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Positive Solutions for Second-Order Impulsive Time Scale Boundary
Value Problems on Infinite Intervals

İsmail Yaslan, Esma Tozak

aPamukkale University, Department of Mathematics, 20070 Denizli, Turkey

Abstract. In this paper, we investigate the existence of at least one, two and three positive solutions to
the nonlinear second order m-point impulsive time scale boundary value problems on infinite intervals by
using the Krasnosel’skii fixed point theorem, Avery-Henderson fixed point theorem and the five functionals
fixed point theorem, respectively.

1. Introduction

The study of dynamic equations on time scales goes back to its founder Hilger [1]. A result for a dynamic
equation contains simultaneously a corresponding result for a differential equation, one for a difference
equation, as well as results for other dynamic equations in arbitrary time scales. Time scales theory presents
us with the tools necessary to understand and explain the mathematical structure underpinning the theories
of discrete and continuous dynamical systems and allows us to connect them. We refer the reader to the
excellent introductory text by Bohner and Peterson [2] as well as their recent research monograph [3].

The theory of impulsive differential equations describe processes with experience a sudden change of
their state at certain moments. The theory of impulsive differential equation has become important in
recent years in mathematical model of real processes rising in phenomena studied in physics, chemical
technology, population dynamics, ecology, biological systems, biotechnology, industrial robotics, optimal
control, economics, and so forth. For the introduction of the theory of impulsive differential equations,
we refer to the books [4–6]. Especially, the study of impulsive dynamic equations on time scales has also
attracted much attention since it provides an unifying structure for differential equations in the continuous
cases and finite difference equations in the discrete cases, see [7–25] and references therein. In recent years,
there are a few authors studied the existence of positive solutions for time scale boundary value problems
on infinite intervals.

Zhao, Ge [26] discussed the existence of at least three positive solutions for the nonlinear time scale
boundary value problems (ϕp(u∆(t)))∇ + q(t) f

(
u(t),u∆(t)

)
= 0, t ∈ [0,∞)T

u(0) = βu∆(η), lim
t→∞

u∆(t) = 0
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by using Leggett-Williams fixed point theorem, where ϕp(s) = |s|p−2s, p > 1.
Zhao, Ge [27] considered the following m-point boundary value problem on time scale


(ϕp(u∆(t)))∇ + h(t) f

(
t,u(t),u∆(t)

)
= 0, t ∈ [0,∞)T

u(0) =
m−2∑
i=1
αiu(ηi), u∆(∞) =

m−2∑
i=1
βiu∆(ηi),

where u∆(∞) = lim
t→∞

u∆(t),ϕp(s) = |s|p−2s, p > 1, η1, η2, . . . , ηm−2 ∈ T, σ(0) < η1 < η2 < . . . < ηm−2 < ∞, αi ≥ 0,

βi ≥ 0 for i = 1, 2, . . . ,m− 2. They established the sufficient conditions for the existence of positive solutions
by using Avery-Peterson theorem.

Karaca, Tokmak [28] studied the nonlinear p-Laplacian impulsive time scale boundary value problems


(ϕ(x∆(t)))∇ + φ(t) f

(
t, x(t), x∆(t)

)
= 0, t ∈ (0,∞)T

x(0) =
m−2∑
i=1
αix∆(ηi), lim

t→∞
x∆(t) = 0,

where f ∈ C ([0,∞)T × [0,∞) × [0,∞), [0,∞)). αi ≥ 0 (1 ≤ i ≤ m − 2) 0 < η1 < η2 < . . . < ηm−2 < ∞, ϕ : R→ R
is an increasing homeomorphism and positive homomorphism with ϕ(0) = 0. They obtained the criteria
for the existence of three positive solutions for m-point time scale boundary value problems on infinite
intervals by using the Leggett-Williams fixed point theorem and five functionals fixed point theorem.

Yaslan, Haznedar [29] investigated the criteria for the existence of at least one, two and three positive
solutions to the nonlinear impulsive time scale boundary value problems


(ϕ(y∆(t))∇ + h(t) f

(
t, y(t), y∆(t)

)
= 0, t ∈ [a,∞)T, t , tk, k = 1, 2, ...,n

y(t+
k ) − y(t−k ) = Ik(y(tk)), k = 1, 2, ...,n

y(a) − βy∆(a) =
m−2∑
i=1
αiy∆(ηi), lim

t→∞
y∆(t) = 0, m ≥ 3

by using Leray-Schauder fixed point theorem, Avery-Henderson fixed point theorem and the five functional
fixed point theorem, respectively, where β ≥ 0, αi ≥ 0 (1 ≤ i ≤ m − 2), 0 ≤ a < η1 < η2 < . . . < ηm−2 < ∞,
f ∈ C ([a,∞)T × [0,∞) × [0,∞), [0,∞)) and ϕ : R → R is an increasing homeomorphism and positive
homomorphism with ϕ(0) = 0.

