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Abstract. In the present paper, optimal quadrature formulas in the sense of Sard are constructed for

numerical integration of the integral
∫ b

a
e2πiωxϕ(x) dx with ω ∈ R in the Sobolev space L(m)

2 [a, b] of complex-
valued functions which are square integrable with m-th order derivative. Here, using the discrete analogue
of the differential operator d2m

dx2m , the explicit formulas for optimal coefficients are obtained. The order
of convergence of the obtained optimal quadrature formula is O(hm). As an application, we implement
the filtered back-projection (FBP) algorithm, which is a well-known image reconstruction algorithm for
computed tomography (CT). By approximating Fourier transforms and its inversion using the proposed
optimal quadrature formula of the second and third orders , we observe that the accuracy of the recon-
struction algorithm is improved. In numerical experiments, we compare the quality of the reconstructed
image obtained by using the proposed optimal quadrature formulas with the conventional FBP, in which
fast Fourier transform is used for the calculation of Fourier transform and its inversion. In the noise test,
the proposed algorithm provides more reliable results against the noise than the conventional FBP.

1. Introduction

It is known that when complete continuous X-ray data are available Computed Tomography (CT) image
can be reconstructed exactly using the filtered back-projection formula (see, for instance, [9, 15, 22, 28]). This
formula gives interactions between the Radon transform, the Fourier transform and the back-projection
transform. A description of the filtered back-projection formula along [22, Chapter 3] is provided below.

In the Cartesian system with x, y-axes consider a unit vector (cosθ, sinθ). Then the line perpendicular
to this vector with the distance t to the origin can be expressed as `t,θ: x cosθ + y sinθ = t. Assume the

2020 Mathematics Subject Classification. Primary 65D30, 65D32; Secondary 41A05, 41A15
Keywords. Optimal quadrature formula, square integrable function, error functional, Fourier transform, Radon transform, the

filtered back-projection, CT image reconstruction.
Received: 26 September 2020; Accepted: 20 July 2021
Communicated by Miodrag Spalević
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object is represented by a two variable function µ(x, y), which denotes the attenuation coefficient in X-ray
CT applications. Then, the θ-view projection along the line `t,θ can be expressed as

P(t, θ) =

∞∫
−∞

∞∫
−∞

µ(x, y)δ(x cosθ + y sinθ − t) dx dy,

where δ denotes the Dirac delta-function. The function P(t, θ) is known as the Radon transform of µ(x, y).
A projection is formed by combining a set of line integrals. The simplest projection is a collection of parallel
ray integrals as is given by P(t, θ) for a constant θ. This is known as a parallel beam projection. It should
be noted that there are fan-beam in 2D and cone-beam in 3D projections [9, 15, 22].

The problem of CT is to reconstruct the function µ(x, y) from its projections P(t, θ). There are analytic
and iterative methods for CT reconstruction. One of the widely used analytic methods of CT reconstruction
is the filtered back-projection method. It can be modeled by

µ(x, y) =

π∫
0

∞∫
−∞

S(ω, θ) |ω| e2πiω(x cosθ+y sinθ) dωdθ, (1)

where

S(ω, θ) =

∞∫
−∞

P(t, θ) e−2πiωt dt (2)

is the 1D Fourier transform of P(t, θ). The inner integral of (1),

Q(t, θ) =

∞∫
−∞

S(ω, θ)|ω| e2πiωt dω, (3)

is a 1D inverse Fourier transform of the product S(ω, θ) |ω|, which represents a projection filtered by a 1D
filter whose frequency representation is |ω|. The outer integral performs back-projection. Therefore, the
filtered back-projection consists of two steps: filtration and then back-projection.

Thus, the Fourier transforms play the main role in (1)-(3). But in practice, due to the fact that we have
discrete values of the Radon transform, we have to approximately calculate the Fourier transforms in the
filtered back-projection. For this purpose, it is necessary to consider the problem of approximate calculation
of the integral

I(ϕ) =

b∫
a

e2πiωxϕ(x) dx (4)

withω ∈ R. This type of integrals are called highly oscillating integrals. In most cases it is impossible to get the
exact values of such integrals. Thus, they can be approximately calculated using the formulas of numerical
integration. However, standard methods of numerical integration cannot be successfully applied for that.
Therefore special effective methods should be developed for approximation of highly oscillating integrals.
One of the first numerical integration formula for the integral (4) was obtained by Filon [16] in 1928 using
a quadratic spline. Since then, for integrals of different types of highly oscillating functions many special
effective methods have been developed, such as Filon-type method, Clenshaw-Curtis-Filon type method,
Levin type methods, modified Clenshaw-Curtis method, generalized quadrature rule, and Gauss-Laguerre
quadrature (see, for example, [1, 3–5, 21, 26, 29, 46, 47], for more review see, for instance, [14, 27, 30] and
references therein). Recently, in [6–8], based on Sobolev’s method, the problem of construction of optimal
quadrature formulas in the sense of Sard for numerical calculation of integrals (4) with integer ω was
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studied in Hilbert spaces L(m)
2 and W(m,m−1)

