if it contains a compact L-subgyrogroup H such that the quotient space G/H is metrizable. Moreover,
it was also proved in the same paper that every feathered strongly topological gyrogroup is paracompact
and every feathered strongly topological gyrogroup is a D-space. Then, we will prove that the class of
feathered strongly topological gyrogroups is closed under taking countable products. Moreover, we will
give an example to show that the product of arbitrary family of feathered topological gyrogroups need not
to be feathered.

Lemma 3.6. ([9]) If As is a compact subspace of a topological space Xs for s ∈ S, then for every open subset W of the
Cartesian product

∏
s∈S Xs which contains the set

∏
s∈S As there exist open sets Us ⊂ Xs such that Us , Xs only for

finitely many s ∈ S and
∏

s∈S As ⊂
∏

s∈S Us ⊂W.

Theorem 3.7. The product G =
∏

n∈ω Gn of countably many feathered topological gyrogroups is a feathered topolog-
ical gyrogroup.

Proof. Let Kn be the non-empty compact subset of countable character of Gn containing the identity element
0 for every n ∈ ω. Set K =

∏
n∈ω Kn. It is clear that K is compact by the Tychonoff Product Theorem. Let γn

be a countable base for Gn at Kn, n ∈ ω. We show that

B = {π−1
0 (U0) ∩ . . . ∩ π−1

k (Uk) : U0 ∈ γ0, . . . ,Uk ∈ γk, k ∈ ω}

is a base for G at K, where πi : G→ Gi is the projection for each i ∈ ω.
In fact, let W be a neighborhood of K in G. It follows from Lemma 3.6 that there exist open sets Wn ⊂ Gn

such that Wn , Gn for only finitely many n ∈ ω and K ⊂
∏

n∈ω Wn ⊂W. We can find k ∈ ω such that Wn = Gn
for all n > k and, for every i ≤ k, choose Ui ∈ γi satisfying Ui ⊂ Wi. Then, U = π−1

0 (U0) ∩ . . . ∩ π−1
k (Uk)

belongs to B. Moreover, K ⊂ U ⊂W. Hence, we have that χ(K,G) ≤ |B| ≤ ω.

Theorem 3.8. If a topological gyrogroup H is a continuous homomorphic image of a feathered topological gyrogroup
G, then H is also feathered.

Proof. We assume that f is a continuous homomorphism from a feathered topological gyrogroup G onto a
topological gyrogroup H. Since G is feathered, there is a non-empty compact set K of countable character
contained in G. Let {Un : n ∈ ω} be a countable base for G at K. It is clear that f (K) is a non-empty compact
subset of H. We show that f (K) is of countable character in H.

Suppose that V is an arbitrary open neighborhood of f (K) in H, then f−1(V) is an open neighborhood
of K in G. Moreover, {Un : n ∈ ω} is a countable base at K, so there exists n ∈ ω such that K ⊂ Un ⊂ f−1(V).
Therefore, we have f (K) ⊂ f (Un) ⊂ V. Thus, { f (Un) : n ∈ ω} is a countable base at f (K) in H and H is
feathered.

Since projection is an open continuous homomorphism, it is natural to have the following corollary.

Corollary 3.9. If G is a feathered topological gyrogroup and G =
∏

n∈ω Gn, where Gn is a topological gyrogroup for
any n ∈ ω, then Gn is feathered for each n ∈ ω.

Then, we will show that the product of arbitrary family of feathered topological gyrogroups need not
to be feathered.
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Example 3.10. There is a topological gyrogroup which is the product of uncountable many feathered
topological gyrogroups but not feathered.

Let G = H × Zm, where H is a feathered strongly topological gyrogroup, m is any uncountable cardinal
number. It is clear that every locally compact strongly topological gyrogroup is feathered. Suppose on
the contrary, if G is feathered, it follows from Corollary 3.9 that Zm is feathered. In [3], it was proved that
every feathered strongly topological gyrogroup is paracompact. However, Zm is a non-normal completely
regular topological group (see [10, Theorem 8.11]) which is contradict with the paracompactness.

In [13], F. Lin posed the following question.