Karaca, Sinanoglu [30] obtained the criteria for the existence of at least one positive solution to the
m-point time scale boundary value problems

(ϕp(u∆(t))∇ + h(t) f
(
t,u(t),u∆(t)

)
= 0, t ∈ (0,∞)T, t , tk, k = 1, 2, ...,n

u(0) =
m−2∑
i=1
αiu∆(ηi), u∆(∞) =

m−2∑
i=1
βiu(ηi),

u(t+
k ) − u(t−k ) = Ik(u(tk)), ϕp(u∆(t+

k )) − ϕp(u∆(t−k )) = −Ik(u(tk)), k ∈N

by using the four functionals fixed point theorem, where u∆(∞) = lim
t→∞

u∆(t),ϕp(s) = |s|p−2s, p > 1, Ik ∈

C([0,∞), [0,∞)), Ik ∈ C([0,∞), [0,∞)), η1, η2, . . . , ηm−2 ∈ T, σ(0) < η1 < η2 < . . . < ηm−2 < ∞.
We consider the following boundary value problem (BVP)


y∆∇(t) + h(t) f

(
t, y(t), y∆(t)

)
= 0, t ∈ [a,∞)T, t , tk, k = 1, 2, ...,n

y(t+
k ) − y(t−k ) = Ik(y(tk)), k = 1, 2, ...,n

y(a) − γy∆(a) =
m−2∑
i=1
αiy∆(ηi), lim

t→∞
y∆(t) =

m−2∑
i=1

βiy(ηi), m ≥ 3
(1)
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where T is a time scale, αi ≥ 0, βi ≥ 0 (1 ≤ i ≤ m − 2), γ ≥ 0, 0 ≤ a < η1 < . . . < ηm−2 < ∞ and
f ∈ C ([a,∞)T × [0,∞) × [0,∞), [0,∞)).

We have organized the paper as follows. In Section 2, we give some preliminary lemmas which are key
tools for our main results. In Section 3, we establish criteria for the existence of at least one positive solution
for the BVP (1) by using the Krasnosel’skii fixed point theorem. In Section 4, Avery-Henderson fixed point
theorem is used to investigate the existence of at least two positive solution of the BVP (1). Finally, we
apply the five functionals fixed point theorem to prove the existence of at least three positive solutions to
the BVP (1) in Section 5. The results are even new for the difference equations and differential equations as
well as for dynamic equations on general time scales.

We will assume that the following conditions are satisfied:

(H1) h ∈ C ([a,∞)T, [0,∞)),
∞∫
a

h(s)∇s < ∞;

(H2) f (t, (1 + t)u, v) ≤ ω (max{|u|, |v|}) with ω ∈ C ([0,∞), [0,∞)) nondecreasing;
(H3)

∑
a<tk<∞

Ik(y(tk)) < ∞, Ik ∈ C (R,R+), tk ∈ [a,∞)T and y(t+
k ) = lim

h→0
y(tk + h), y(t−k ) = lim

h→0
y(tk − h) represent

the right and left limits of y(t) at t = tk, k = 1, ...,n.

2. Preliminaries

We now state and prove several lemmas to state the main results of this paper.

Lemma 2.1. Assume (H3) holds. If x ∈ C ([a,∞)T, [0,∞)) and
∞∫
a

x(t)∇t < ∞, then the boundary value problem


y∆∇(t) + x(t) = 0, t ∈ [a,∞)T, t , tk, k = 1, 2, ...,n

y(t+
k ) − y(t−k ) = Ik(y(tk)), k = 1, 2, ...,n

y(a) − γy∆(a) =
m−2∑
i=1
αiy∆(ηi), lim

t→∞
y∆(t) =

m−2∑
i=1

βiy(ηi), m ≥ 3

has a unique solution

y(t) = (γ − a)

∞∫
a

x(s)∇s + t

∞∫
t

x(s)∇s +

t∫
a

sx(s)∇s + (γ + t − a)
m−2∑
i=1

βiy(ηi)

+

m−2∑
i=1

αi

[ m−2∑
j=1

β jy(η j) +

∞∫
ηi

x(s)∇s
]

+
∑

a<tk<t

Ik(y(tk)). (2)

Proof. Since we have y∆∇(t) = −x(t) for t ∈ [a,∞)T, we obtain

y∆(t) = lim
t→∞

y∆(t) +

∞∫
t

x(ξ)∇ξ. (3)

From the second boundary condition we get

y∆(t) =

m−2∑
i=1

βiy(ηi) +

∞∫
t

x(ξ)∇ξ.