2 . Here, we consider the Sobolev space L(m)
2 [a, b] of non-periodic,

complex-valued functions defined on the interval [a, b], which possess an absolute continuous (m − 1)-th
derivative on [a, b], and whose m-th order derivative is square integrable [43, 45]. The space L(m)

2 [a, b] is a
Hilbert space with the inner product

〈ϕ,ψ〉 =

b∫
a

ϕ(m)(x) ψ̄(m)(x) dx, (5)

where ϕ(m) is the m-th order derivative of the function ϕ with respect to x, ψ̄ is the complex conjugate
function to the function ψ and the norm of the function ϕ is correspondingly defined by the formula

‖ϕ‖L(m)
2 [a,b] = 〈ϕ,ϕ〉1/2.

The aim of the present work is to construct optimal quadrature formulas in the sense of Sard in the
Sobolev space L(m)

2 for numerical integration of the integral (4) with real ω using the results of the work [8].
Then to approximate reconstruction of CT image, we apply the obtained optimal quadrature formulas to
the Fourier transform and its inversion in (1). Recently we got the results when m = 1 [20]. There is a work
by Reider and Faridani [31] for an optimal reconstruction algorithm, where the optimal L2

−convergence
rates of filtered back-projection (FBP) algorithm was provided with assumption that the Radon transform
was analytically computable.

The rest of the paper is organized as follows. Section 2 is devoted to construction of optimal quadrature
formulas in the sense of Sard in the space L(m)

2 for numerical calculation of Fourier integrals. There are
obtained analytic formulas for optimal coefficients using the discrete analogue of the differential operator

d2m

dx2m . In section 3, the obtained optimal quadrature formulas for the cases m = 2 and m = 3 are applied for
CT image reconstruction by approximating Fourier transforms in the filtered back-projection formula.

2. Optimal quadrature formulas for Fourier integrals in the space L(m)
2

[a, b]

In L(m)
2 [a, b] space for approximation of the integral (4), we consider the following quadrature formula

b∫
a

e2πiωxϕ(x) dx �
N∑
β=0

Cβϕ(xβ) (6)

with the error

(`, ϕ) =

b∫
a

e2πiωxϕ(x) dx −
N∑
β=0

Cβϕ(xβ), (7)

where (`, ϕ) =
∞∫
−∞

`(x)ϕ(x) dx is the value of the error functional ` at the functionϕ. Here the error functional

` has the form

`(x) = e2πiωxε[a,b](x) −
N∑
β=0

Cβδ(x − xβ), (8)

Cβ are coefficients, xβ = hβ + a (∈ [a, b]) are nodes of the formula (6), h = b−a
N , N ∈ N, i2 = −1, ω ∈ R, ε[a,b](x)

is the characteristic function of the interval [a, b], and δ is the Dirac delta-function. We mention that the
coefficients Cβ depend on ω, h and m.
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The error of the formula (6) defines a linear functional in L(m)∗
2 [a, b], where L(m)∗

2 [a, b] is the conjugate
space to the space L(m)

2 [a, b]. Since the functional (8) is defined on the space L(m)
2 , the conditions

(`, xα) = 0, α = 0, 1, ...,m − 1 (9)

should be fulfilled. The conditions (9) mean the exactness of the quadrature formula (6) for all algebraic
polynomials of degree less than or equal to m − 1. Hence we get that for a function from the space Cm[a, b]
the order of convergence of the optimal quadrature formula (6) is O(hm).

It should be mentioned that from equalities (9) one can get the condition N + 1 ≥ m for existence of the
optimal quadrature formula of the form (6) in the space L(m)

2 .
Sard’s optimization problem of numerical integration formulas of the form (6) in the space L(m)

2 [a, b] is
the problem of finding the minimum of the norm of the error functional ` by coefficients Cβ, i.e., to find
coefficients Cβ satisfying the equality

‖ ˚̀‖L(m)∗
2 [a,b] = inf

Cβ
‖`‖L(m)∗

2 [a,b]. (10)

The coefficients satisfying the last equality are called optimal coefficients and they are denoted as C̊β. The
quadrature formula with coefficients C̊β is called the optimal quadrature formula in the sense of Sard, and ˚̀ is
the error functional corresponding to the optimal quadrature formula.

The solution of Sard’s problem gives the sharp upper bound for the error (7) of functions ϕ from the
space L(m)

2 [a, b] as follows
|(`, ϕ)| ≤ ‖ϕ‖L(m)

2 [a,b]‖
˚̀‖L(m)∗

2 [a,b].

This problem, for the quadrature formulas of the form (6) with ω = 0, was first studied by Sard [32]
in the space L(m)

2 for some m. Since then, it was investigated by many authors (see, for instance, [11–
13, 18, 24, 25, 37]) using spline method, φ-function method, and Sobolev’s method. Finally, in the works
[23, 34, 36] this problem was solved for any m ∈ N with equally spaced nodes and the explicit expressions
for the optimal coefficients have been obtained (see Theorem 2.4).