Question 3.11. ([13, Question 6.13]) Is each first-countable left ω-narrow rectifiable space G separable?

It is well-known that every topological gyrogroup is rectifiable, so it is natural to pose the next question.

Question 3.12. Is each first-countable left ω-narrow topological gyrogroup G separable? What if the topological
gyrogroup is a strongly topological gyrogroup?

Next we prove that every first-countable left ω-narrow strongly topological gyrogroup is separable,
which gives an affirmative answer to Question 3.12 when the topological gyrogroup is a strongly topological
gyrogroup, see Corollary 3.14.

Theorem 3.13. Let (G, τ,⊕) be a left ω-narrow strongly topological gyrogroup with a symmetric open neighborhood
base U at 0. If G is first-countable, then G has a countable base.

Proof. Let {Un : n ∈ ω} be a countable base at the identity element 0 of G, then there exists a countable base
{Vn : n ∈ ω} at 0 such that Vn ∈ U . Since G is left ω-narrow, for every Vn, there exists a countable subset An
of G such that G = An ⊕ Vn. Set B = {x ⊕ Vn : x ∈ An and n ∈ ω}. Obviously, B is countable and we prove
that B is a base for the gyrogroup G.

For an arbitrary open neighborhood O of a point a ∈ G. It is clear that there are k, l ∈ ω such that
a ⊕ Vk ⊂ O and Vl ⊕ Vl ⊂ Vk. Therefore, there exists x ∈ Al such that a ∈ x ⊕ Vl. Then there is a y ∈ Vl such
that a = x ⊕ y. It follows that

x = (x ⊕ y) ⊕ 1yr[x, y](	y)
= a ⊕ 1yr[x, y](	y)
∈ a ⊕ 1yr[x, y](Vl)
= a ⊕ Vl.

So, x ⊕ Vl ⊂ (a ⊕ Vl) ⊕ Vl = a ⊕ (Vl ⊕ 1yr[Vl, a](Vl)) = a ⊕ (Vl ⊕ Vl) ⊂ a ⊕ Vk ⊂ O, that is, x ⊕ Vl is an open
neighborhood of a and x ⊕ Vl ⊂ O.

It follows from [7] that every topological gyrogroup is first-countable if and only if it is metrizable.
Moreover, it is well-known that the separability, the Lindelöf property and the second-countability are all
equivalent with each other in metrizable spaces. Therefore, we have the following corollaries.

Corollary 3.14. Every first-countable left ω-narrow strongly topological gyrogroup is separable.

Corollary 3.15. Every first-countable left ω-narrow strongly topological gyrogroup is Lindelöf.
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4. Separability of strongly topological gyrogroups

In this section, we will study some properties about separabilities of strongly topological gyrogroups.
In particular, we prove that if a feathered strongly topological gyrogroup is isomorphic to a subgyrogroup
of a separable strongly topological gyrogroup, then it is separable. After that, if a metrizable strongly topo-
logical gyrogroup G is isomorphic to a subgyrogroup of a strongly topological gyrogroup with countable
cellularity, then G is separable. And if a locally compact strongly topological gyrogroup G is isomorphic to
a subgyrogroup of a separable strongly topological gyrogroup, then G is separable.

First, we recall the concept of the coset space of a topological gyrogroup.
Let (G, τ,⊕) be a topological gyrogroup and H an L-subgyrogroup of G. It follows from [18, Theorem

20] that G/H = {a ⊕H : a ∈ G} is a partition of G. We denote by π the mapping a 7→ a ⊕H from G onto G/H.
Clearly, for each a ∈ G, we have π−1

{π(a)} = a ⊕ H. Denote by τ(G) the topology of G. In the set G/H, we
define a family τ(G/H) of subsets as follows:

τ(G/H) = {O ⊂ G/H : π−1(O) ∈ τ(G)}.

Theorem 4.1. Suppose that G is a topological gyrogroup and H is a closed L-subgyrogroup of G. If the spaces H and
G/H are both separable, we obtain that the space G is also separable.