Integrating the above equality from a to t, we have

y(t) − y(a) −
∑

a<tk<t

Ik
(
y(tk)

)
= (t − a)

m−2∑
i=1

βiy(ηi) +

t∫
a

∞∫
ξ

x(s)∇s∆ξ.
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From the first boundary condition we obtain

y(t) = γy∆(a) +

m−2∑
i=1

αiy∆(ηi) + (t − a)
m−2∑
i=1

βiy(ηi) +

t∫
a

(s − a)x(s)∇s + (t − a)

∞∫
t

x(s)∇s +
∑

a<tk<t

Ik
(
y(tk)

)
.

Thus, from (3) we have (2).

By Lemma 2.1, the solutions of the BVP (1) are the fixed points of the operator A defined by

Ay(t) = (γ − a)

∞∫
a

h(s) f
(
s, y(s), y∆(s)

)
∇s + t

∞∫
t

h(s) f
(
s, y(s), y∆(s)

)
∇s

+

t∫
a

sh(s) f
(
s, y(s), y∆(s)

)
∇s + (γ + t − a)

m−2∑
i=1

βiy(ηi)

+

m−2∑
i=1

αi

[ m−2∑
j=1

β jy(η j) +

∞∫
ηi

h(s) f
(
s, y(s), y∆(s)

)
∇s

]
+

∑
a<tk<t

Ik(y(tk)).

Let B be the Banach space defined by

B =
{

y ∈ C∆ ([a,∞)) : sup
t∈[a,∞)T

y(t)
1 + t

< ∞, lim
t→∞

y∆(t) =

m−2∑
i=1

βiy(ηi)
}

with the norm ‖y‖ = max
{
‖y‖1, ‖y∆

‖∞

}
, where

‖y‖1 = sup
t∈[a,∞)T

|y(t)|
1 + t

, ‖y∆
‖∞ = sup

t∈[a,∞)T
|y∆(t)|

and define the cone P ⊂ B by

P =
{

y ∈ B : y(a) − γy∆(a) =

m−2∑
i=1

αiy∆(ηi), y is concave, non-decreasing and

nonnegative on [a,∞)T
}
. (4)

Lemma 2.2. If y ∈ P, then we have ‖y‖1 ≤M‖y∆
‖∞, where

M = max
{
γ − a +

m−2∑
i=1

αi, 1
}
. (5)

Proof. For y ∈ P and t ∈ [a,∞)T, we have

y(t)
1 + t

=
1

1 + t


t∫

a

y∆(s)∆s + γy∆(a) +

m−2∑
i=1

αiy∆(ηi)

 ≤
t − a + γ +

m−2∑
i=1
αi

1 + t
‖y∆
‖∞ ≤M‖y∆

‖∞.

Hence, the proof is complete.
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Lemma 2.3. If (H1)-(H3) hold, then the operator A : P→ P is completely continuous.

Proof. First, we will show that A : P→ P. For y ∈ P, we have

(Ay)(a) − γ(Ay)∆(a) =
m−2∑
i=1
αi(Ay)∆(ηi),

(Ay)∆∇(t) = −h(t) f
(
t, y(t), y∆(t)

)
≤ 0,

(Ay)∆(t) =
m−2∑
i=1
βiy(ηi) +

∞∫
t

h(s) f
(
s, y(s), y∆(s)

)
∇s ≥ 0,

(Ay)(a) = γ
( ∞∫

a
x(s)∇s +

m−2∑
i=1
βiy(ηi)

)
+

m−2∑
i=1
αi

[ m−2∑
j=1
β jy(η j) +

∞∫
ηi

x(s)∇s
]

+
∑

a<tk<t
Ik(y(tk)) ≥ 0.