It should be noted that the problem of construction of lattice optimal cubature formulas in the space L(m)
2

of multi-variable functions was first stated and investigated by Sobolev [43, 45]. Further, in this section,
based on the results of the work [8], we solve Sard’s problem on construction of optimal quadrature formulas
of the form (6) for ω ∈ R with ω , 0, first for the interval [0, 1] and then using a linear transformation for
the interval [a, b]. For this we use the following auxiliary results.

2.1. Preliminaries
We need the concept of discrete argument functions and operations on them. For this we give the

definition for functions of discrete argument by following [43, 45].
Assume that the nodes xβ are equally spaced, i.e., xβ = hβ, h is a small positive parameter, and ϕ and ψ

are complex-valued functions defined on the real line R or on an interval of R. The function ϕ(hβ) given
on some set of integer values of β is called a function of discrete argument. The inner product of two discrete
argument functions ϕ(hβ) and ψ(hβ) is defined by

[
ϕ(hβ), ψ(hβ)

]
=

∞∑
β=−∞

ϕ(hβ) · ψ̄(hβ)

if the series on the right hand side of the last equality converges absolutely. The convolution of two functions
ϕ(hβ) and ψ(hβ) is the following inner product

ϕ(hβ) ∗ ψ(hβ) =
[
ϕ(hγ), ψ(hβ − hγ)

]
=

∞∑
γ=−∞

ϕ(hγ) · ψ̄(hβ − hγ).
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We note that coefficients of optimal quadrature formulas and interpolation splines in the spaces L(m)
2 and

W(m,m−1)
2 depend on the roots of the Euler-Frobenius type polynomials (see, for instance, [2, 8, 10, 23, 33, 37–

42, 44, 45]). The Euler-Frobenius polynomials Ek(x), k = 1, 2, ..., are defined as follows (see, for instance,
[17, 45]):

Ek(x) =
(1 − x)k+2

x

(
x

d
dx

)k x
(1 − x)2 , k = 0, 1, 2, .... (11)

The coefficients of the Euler-Frobenius polynomial Ek(x) =
k∑

s=0
asxs of degree k are expressed by the

following formula which was obtained by Euler:

as =

s∑
j=0

(−1) j
(
k + 2

j

)
(s + 1 − j)k+1.

In [17] it was shown that all roots q j, j = 1, 2, ..., k, of the polynomial Ek(x) are real, negative and distinct,
that is:

q1 < q2 < ... < qk < 0.

Furthermore, these roots satisfy the relation

q j · qk+1− j = 1, j = 1, 2, ..., k.

For the Euler-Frobenius polynomials Ek(x) the following identity holds

Ek(x) = xkEk

(1
x

)
, (12)

and also the following is true.

Theorem 2.1. (Lemma 3 of [33]). Polynomial Qk(x) which is defined by the formula

Qk(x) = (x − 1)k+1
k+1∑
i=0

∆i0k+1

(x − 1)i (13)

is the Euler-Frobenius polynomial (11) of degree k, i.e., Qk(x) = Ek(x), where ∆i0k =
∑i

l=1(−1)i−l(i
l
)
lk.

We also use the formula
n−1∑
γ=0

qγγk =
1

1 − q

k∑
i=0

(
q

1 − q

)i

∆i0k
−

qn

1 − q

k∑
i=0

(
q

1 − q

)i

∆iγk
|γ=n, (14)

which is given in [19], where ∆iγk is the finite difference of order i of γk and q is the ratio of a geometric
progression.

In finding the analytic formulas for coefficients of optimal formulas in the space L(m)
2 by Sobolev method

the discrete analogue Dm(hβ) of the operator d2m

dx2m plays the main role. This discrete analogue satisfies the
equality

hDm(hβ) ∗ Gm(hβ) = δd(hβ), (15)

where Gm(hβ) is the discrete argument function for the function

Gm(x) =
|x|2m−1

2(2m − 1)!
, (16)

and δd(hβ) is equal to 0 when β , 0 and 1 when β = 0.
We note that the operator Dm(hβ) was introduced and studied by Sobolev [43]. In [35] the discrete

function Dm(hβ) was constructed and the following was proved.
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Theorem 2.2. The discrete analogue of the differential operator d2m

dx2m has the form

Dm(hβ) = p



m−1∑
k=1

Akq|β|−1
k for |β| ≥ 2,

1 +

m−1∑
k=1

Ak for |β| = 1,

C +

m−1∑
k=1

Ak

qk
for β = 0,

(17)

where

p =
(2m − 1)!

h2m , Ak =
(1 − qk)2m+1

E2m−1(qk)
, C = −22m−1, (18)

E2m−1(x) is the Euler-Frobenius polynomial of degree 2m − 1, qk are the roots of the Euler-Frobenius polynomial
E2m−2(x), |qk| < 1, and h is a small positive parameter.