Proof. We suppose that π is the natural homomorphism of G onto the quotient space G/H. From the
separability of G/H, it follows that there exists a dense countable subset A of G/H. Moreover, H is separable
and every coset x ⊕H is homeomorphism to H, so there is a dense countable subset My of π−1(y), for each
y ∈ A. Set M =

⋃
{My : y ∈ A}. It is obvious that M is a countable subset of G and M is dense in π−1(A).

Furthermore, π is an open mapping of G onto G/H by [3, Theorem 3.7], and it follows that π−1(A) = G.
Therefore, M is dense in G and G is separable.

In [7], Z. Cai, S. Lin and W. He proved that every topological gyrogroup is a rectifiable space, which
deduced that the first-countability and metrizability are equivalent in topological gyrogroups. Moreover, it
is well-known that separability is equivalent with the second-countability in a metrizable space. Therefore,
if we can prove that the first-countability has the property like Theorem 4.1, it is natural that the second-
countability has the same property.

Lemma 4.2. Suppose that G is a topological gyrogroup, H is a closed L-subgyrogroup of G, X is a subspace of G, π
is the natural homomorphism of G onto the quotient space G/H, and Y = π(X). Suppose that the space H and the
subspace Y of G/H are first-countable. Then X is also first-countable.

Proof. Without loss of generality, we may assume that 0 ∈ X. Then we need to verify that X is first-countable
at 0. Take a sequence of symmetric open neighborhoods Wn of 0 in G such that Wn+1 ⊕Wn+1 ⊂Wn, for each
n ∈ ω, and {Wn ∩H : n ∈ ω} is a base for the space H at 0. We also take a sequence of open neighborhoods
Un of 0 in G such that {π(Un) ∩ Y : n ∈ ω} is a base for Y at π(0). Then set Bi, j = Wi ∩U j ∩ X, for i, j ∈ ω.

Claim: η = {Bi, j : i, j ∈ ω} is a base for X at 0.
It is obvious that Bi, j is open in X and 0 ∈ Bi, j. For an arbitrary open neighborhood O of 0 in G, we can

find an open neighborhood V of 0 in G such that V ⊕ V ⊂ O. Fix m ∈ ω such that Wm ∩ H ⊂ V. Moreover,
we can find k ∈ ω such that π(Uk) ∩ Y ⊂ π(V ∩Wm+1). We show that Bm+1,k ⊂ O.

For each z ∈ Bm+1,k = Wm+1 ∩Uk ∩ X, it follows from π(z) ∈ π(Uk) ∩ Y ⊂ π(V ∩Wm+1) that z ∈ Uk ∩ X ⊂
(V ∩Wm+1) ⊕H. However, Wm+1 ⊕Wm+1 ⊂Wm and z ∈Wm+1 = (	Wm+1), so z <Wm+1 ⊕ (G\Wm). Therefore,
z ∈ (V ∩Wm+1)⊕ (H ∩Wm). Moreover, H ∩Wm ⊂ V, and we have z ∈ V ⊕V ⊂ O. Hence, Bm+1,k ⊂ O and η is
a base for X at 0. It follows from the countability of η that X is first-countable at 0.

By Lemma 4.2 and Theorem 4.1, it is obvious that we have the following results.

Corollary 4.3. Assume that G is a topological gyrogroup and H is a closed L-subgyrogroup of G. If the space H and
G/H are first-countable (metrizable), then the space G is also first-countable (metrizable).
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Corollary 4.4. Assume that G is a topological gyrogroup, and H is a second-countable closed L-subgyrogroup of G.
If the quotient space G/H is second-countable, then G is also second-countable.

A family N of subsets of a topological space Y is called a network [9] for Y if for every point y ∈ Y and
any neighborhood U of y there exists a set F ∈ N such that y ∈ F ⊂ U. The network weight nw(Y) [9] of a
space Y is defined as the smallest cardinal number of the form |N|, whereN is a network for Y.

Then, we show the main results in this section. First, we need to introduce some lemmas.

Lemma 4.5. ([16]) If L is a Lindelöf subspace of a separable Hausdorff space X, then nw(L) ≤ c. Hence every compact
subspace K of a separable Hausdorff space satisfies w(K) ≤ c.