Hence, A : P→ P.
Now, we will show that A : P→ P is continuous. If yn → y as n→ ∞ in P, then there exists τ such that

sup
n∈N
‖yn‖ < τ. From (H2), for all t ∈ [a,∞)Twe have f

(
t, yn(t), y∆

n (t)
)
≤ ω

(
max

{
|yn(t)|
1+t , |y

∆
n (t)|

})
≤ ω

(
‖yn‖

)
< ω(τ)

and f
(
t, y(t), y∆(t)

)
≤ ω

(
‖y‖

)
< ω(τ) by the continuity of norm function. Since

∞∫
t

h(s)| f
(
s, yn(s), y∆

n (s)
)
− f

(
s, y(s), y∆(s)

)
|∇s ≤ 2ω(τ)

∞∫
a

h(s)∇s < ∞

by using (H1), we get

∣∣∣(Ayn)∆(t) − (Ay)∆(t)
∣∣∣ ≤

m−2∑
i=1

∣∣∣∣∣βi

(
yn(ηi) − y(ηi)

)∣∣∣∣∣ +

∞∫
t

h(s)
∣∣∣∣∣ f (

s, yn(s), y∆
n (s)

)
− f

(
s, y(s), y∆(s)

) ∣∣∣∣∣∇s

→ 0, n→∞

by using the Lebesgue dominated convergence theorem. Hence, we obtain

‖(Ayn)∆
− (Ay)∆

‖∞ → 0,

as n→∞. Since ‖Ayn − Ay‖ ≤M‖(Ayn)∆
− (Ay)∆

‖∞ → 0, A : P→ P is continuous.
Now we will show that the image of any bounded subset of P under A is relatively compact in P. If Ω

is any bounded subset of P, then there exists K > 0 such that ‖y‖ ≤ K for ∀y ∈ Ω. By (H1) and (H2), for
∀y ∈ Ω, we have

‖(Ay)∆
‖∞ =

m−2∑
i=1

βiy(ηi) +

∞∫
a

h(s) f
(
s, y(s), y∆(s)

)
∇s ≤ K

m−2∑
i=1

βi(1 + ηi) + ω(K)

∞∫
a

h(s)∇s < ∞.

Since ‖AΩ‖ ≤M‖(AΩ)∆
‖∞ < ∞, AΩ is uniformly bounded.

Now, we show that AΩ is equicontinuous on [a,∞)T. For any R > 0, t, p ∈ [a,R]T, and for all y ∈ Ω,
without loss of generality we may assume that t < p. By (H2), we have

∣∣∣(Ay)∆(t) − (Ay)∆(p)
∣∣∣ =

∣∣∣∣∣∣∣∣
p∫

t

h(s) f
(
s, y(s), y∆(s)

)
∇s

∣∣∣∣∣∣∣∣ ≤ ω(K)

p∫
t

h(s)∇s→ 0,

uniformly as t→ p. Since ‖(Ay)∆(t)− (Ay)∆(p)‖∞ → 0, uniformly as t→ p, we obtain ‖(Ay)(t)− (Ay)(p)‖ → 0,
uniformly as t→ p, by Lemma 2.2. Thus, AΩ is equicontinuous on any compact interval of [a,∞)T.

Now, we show that AΩ is equiconvergent on [a,∞)T. For any y ∈ Ω, we have

|(Ay)∆(t) − (Ay)∆(∞)| =
∣∣∣∣∣
∞∫

t

h(s) f
(
s, y(s), y∆(s)

)
∇s

∣∣∣∣∣→ 0
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as t→∞. Then, we obtain ‖(Ay)(t)−(Ay)(∞)‖ → 0, as t→∞, by Lemma 2.2. Therefore AΩ is equiconvergent
on [a,∞)T.

Hence, the operator A : P→ P is completely continuous.

3. Existence of at least one positive solution

To prove the existence of at least one positive solution for the BVP (1), we will apply the following
Krasnosel’skii Fixed Point Theorem.

Theorem 3.1. ([31, Chapter 2]) (Krasnosel’skii Fixed Point Theorem) Let E be a Banach space, and let K ⊂ E be a
cone. Assume Ω1 and Ω2 are open bounded subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let

A : K ∩ (Ω2 \Ω1)→ K

be a completely continuous operator such that either
(i) ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1, ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω2;

or
(ii) ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω1, ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω2

hold. Then A has a fixed point in K ∩ (Ω2 \Ω1).

Theorem 3.2. Suppose (H1)-(H3) hold. In addition, let there exist numbers 0 < r < R < ∞ such that the function
f satisfies the following conditions:

(i) f (t, (1 + t)u, v) ≤ 1
N

(
1
M −

m−2∑
i=1
βi(1 + ηi)

)
u(t) or f (t, (1 + t)u, v) ≤ 1

N

(
1
M −

m−2∑
i=1
βi(1 + ηi)

)
v(t) for (t,u, v) ∈

[a,∞)T × [0, r] × [0, r];
(ii) f (t, (1 + t)u, v) ≥ M

N v(a) for (t,u, v) ∈ [a,∞)T × [0,R] × [0,R],

where

N =

∞∫
a

h(s)∇s. (6)

Then, the BVP (1) has at least one positive solution.