In addition, some properties of Dm(hβ) were studied in the works [35, 43]. Here we give the following.

Theorem 2.3. The discrete argument function Dm(hβ) and the monomials (hβ)k are related to each other as follows:

∞∑
β=−∞

Dm(hβ)(hβ)k =

{
0 for 0 ≤ k ≤ 2m − 1,
(2m)! for k = 2m. (19)

Now we give the results of the works [33, 34] on the optimal quadrature formulas of the form (6) in the
sense of Sard and on the norm of the optimal error functional corresponding to the case ω = 0.

Theorem 2.4. Coefficients of the optimal quadrature formulas of the form

1∫
0

ϕ(x) dx �
N∑
β=0

Cβϕ(hβ) (20)

in the space L(m)
2 [0, 1] have the form

C̊0 = h

1
2
−

m−1∑
k=1

dk
qk − qN

k

1 − qk

 ,
C̊β = h

1 +

m−1∑
k=1

dk

(
qβk + qN−β

k

) , β = 1, 2, ...,N − 1, (21)

C̊N = h

1
2
−

m−1∑
k=1

dk
qk − qN

k

1 − qk

 ,
where dk satisfy the system

m−1∑
k=1

dk

j∑
i=1

qk + (−1)i+1qN+i
k

(qk − 1)i+1
∆i0 j =

B j+1

j + 1
, j = 1, 2, ...,m − 1,

qk are roots of the Euler-Frobenius polynomial E2m−2(x) of degree 2m − 2 with |qk| < 1, and ∆i0 j =
∑i

l=1(−1)i−l(i
l
)
l j.
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Theorem 2.5. The norm of the error functional of the optimal quadrature formula (20) on the space L(m)
2 [0, 1] has the

form

‖ ˚̀‖2
L(m)∗

2 [0,1]
= (−1)m+1

h2mB2m

(2m)!
+

2h2m+1

(2m)!

m−1∑
k=1

dk

2m∑
i=1

−qN+i
k + (−1)iqk

(1 − qk)i+1
∆i02m

 ,
where B2m is the Bernoulli number, and qk, dk and ∆i02m are given in Theorem 2.4.

2.2. Construction of optimal quadrature formulas for the interval [0, 1]
Here we obtain optimal quadrature formulas of the form (6) for the interval [0, 1] when ω ∈ R and

ω , 0. In the space L(m)
2 [0, 1], using the results of Sections 2, 3 and 5 of [8], for the coefficients of the optimal

quadrature formulas in the sense of Sard of the form

1∫
0

e2πiωxϕ(x) dx �
N∑
β=0

Cβϕ(hβ) (22)

for ω ∈ R with ω , 0, we get the following system of linear equations

N∑
γ=0

CγGm(hβ − hγ) + Pm−1(hβ) = fm(hβ), β = 0, 1, ...,N, (23)

N∑
γ=0

Cγ(hγ)α = 1α, α = 0, 1, ...,m − 1, (24)

where Pm−1(hβ) =
m−1∑
α=0

pα(hβ)α is a polynomial of degree m − 1 with complex coefficients,

fm(hβ) =

1∫
0

e2πiωxGm(x − hβ) dx (25)

= −

2m−1∑
α=0

(hβ)2m−1−α(−1)α1α
2α!(2m − 1 − α)!

+
e2πiωhβ

(2πiω)2m −

2m−1∑
k=0

(hβ)2m−1−k

(2m − 1 − k)!(2πiω)k+1
,

1α =

1∫
0

e2πiωxxα dx (26)

=

α−1∑
k=0

(−1)kα! e2πiω

(α − k)!(2πiω)k+1
+

(−1)αα!
(2πiω)α+1

(
e2πiω

− 1
)
, α = 0, 1, ...,

Gm(x) is defined by (16), and h = 1
N for N ∈N.

In the system (23)-(24) unknowns are the optimal coefficients C̊β, β = 0, 1, ...,N and pα, α = 0, 1, ...,m − 1.
We point out that when N + 1 ≥ m the system (23)-(24) has a unique solution. This solution satisfies
conditions (9) and the equality (10). It should be noted that the existence and uniqueness of the solution
for such type of systems were studied, for example, in [40, 43, 45].