Proposition 4.6. ([6]) If (G, τ,⊕) is a left κ-bounded strongly topological gyrogroup with a symmetric open neigh-
borhood base U at 0 and H is a subgyrogroup of G, then H is also left κ-bounded.

Lemma 4.7. Let G be a topological gyrogroup and H an L-subgyrogroup of G. If ϕ is a canonical mapping from G
onto the quotient space G/H and G is ω-narrow, then G/H is ω-narrow.

Proof. The proof is similar to that of Proposition 3.1.

Lemma 4.8. Every left ω-narrow feathered strongly topological gyrogroup is Lindelöf.

Proof. We assume that G is a left ω-narrow feathered strongly topological gyrogroup with a symmetric
neighborhood base U at the identity element 0 such that for any x, y ∈ G, 1yr[x, y](U) = U for any U ∈ U .
Since G is feathered, it follows from [3, Theorem 3.14] that there exists a compact L-subgyrogroup H
generated by U such that the quotient space G/H is metrizable.

Claim The quotient space G/H is Lindelöf.
Let π : G → G/H be a natural homomorphism and it follows from [3, Theorem 3.8] that π is a

perfect mapping. Therefore, G/H is left ω-narrow as a continuous homomorphic image of a left ω-narrow
topological gyrogroup G by Lemma 4.7 . Moreover, G/H is metrizable, so it is a first-countable space and
we assume that V = {Vn : n ∈ ω} is a countable base at the identity of G/H. Therefore, π−1(Vn) is an open
neighborhood of 0 in G for every n ∈ ω. For each n ∈ ω, we can find Un ∈ U such that Un ⊂ π−1(Vn). Since
G is left ω-narrow, there exists a countable set Cn such that G = Cn ⊕Un for each n ∈ ω. Set C =

⋃
n∈ω Cn. It

is clear that C is countable and we show that π(C) is dense in the quotient space G/H.
For arbitrary open set W in G/H, we need to prove π(C)∩W , ∅, that is, π−1π(C)∩π−1(W) , ∅. It means

that (C ⊕H) ∩ (W ⊕H) , ∅.
Subclaim (C ⊕H) ∩ (W ⊕H) , ∅ if and only if C ∩ (W ⊕H) , ∅.
Sufficiency: It is obvious because of 0 ∈ H.
Necessity: If (C⊕H)∩ (W ⊕H) , ∅, there are c ∈ C,w ∈W, h1, h2 ∈ H such that c⊕ h1 = w⊕ h2. Since H is

generated by U , we have that

c = (c ⊕ h1) ⊕ 1yr[c, h1](	h1)
= (w ⊕ h2) ⊕ 1yr[c, h1](	h1)
∈ (w ⊕ h2) ⊕ 1yr[c, h1](H)
= (w ⊕ h2) ⊕H
= w ⊕ (h2 ⊕ 1yr[h2,w](H))
= w ⊕ (h2 ⊕H)
= w ⊕H.

Therefore, C ∩ (W ⊕H) , ∅.
Thus, it suffices to prove C ∩ (W ⊕ H) , ∅. Indeed, W ⊕ H is open in G and we can find y ∈ G, Un ∈ U

and Un ⊂ π−1(Vn) for some n ∈ ω such that y ⊕Un ⊂ W ⊕H. we show that C ∩ (y ⊕Un) , ∅. It means that
there are c ∈ C,u ∈ Un such that c = y ⊕ u. Therefore, c ⊕ 1yr[y,u](	u) = (y ⊕ u) ⊕ 1yr[y,u](	u) = y. Since
C ⊕ Un = G and 1yr[y,u](	u) ∈ 1yr[y,u](Un) = Un, it follows that we can find c and u which are satisfied.
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Therefore, π(C) ∩W , ∅ and G/H is separable. Moreover, G/H is metrizable and separability is equivalent
with the Lindelöf property in a metrizable space, so we deduce that the quotient space G/H is Lindelöf.

Furthermore, the quotient mapping π : G → G/H is perfect and the property of Lindelöf is an inverse
invariant of perfect mappings, hence we conclude that G is Lindelöf and we complete the proof.