Proof. We apply the Krasnosel’skii Fixed Point Theorem to prove this theorem. Define the open bounded

subsets of B by Ω1 = {y ∈ P : ‖y‖ < r} and Ω2 =
{

y ∈ P : ‖y‖ < R
}
. A : P ∩ (Ω2 \ Ω1) → P is completely

continuous operator from Lemma 2.3.
If y ∈ P ∩ ∂Ω1, then ‖y‖ = r. Therefore, by using the hypothesis (i) and Lemma 2.2, we have

‖Ay‖ ≤ M sup
t∈[a,∞)T

|Ay∆(t)|

= M
( m−2∑

i=1

βiy(ηi) +

∞∫
a

h(s) f
(
s, y(s), y∆(s)

)
∇s

)

≤ M
(
‖y‖

m−2∑
i=1

βi(1 + ηi) +
( 1

NM
−

1
N

m−2∑
i=1

βi(1 + ηi)
)
‖y‖1

∞∫
a

h(s)∇s
)

≤ ‖y‖,
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where f (t, (1 + t)u, v) ≤
(

1
NM −

1
N

m−2∑
i=1
βi(1 + ηi)

)
u(t). If we get f (t, (1 + t)u, v) ≤

(
1

NM −
1
N

m−2∑
i=1
βi(1 + ηi)

)
v(t), then

by using the hypothesis (i) and Lemma 2.2, we have

‖Ay‖ ≤M
(
‖y‖

m−2∑
i=1

βi(1 + ηi) +
1
N

( 1
M
−

m−2∑
i=1

βi(1 + ηi)
)
‖y∆
‖∞

∞∫
a

h(s)∇s
)
≤ ‖y‖.

Thus, ‖Ay‖ ≤ ‖y‖ for y ∈ P ∩ ∂Ω1. On the other hand, y ∈ P ∩ ∂Ω2 implies ‖y‖ = R. Then, we have

‖Ay‖ ≥ ‖(Ay)∆
‖∞ =

m−2∑
i=1

βiy(ηi) +

∞∫
a

h(s) f
(
s, y(s), y∆(s)

)
∇s ≥

M
N

y∆(a)
( ∞∫

a

h(s)∇s
)
≥ ‖y‖

from (ii) and Lemma 2.2. Consequently, ‖Ay‖ ≥ ‖y‖ for y ∈ P ∩ ∂Ω2.
By the first part of Theorem 3.1, A has a fixed point in P ∩ (Ω2 \Ω1), such that r ≤ ‖y‖ ≤ R. Therefore

BVP (1) has at least one positive solution.

4. Existence of at least two positive solutions

We will need also the following (Avery-Henderson) fixed point theorem [32] to prove the existence of
at least two positive solutions for the BVP (1).

Theorem 4.1. [32] Let P be a cone in a real Banach space E. Set

P(φ, r) = {u ∈ P : φ(u) < r}.

If η and φ are increasing, nonnegative continuous functionals on P, let θ be a nonnegative continuous functional on
P with θ(0) = 0 such that, for some positive constants r and M,

φ(u) ≤ θ(u) ≤ η(u) and ‖u‖ ≤Mφ(u)

for all u ∈ P(φ, r). Suppose that there exist positive numbers p < q < r such that

θ(λu) ≤ λθ(u), for all 0 ≤ λ ≤ 1 and u ∈ ∂P(θ, q).

If A : P(φ, r)→ P is a completely continuous operator satisfying
(i) φ(Au) > r for all u ∈ ∂P(φ, r),
(ii) θ(Au) < q for all u ∈ ∂P(θ, q),
(iii) P(η, p) , ∅ and η(Au) > p for all u ∈ ∂P(η, p),

then A has at least two fixed points u1 and u2 such that

p < η(u1) with θ(u1) < q and q < θ(u2) with φ(u2) < r.

Theorem 4.2. Assume (H1)-(H3) hold. Suppose there exist numbers 0 < p < q < r such that the function f satisfies
the following conditions:

(i) f (t, (1 + t)u, v) > r
N for (t,u, v) ∈ [a,∞)T × [0,Mr] × [0, r],

(ii) f (t, (1 + t)u, v) < q
MN

[
1 −M

m−2∑
i=1
βi(1 + ηi)

]
for (t,u, v) ∈ [a,∞)T × [0, q] × [0, q],

(iii) f (t, (1 + t)u, v) > p
N for (t,u, v) ∈ [a,∞)T × [0, p] × [0, p],

where M and N are defined in (5) and (6), respectively. Then the BVP (1) has at least two positive solutions y1 and
y2 such that

‖y1‖ > p with ‖y1‖ < q and ‖y2‖ > q with y∆
2 (a) < r.
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Proof. Define the cone P as in (4). From Lemma 2.3, A : P→ P is completely continuous. Let the nonnegative
increasing continuous functionals φ, θ and η be defined on the cone P by

φ(y) := y∆(a), θ(y) := ‖y‖, η(y) := ‖y‖.