We are interested in finding explicit formulas for the optimal coefficients C̊β, β = 0, 1, ...,N and unknown
polynomial Pm−1(hβ) satisfying the system (23)-(24). The system (23)-(24) is solved similarly as the system
(34)-(35) of [8] by Sobolev’s method, using the discrete analogue Dm(hβ) of the differential operator d2m

dx2m .
We formulate the results of this section as the following two theorems.
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Theorem 2.6. For real ω with ωh < Z, the coefficients of optimal quadrature formulas of the form (6) in the space
L(m)

2 [0, 1] when N + 1 ≥ m are expressed by formulas

C̊0 = h

 e2πiωhKω,m
e2πiωh − 1

−
1

2πiωh
+

m−1∑
k=1

ak
qk

qk − 1
+ bk

qN
k

1 − qk


 , (27)

C̊β = h

 e2πiωhβKω,m +

m−1∑
k=1

(
akqβk + bkqN−β

k

) , β = 1, 2, ...,N − 1, (28)

C̊N = h

 e2πiωKω,m
1 − e2πiωh

+
e2πiω

2πiωh
+

m−1∑
k=1

ak
qN

k

1 − qk
+ bk

qk

qk − 1


 , (29)

where ak and bk are defined by the following system of (2m − 2) linear equations

m−1∑
k=1

ak

[
j∑

t=1

qk∆
t0 j

(qk−1)t+1

]
+

m−1∑
k=1

bk

[
j∑

t=1

qN+t
k ∆t0 j

(1−qk)t+1

]
=

j!
(2πiωh) j+1 −

j∑
t=1

e2πiωhKω,m∆t0 j

( e2πiωh−1)t+1 , j = 1, 2, ...,m − 1,

m−1∑
k=1

ak

[
j∑

t=1

qt
k∆

t0 j

(1−qk)t+1 −

j∑
α=1

hα− j( j
α

) α∑
t=1

qN+t
k ∆t0α

(1−qk)t+1

]
+

m−1∑
k=1

bk

[
j∑

t=1

qN+1
k ∆t0 j

(qk−1)t+1 −

j∑
α=1

hα− j( j
α

) α∑
t=1

qk∆
t0α

(qk−1)t+1

]
=

(−1) j+1 j!
(2πiωh) j+1 +

j∑
α=1

hα− j (−1)α j! e2πiω

( j−α)!(2πiωh)α+1 −
Kω,m

1− e2πiωh

j∑
t=1

(
e2πiωh

1− e2πiωh

)t
∆t0 j

+
Kω,m e2πiω

1− e2πiωh

j∑
α=1

hα− j( j
α

) α∑
t=1

(
e2πiωh

1− e2πiωh

)t
∆t0α, j = 1, 2, ...,m − 1,

(30)

qk are roots of the Euler-Frobenius polynomial E2m−2(x) with |qk| < 1, and

Kω,m =

(
sinπωh
πωh

)2m (2m − 1)!

2
m−2∑
α=0

aα cos[2πωh(m − 1 − α)] + am−1

. (31)

Here aα =
α∑

j=0
(−1) j(2m

j
)
(s + 1− j)2m−1 are the coefficients of the Euler-Frobenius polynomial E2m−2(x) of degree 2m− 2.

Theorem 2.7. For ωh ∈ Z with ω , 0, the coefficients of optimal quadrature formulas of the form (6) in the space
L(m)

2 [0, 1] when N + 1 ≥ m are expressed by formulas

C̊0 = h

− 1
2πiωh

+

m−1∑
k=1

ak
qk

qk − 1
+ bk

qN
k

1 − qk


 ,

C̊β = h
m−1∑
k=1

(
akqβk + bkqN−β

k

)
, β = 1, 2, ...,N − 1,

C̊N = h

 e2πiω

2πiωh
+

m−1∑
k=1

ak
qN

k

1 − qk
+ bk

qk

qk − 1


 ,

where ak and bk, k = 1, 2, ...,m − 1, are defined by the following system of (2m − 2) linear equations:



A.R. Hayotov et al. / Filomat 35:12 (2021), 4177–4195 4185

m−1∑
k=1

ak

[
j∑

t=1

qk∆
t0 j

(qk−1)t+1

]
+

m−1∑
k=1

bk

[
j∑

t=1

qN+t
k ∆t0 j

(1−qk)t+1

]
=

j!
(2πiωh) j+1 , j = 1, 2, ...,m − 1,

m−1∑
k=1

ak

[
j∑

t=1

qt
k∆

t0 j

(1−qk)t+1 −

j∑
α=1

hα− j( j
α

) α∑
t=1

qN+t
k ∆t0α

(1−qk)t+1

]
+

m−1∑
k=1

bk

[
j∑

t=1

qN+1
k ∆t0 j

(qk−1)t+1 −

j∑
α=1

hα− j( j
α

) α∑
t=1

qk∆
t0α

(qk−1)t+1

]
=

(−1) j+1 j!
(2πiωh) j+1 +

j∑
α=1

hα− j (−1)α j! e2πiω

( j−α)!(2πiωh)α+1 , j = 1, 2, ...,m − 1.

Here qk are the roots of the Euler-Frobenius polynomial E2m−2(x) and |qk| < 1.

We note that Theorem 2.6 is generalization of Theorem 6 in [6] for real ω with ωh < Z while Theorem
2.7 for ωh ∈ Z with ω , 0 is the same with Theorem 7 of the work [6]. Theorem 6 is proved similarly as
Theorem 6 of [6]. Therefore, it is sufficient to give a brief proof of Theorem 2.6.