Theorem 4.9. Let a feathered strongly topological gyrogroup G be isomorphic to a subgyrogroup of a separable
strongly topological gyrogroup. Then G is separable.

Proof. Assume that a feathered strongly topological gyrogroup G is a subgyrogroup of a separable strongly
topological gyrogroup X. It follows from Proposition 3.4 that the gyrogroup X is left ω-narrow. Hence,
according to Proposition 4.6 that the subgyrogroup G of X is also left ω-narrow. Moreover, every left
ω-narrow feathered strongly topological gyrogroup is Lindelöf by Lemma 4.8. Furthermore, it follows
from [3, Theorem 3.14] that there is a compact L-subgyrogroup K of G such that the quotient space G/K is
metrizable. Note that the space G/K is Lindelöf as a continuous image of the Lindelöf space G. Hence, G/K
is separable because of the equivalence between the properties of Lindelöf and Separable in a metrizable
space.

Finally, the compact L-subgyrogroup K is separable by Lemma 4.5. Therefore, the separability of G just
follows from Theorem 4.1.

Since every metrizable strongly topological gyrogroup is feathered, it is clear that we can deduce the
following corollaries from Theorem 4.9.

Corollary 4.10. If a metrizable strongly topological gyrogroup G is isomorphic to a subgyrogroup of a separable
strongly topological gyrogroup, we have that G is separable.

Corollary 4.11. ([15, 22]) If a metrizable group G is isomorphic to a subgroup of a separable topological group, then
G is separable.

Indeed, the conclusion of Corollary 4.10 remains valid if G is a subgyrogroup of a strongly topological
gyrogroup X with countable cellularity.

Lemma 4.12. ([6]) Let (G, τ,⊕) be a strongly topological gyrogroup with a symmetric open neighborhood base U at
0. If c(G) ≤ κ, then G is left κ-bounded.

Corollary 4.13. If a metrizable strongly topological gyrogroup G is isomorphic to a subgyrogroup of a strongly
topological gyrogroup with countable cellularity, we have that G is separable.

Proof. Assume that X is a strongly topological gyrogroup with countable cellularity. It follows from Lemma
4.12 that X is left ω-narrow. Then, G is left ω-narrow by Proposition 4.6. Since G is first countable and it
follows from Theorem 3.13 that G has a countable base. Therefore, G is separable.

Moreover, Theorem 4.9 is also valid when G is a locally compact strongly topological gyrogroup. It
follows from [9, 3.1 E(b) and 3.3 H(a)] that every locally compact topological gyrogroup is feathered.
Therefore, we have the following results.

Corollary 4.14. If a locally compact strongly topological gyrogroup G is isomorphic to a subgyrogroup of a separable
strongly topological gyrogroup, we have that G is separable.

Corollary 4.15. ([8]) If a locally compact topological group G is isomorphic to a subgroup of a separable topological
group, then G is separable.

It follows from [1, Proposition 4.3.36] that every closed subspace of a feathered space is feathered.
Moreover, the class of feathered topological gyrogroups is closed under countable products by Theorem
3.7. Therefore, we obtain the following corollaries.
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Corollary 4.16. Let G be a separable locally compact strongly topological gyrogroup and H be a separable feathered
strongly topological gyrogroup. If a strongly topological gyrogroup F is isomorphic to a closed subgyrogroup of G×H,
then F is separable.

Corollary 4.17. Let G be a separable metrizable strongly topological gyrogroup and H be a separable feathered
strongly topological gyrogroup. If a strongly topological gyrogroup F is isomorphic to a closed subgyrogroup of G×H,
then F is separable.

It is well-known that every strongly topological gyrogroup is a topological gyrogroup. So, it is natural
to pose the following questions.

Question 4.18. ([3]) If a topological gyrogroup is feathered, is it paracompact?

Question 4.19. ([3]) If a topological gyrogroup is feathered, is it a D-space?

Question 4.20. If a feathered topological gyrogroup G is isomorphic to a subgyrogroup of a separable topological
gyrogroup, is G separable?
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