For each y ∈ P, we have φ(y) ≤ θ(y) = η(y) and from Lemma 2.2 we have

‖y‖ ≤M‖y∆
‖∞ = My∆(a) = Mφ(y).

In addition, θ(0) = 0 and for all y ∈ P, λ ∈ [0, 1] we get θ(λy) = λθ(y). We now verify that all of the
conditions of Theorem 4.1 are satisfied.

If y ∈ ∂P(φ, r), for s ∈ [a,∞)T we have 0 ≤ y∆(s) ≤ r and 0 ≤ y(s)
1+s ≤ Mr from Lemma 2.2. Then, from the

hypothesis (i) and (6), we find

φ(Ay) =

m−2∑
i=1

βiy(ηi) +

∞∫
a

h(s) f
(
s, y(s), y∆(s)

)
∇s >

r
N

∞∫
a

h(s)∇s = r.

Thus, the condition (i) of Theorem 4.1 holds.
If y ∈ ∂P(θ, q), we have 0 ≤ y(s)

1+s ≤ q and 0 ≤ y∆(s) ≤ q for s ∈ [a,∞)T. Then, we obtain

θ(Ay) ≤ M sup
t∈[a,∞)T

|Ay∆(t)|

= M
( m−2∑

i=1

βiy(ηi) +

∞∫
a

h(s) f
(
s, y(s), y∆(s)

)
∇s

)

≤ M
(
q

m−2∑
i=1

βi(1 + ηi) +
q

MN

(
1 −M

m−2∑
i=1

βi(1 + ηi)
) ∞∫

a

h(s)∇s
)

< q

by hypothesis (ii), (6) and Lemma 2.2. Hence the condition (ii) of Theorem 4.1 is satisfied.
Since 0 ∈ P and p > 0, P(η, p) , ∅. If y ∈ ∂P(η, p), we have 0 ≤ y(s)

1+s ≤ p and 0 ≤ y∆(s) ≤ p for s ∈ [a,∞)T.
Then, we get

η(Ay) ≥
∥∥∥(Ay)∆

∥∥∥
∞

=

m−2∑
i=1

βiy(ηi) +

∞∫
a

h(s) f
(
s, y(s), y∆(s)

)
∇s >

p
N

( ∞∫
a

h(s)∇s
)

= p

using hypothesis (iii) and (6). Since all the conditions of Theorem 4.1 are fulfilled, the BVP (1) has at least
two positive solutions y1 and y2 such that

‖y1‖ > p with ‖y1‖ < q and ‖y2‖ > q with y∆
2 (a) < r.

5. Existence of at least three positive solutions

We will present the five functionals fixed point theorem. Let ϕ, η, θ be nonnegative continuous con-
vex functionals on the cone P, and γ, ψ nonnegative continuous concave functionals on the cone P. For



İ. Yaslan, E. Tozak / Filomat 35:12 (2021), 4209–4220 4217

nonnegative numbers h, p, q, r and d, define the following convex sets:

P(ϕ, r) = {x ∈ P : ϕ(x) < r},
P(ϕ, γ, p, r) = {x ∈ P : p ≤ γ(x), ϕ(x) ≤ r},
Q(ϕ, η, d, r) = {x ∈ P : η(x) ≤ d, ϕ(x) ≤ r},

P(ϕ, θ, γ, p, q, r) = {x ∈ P : p ≤ γ(x), θ(x) ≤ q, ϕ(x) ≤ r},
Q(ϕ, η, ψ, h, d, r) = {x ∈ P : h ≤ ψ(x), η(x) ≤ d, ϕ(x) ≤ r}.

(7)

Theorem 5.1. ([33])(Five Functionals Fixed Point Theorem) Let P be a cone in a real Banach space E. Suppose that
there exist nonnegative numbers r and M, nonnegative continuous concave functionals γ andψ on P, and nonnegative
continuous convex functionals ϕ, ϑ and θ on P, with

γ(x) ≤ ϑ(x), ‖x‖ ≤Mϕ(x),∀x ∈ P(ϕ, r).