The brief proof of Theorem 2.6. First, such as in Theorem 5 of the work [8], using the discrete function
Dm(hβ), for optimal coefficients C̊β, β = 1, 2, ...,N−1, whenω is real andωh < Zwe get the following formula

C̊β = h

Kω,m e2πiωhβ +

m−1∑
k=1

(
akqβk + bkqN−β

k

) , β = 1, 2, ...,N − 1, (32)

where ak, bk, k = 1, 2, ...,m − 1, Kω,m are unknowns, and qk are roots of the Euler-Frobenius polynomial
E2m−2(x) of degree 2m − 2 with |qk| < 1.

Next, it is sufficient to find ak, bk, k = 1, 2, ...,m − 1, Kω,m, optimal coefficients C̊0, C̊N and unknown
polynomial Pm−1(hβ) of degree m−1. Now putting the form (32) of optimal coefficients C̊β, β = 1, 2, ...,N−1,
into (23), using (12)-(14), after some simplifications, we get the following identity with respect to (hβ)

e2πiωhβ

(
h2mKω,m
(2m−1)!

2m−1∑
i=0

e2πiωh∆i02m−1

( e2πiωh−1)i+1

)
+

(hβ)2m−1

(2m−1)!

(
C̊0 −

Kω,mh e2πiωh

e2πiωh−1 − h
m−1∑
k=1

akqk−bkqN
k

qk−1

)
−

2m−1∑
j=1

(hβ)2m−1− j

j!(2m−1− j)! h
j+1

(
j∑

i=0

Kω,m e2πiωh∆i0 j

( e2πiωh−1)i+1 +
m−1∑
k=1

j∑
i=0

akqk+(−1)i+1bkqN+i
k

(qk−1)i+1 ∆i0 j

)
−

2m−1∑
j=m

(hβ)2m−1− j

j!(2m−1− j)!
(−1) j

2

N∑
γ=0

C̊γ(hγ) j + Pm−1(hβ)

= e2πiωhβ

(2πiω)2m −
(hβ)2m−1

(2m−1)!(2πiω)

−

2m−1∑
j=1

(hβ)2m−1− j

j!(2m−1− j)!
j!

(2πiω) j+1 −

2m−1∑
j=m

(hβ)2m−1− j

j!(2m−1− j)!
(−1) j

2 1 j.

Hence, the formulas (27) and (31) for C̊0 and Kω,m are obtained by equating the coefficients of the terms
(hβ)2m−1 and e2πiωhβ, respectively. Then (29) is found from (24) when α = 0, using (27) and (32). From the last
identity equating the coefficients of the terms (hβ)2m−1− j for j = 1, 2, ...,m−1 and using (24) forα = 1, 2, ...,m−1,
taking into account (27), (29) and (32), we obtain the system (30). Finally, the polynomial Pm−1(hβ) is obtained
from the identity by equating the coefficients of the terms (hβ)2m−1− j for j = m,m + 1, ..., 2m − 1. Theorem is
proved. �

2.3. Optimal quadrature formulas for the interval [a, b]

In this section we obtain the optimal quadrature formulas for the interval [a, b] in the space L(m)
2 by a

linear transformation from the results of the previous section.
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We consider construction of the optimal quadrature formulas of the form

b∫
a

e2πiωxϕ(x) dx �
N∑
β=0

Cβ,ω[a, b]ϕ(xβ) (33)

in the Sobolev space L(m)
2 [a, b]. Here Cβ,ω[a, b] are coefficients, xβ = hβ + a (∈ [a, b]) are nodes of the formula

(33), ω ∈ R, i2 = −1, and h = b−a
N for N + 1 ≥ m.

Now, by a linear transformation x = (b − a)y + a, where 0 ≤ y ≤ 1, we obtain

b∫
a

e2πiωxϕ(x) dx = (b − a) e2πiωa

1∫
0

e2πiω(b−a)yϕ((b − a)y + a) dy. (34)

Then, applying Theorems 2.4, 2.6 and 2.7 to the integral on the right-hand side of the last equality, we have
the following results which are optimal quadrature formulas of the form (33) in the sense of Sard in the
space L(m)

2 [a, b] for all real ω.
For the case ω = 0, using Theorem 2.4 in (34), we get

Theorem 2.8. Coefficients of the optimal quadrature formulas of the form

b∫
a

ϕ(x) dx �
N∑
β=0

Cβ,0[a, b]ϕ(hβ + a)

in the space L(m)
2 [a, b] have the form

C̊0,0[a, b] = h

1
2
−

m−1∑
k=1

dk
qk − qN

k

1 − qk

 ,
C̊β,0[a, b] = h

1 +

m−1∑
k=1

dk

(
qβk + qN−β

k

) , β = 1, 2, ...,N − 1,

C̊N,0[a, b] = h

1
2
−

m−1∑
k=1

dk
qk − qN

k

1 − qk

 ,
where h = b−a

N and dk satisfy the system

m−1∑
k=1

dk

j∑
i=1

qk + (−1)i+1qN+i
k

(qk − 1)i+1
∆i0 j =

B j+1

j + 1
, j = 1, 2, ...,m − 1.