Suppose that A : P(ϕ, r) → P(ϕ, r) is a completely continuous and there exist nonnegative numbers h, p, k, q, with
0 < p < q such that

(i) {x ∈ P(ϕ, θ, γ, q, k, r) : γ(x) > q} , ∅ and γ(Ax) > q for x ∈ P(ϕ, θ, γ, q, k, r),

(ii) {x ∈ Q(ϕ, ϑ, ψ, h, p, r) : ϑ(x) < p} , ∅ and ϑ(Ax) < p for x ∈ Q(ϕ, ϑ, ψ, h, p, r),

(iii) γ(Ax) > q, for x ∈ P(ϕ, γ, q, r), with θ(Ax) > k,

(iv) ϑ(Ax) < p, for x ∈ Q(ϕ, ϑ, p, r), with ψ(Ax) < h,

then A has at least three fixed points x1, x2, x3 ∈ P(ϕ, r) such that

ϑ(x1) < p, γ(x2) > q, ϑ(x3) > p with γ(x3) < q.

Define the constant

λ =

k∫
1
k

h(s)∇s. (8)

Now, we will apply the five functionals fixed point theorem to investigate the existence of at least three
positive solutions for the BVP (1).

Theorem 5.2. Assume (H1)-(H3) hold and γ− a ≥ 1, 1
k ∈ T. Suppose that there exist constants 0 < p < q < r such

that the function f satisfies the following conditions:
(i) f (t, (1 + t)u, v) > q(k+1)

λ[k(γ−a)+1] for (t,u, v) ∈ [ 1
k , k]T × [ q

k , r] × [0, r],

(ii) f (t, (1 + t)u, v) < p
MN

[
1 −M

m−2∑
i=1
βi(1 + ηi)

]
for (t,u, v) ∈ [a,∞)T × [0, p] × [0, p],

(iii) f (t, (1 + t)u, v) ≤ r
MN

[
1 −M

m−2∑
i=1
βi(1 + ηi)

]
for (t,u, v) ∈ [a,∞)T × [0, r] × [0, r],

where M and N are defined in (5) and (6), respectively. Then the BVP (1) has at least three positive solutions y1, y2
and y3 satisfying

‖y1‖ < p < ‖y3‖, and
k

k + 1
min

t∈[ 1
k ,∞)T

y3(t) < q <
k

k + 1
min

t∈[ 1
k ,∞)T

y2(t).
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Proof. Define the cone P as in (4) and define these maps

γ(y) =
k

k + 1
min

t∈[ 1
k ,∞)T

y(t), ϕ(y) = ϑ(y) = θ(y) = ‖y‖, ψ(y) = 0.

Then γ and ψ are nonnegative continuous concave functionals on P, and ϕ, ϑ and θ are nonnegative
continuous convex functionals on P. Let P(ϕ, r), P(ϕ, γ, p, r), Q(ϕ, ϑ, d, r), P(ϕ, θ, γ, p, q, r) and Q(ϕ, ϑ, ψ, h, d, r)
be defined by (7). We have

γ(y) =
k

k + 1
min

t∈[ 1
k ,∞)T

y(t) =
1

1 + 1
k

min
t∈[ 1

k ,∞)T
y(t) ≤ sup

t∈[a,∞)T

|y(t)|
1 + t

= ‖y‖1 ≤ ‖y‖ = ϑ(y)

and ‖y‖ = ϕ(y) for all y ∈ P(ϕ, r).
If y ∈ P(ϕ, r), then we have 0 ≤ y(t)

1+t ≤ r and 0 ≤ y∆(t) ≤ r for all t ∈ [a,∞)T. By hypothesis (iii) and
Lemma 2.2, we find

ϕ(Ay) ≤ M sup
t∈[a,∞)T

|Ay∆(t)|

= M
( m−2∑

i=1

βiy(ηi) +

∞∫
a

h(s) f
(
s, y(s), y∆(s)

)
∇s

)

≤ M
(
r

m−2∑
i=1

βi(1 + ηi) +
r

MN

(
1 −M

m−2∑
i=1

βi(1 + ηi)
) ∞∫

a

h(s)∇s
)

= r.

Then, we have A : P(ϕ, r)→ P(ϕ, r).
Now we verify that the remaining conditions of Theorem 5.1.