Here B j+1 is the Bernoulli number, qk are roots of the Euler-Frobenius polynomial E2m−2(x) of degree (2m − 2) with
|qk| < 1, and ∆i0 j =

∑i
l=1(−1)i−l(i

l
)
l j.

For the case ω ∈ R and ωh < Z, applying Theorem 2.6 to the integral in (34), we obtain
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Theorem 2.9. For real ω with ωh < Z, the coefficients of optimal quadrature formulas of the form (33) in the space
L(m)

2 [a, b] when N + 1 ≥ m are expressed by formulas

C̊0,ω[a, b] = h

 e2πiω(a+h)Kω,m
e2πiωh − 1

−
e2πiωa

2πiωh
+

m−1∑
k=1

ak
qk

qk − 1
+ bk

qN
k

1 − qk


 ,

C̊β,ω[a, b] = h

 e2πiω(hβ+a)Kω,m +

m−1∑
k=1

(
akqβk + bkqN−β

k

) , β = 1, 2, ...,N − 1,

C̊N,ω[a, b] = h

 e2πiωbKω,m
1 − e2πiωh

+
e2πiωb

2πiωh
+

m−1∑
k=1

ak
qN

k

1 − qk
+ bk

qk

qk − 1


 ,

where ak and bk are defined by the following system of (2m − 2) linear equations:

m−1∑
k=1

ak

[
j∑

t=1

qk∆
t0 j

(qk−1)t+1

]
+

m−1∑
k=1

bk

[
j∑

t=1

qN+t
k ∆t0 j

(1−qk)t+1

]
=

j! e2πiωa

(2πiωh) j+1 −

j∑
t=1

e2πiω(a+h)Kω,m∆t0 j

( e2πiωh−1)t+1 , j = 1, 2, ...,m − 1,

m−1∑
k=1

ak

[
j∑

t=1

qt
k∆

t0 j

(1−qk)t+1 −

j∑
α=1

( h
b−a )α− j( j

α

) α∑
t=1

qN+t
k ∆t0α

(1−qk)t+1

]
+

m−1∑
k=1

bk

[
j∑

t=1

qN+1
k ∆t0 j

(qk−1)t+1 −

j∑
α=1

( h
b−a )α− j( j

α

) α∑
t=1

qk∆
t0α

(qk−1)t+1

]
=

(−1) j+1 j! e2πiωa

(2πiωh) j+1 +
j∑

α=1
( h

b−a )α− j (−1)α j! e2πiωb

( j−α)!(2πiωh)α+1 −
Kω,m e2πiωa

1− e2πiωh

j∑
t=1

(
e2πiωh

1− e2πiωh

)t
∆t0 j

+
Kω,m e2πiωb

1− e2πiωh

j∑
α=1

( h
b−a )α− j( j

α

) α∑
t=1

(
e2πiωh

1− e2πiωh

)t
∆t0α, j = 1, 2, ...,m − 1,

qk are roots of the Euler-Frobenius polynomial E2m−2(x) with |qk| < 1, and Kω,m is defined by (31).

Lastly, for the case ωh ∈ Zwith ω , 0 application Theorem 2.7 in (34) gives the following.

Theorem 2.10. For ωh ∈ Z with ω , 0, the coefficients of optimal quadrature formulas of the form (33) in the space
L(m)

2 [a, b] when N + 1 ≥ m are expressed by formulas

C̊0,ω[a, b] = h

− e2πiωa

2πiωh
+

m−1∑
k=1

ak
qk

qk − 1
+ bk

qN
k

1 − qk


 ,

C̊β,ω[a, b] = h
m−1∑
k=1

(
akqβk + bkqN−β

k

)
, β = 1, 2, ...,N − 1,

C̊N,ω[a, b] = h

 e2πiωb

2πiωh
+

m−1∑
k=1

ak
qN

k

1 − qk
+ bk

qk

qk − 1


 ,

where ak and bk, k = 1, 2, ...,m − 1, are defined by the following system of (2m − 2) linear equations
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m−1∑
k=1

ak

[
j∑

t=1

qk∆
t0 j

(qk−1)t+1

]
+

m−1∑
k=1

bk

[
j∑

t=1

qN+t
k ∆t0 j

(1−qk)t+1

]
=

j! e2πiωa

(2πiωh) j+1 , j = 1, 2, ...,m − 1,

m−1∑
k=1

ak

[
j∑

t=1

qt
k∆

t0 j

(1−qk)t+1 −

j∑
α=1

( h
b−a )α− j( j

α

) α∑
t=1

qN+t
k ∆t0α

(1−qk)t+1

]
+

m−1∑
k=1

bk

[
j∑

t=1

qN+1
k ∆t0 j

(qk−1)t+1 −

j∑
α=1

( h
b−a )α− j( j

α

) α∑
t=1

qk∆
t0α

(qk−1)t+1

]
=

(−1) j+1 j! e2πiωa

(2πiωh) j+1 +
j∑

α=1
( h

b−a )α− j (−1)α j! e2πiωb

( j−α)!(2πiωh)α+1 , j = 1, 2, ...,m − 1.