Let y1(t) =
q+r

2 (t + 1) +
q+r

2

( m−2∑
i=1
αi + γ − (a + 1)

)
for t ∈ [a,∞)T. Since we get

γ(y1) = k
k+1

[
q+r

2

(
1
k + 1

)
+

q+r
2

( m−2∑
i=1
αi + γ − (a + 1)

)]
≥

q+r
2 > q, θ(y1) ≤ q+r

2 and ϕ(y1) < r, we obtain

{y ∈ P(ϕ, θ, γ, q, q+r
2 , r) : γ(y) > q} , ∅.

If y ∈ P(ϕ, θ, γ, q, q+r
2 , r), then we have q

k ≤
y(t)
1+t ≤ r and 0 ≤ y∆(t) ≤ r for all t ∈ [ 1

k , k]. By the hypothesis (i),
we obtain

γ(Ay) ≥
k

k + 1
(γ +

1
k
− a)

∞∫
1
k

h(s) f (s, y(s), y∆(s))∇s >
k

k + 1
(γ +

1
k
− a)

q(k + 1)
λ[k(γ − a) + 1]

k∫
1
k

h(s)∇s = q.

Then, we have

γ(Ay) > q. (9)

Thus, the condition (i) of Theorem 5.1 is fulfilled.

Let y2(t) =
p
2 (t + 1) +

p
2

( m−2∑
i=1
αi + γ− (a + 1)

)
for t ∈ [a,∞)T. Since ϑ(y2) < p, ϕ(y2) < r and ψ(y2) = 0 = l,we

find {y ∈ Q(ϕ, ϑ, ψ, l, p, r) : ϑ(y) < p} , ∅. If y ∈ Q(ϕ, ϑ, ψ, l, p, r), then we obtain 0 ≤ y(t)
1+t ≤ p and 0 ≤ y∆(t) ≤ p

for t ∈ [a,∞)T. Hence, we have
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ϑ(Ay) ≤ M sup
t∈[a,∞)T

|Ay∆(t)|

≤ M
(
p

m−2∑
i=1

βi(1 + ηi) +
p

MN

(
1 −M

m−2∑
i=1

βi(1 + ηi)
) ∞∫

a

h(s)∇s
)

= p.

by the hypothesis (ii) and Lemma 2.2. It follows that condition (ii) of Theorem 5.1 holds.
Now, we shall show that the condition (iii) of Theorem 5.1 is satisfied. If y ∈ P(ϕ, γ, q, r), then for all

t ∈ [ 1
k , k]T we have q

k ≤
y(t)
1+t ≤ r and 0 ≤ y∆(t) ≤ r. According to (9), we have γ(Ay) > q. Thus, the condition

(iii) of Theorem 5.1 holds.
Finally, we shall verify that the condition (iv) of Theorem 5.1 holds. Since ψ(Ay) < l = 0 is impossible,

we omit the condition (iv) of Theorem 5.1.
Since all the conditions of Theorem 5.1 are satisfied, the BVP (1) has at least three positive solutions

y1, y2 and y3 satisfying

‖y1‖ < p < ‖y3‖, and
k

k + 1
min

t∈[ 1
k ,∞)T

y3(t) < q <
k

k + 1
min

t∈[ 1
k ,∞)T

y2(t).

This completes the proof.

Example 5.3. Let T = [0, 4] ∪ {5, 6} ∪ [7,∞). Consider the following boundary value problem:
y∆∇(t) + 1

(1+t)2 f
(
t, y(t), y∆(t)

)
= 0, t , 1

3 , t ∈ [0,∞) ⊂ T
y( 1

3
+

) − y( 1
3
−

) = 4,

y(0) − y∆(0) = 1
10 y∆

(
1
2

)
+ 1

10 y∆( 1
3 ), lim

t→∞
y∆(t) =

1
4

y
(1

2

)
+

1
3

y(
1
3

),

where

f (t, (1 + t)u, v) =


t

1+t2

(
u4 + v

3.104

)
; u < 1, v ≥ 0, t ∈ T,

t
1+t2

(
480 + v

3.104

)
; u ≥ 1, v ≥ 0 t ∈ T.

Taking h(t) = 1
(1+t)2 , a = 0, γ = 1, α1 = α2 = 1

10 , η1 = 1
2 , t1 = η2 = β2 = 1

3 , β1 = 1
4 and k = 4, we have M = 1.2,

N ≈ 0.9888 and λ = 0.6. If we take p = 0.1, q = 4 and r = 3.105, then all the conditions in Theorem 5.2 are verified.
Thus, the BVP has at least three positive solutions y1, y2 and y3 satisfying

‖y1‖ < 0.1 < ‖y3‖, and
1
5

min
t∈[ 1

4 ,∞)T
y3(t) < 1 <

1
5

min
t∈[ 1

4 ,∞)T
y2(t).
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