Here qk are the roots of the Euler-Frobenius polynomial E2m−2(x) and |qk| < 1.

From a practical point of view, to have the formulas for coefficients of the optimal quadrature formulas
(33) for the first several values of m is very useful. Below we present explicit formulas of the optimal
coefficients for m = 2 and 3, using Theorems 2.8, 2.9 and 2.10.

Remark 1. In the space L(1)
2 [a, b] the coefficients of the optimal quadrature formulas (33) have the same

forms as derived in [20], where it was shown that for functions with a continuous second derivative the
convergence order of this optimal quadrature formula is O(h2).

Remark 2. The optimal quadrature formulas (33) for m = 1 and 2 have the same convergence order.

Corollary 2.11. In the space L(2)
2 [a, b] the coefficients of the optimal quadrature formulas (33) for ω = 0 are written

as

C̊0,0[a, b] = h

1
2

+
q1 − qN

1

2(1 − q1)(1 + qN
1 )

 ,
C̊β,0[a, b] = h

1 −
qβ1 + qN−β

1

2(1 + qN
1 )

 , β = 1, 2, ...,N − 1,

C̊N,0[a, b] = h

1
2

+
q1 − qN

1

2(1 − q1)(1 + qN
1 )

 ,
for ω ∈ R and ωh < Z are expressed as

C̊0,ω[a, b] = h

 e2πiω(a+h)Kω,2
e2πiωh − 1

−
e2πiωa

2πiωh
+ a1

q1

q1 − 1
+ b1

qN
1

1 − q1

 ,
C̊β,ω[a, b] = h

(
e2πiω(hβ+a)Kω,2 + a1qβ1 + b1qN−β

1

)
, β = 1, 2, ...,N − 1,

C̊N,ω[a, b] = h

 e2πiωbKω,2
1 − e2πiωh

+
e2πiωb

2πiωh
+ a1

qN
1

1 − q1
+ b1

q1

q1 − 1

 ,
and for ωh ∈ Z with ω , 0 have the form

C̊0,ω[a, b] = h

− e2πiωa

2πiωh
+ a1

q1

q1 − 1
+ b1

qN
1

1 − q1

 ,
C̊β,ω[a, b] = h

(
a1qβ1 + b1qN−β

1

)
, β = 1, 2, ...,N − 1,

C̊N,ω[a, b] = h

 e2πiωb

2πiωh
+ a1

qN
1

1 − q1
+ b1

q1

q1 − 1

 ,
where q1 =

√
3 − 2,

a1 =
Bω( e2πiωa

− e2πiωbqN
1 )

1−q2N
1

, b1 =
Bω( e2πiωb

− e2πiωaqN
1 )

1−q2N
1

,

Bω = 6
(

1
(2πωh)2 −

Kω,2
2−2 cos 2πωh

)
, Kω,2 =

(
sinπωh
πωh

)4 3
2+cos 2πωh .
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Corollary 2.12. In the space L(3)
2 [a, b] the coefficients of the optimal quadrature formulas (33) for ω = 0 are written

as

C̊0,0[a, b] = h

1
2
−

2∑
k=1

dk
qk − qN

k

1 − qk

 ,
C̊β,0[a, b] = h

1 +

2∑
k=1

dk

(
qβk + qN−β

k

) , β = 1, 2, ...,N − 1,

C̊N,0[a, b] = h

1
2
−

2∑
k=1

dk
qk − qN

k

1 − qk

 ,
where dk are defined from the system

2∑
k=1

dk
qk + qN+1

k

(qk − 1)2 =
1

12
,

2∑
k=1

dk
qk − qN+2

k

(qk − 1)3 =
−1
24
,

(35)

for ω ∈ R and ωh < Z are expressed as

C̊0,ω[a, b] = h

 e2πiω(a+h)Kω,3
e2πiωh − 1

−
e2πiωa

2πiωh
+

2∑
k=1

ak
qk

qk − 1
+ bk

qN
k

1 − qk


 ,

C̊β,ω[a, b] = h

 e2πiω(hβ+a)Kω,3 +

2∑
k=1

(
akqβk + bkqN−β

k

) , β = 1, 2, ...,N − 1,

C̊N,ω[a, b] = h

 e2πiωbKω,3
1 − e2πiωh

+
e2πiωb

2πiωh
+

2∑
k=1

ak
qN

k

1 − qk
+ bk

qk

qk − 1


 ,

where ak and bk are determined from the system

2∑
k=1

ak

[
qk

(qk − 1)2

]
+

2∑
k=1

bk

 qN+1
k

(1 − qk)2

 =
e2πiωa

(2πiωh)2 −
e2πiω(h+a)Kω,3
( e2πiωh − 1)2

,

2∑
k=1

ak

[
qk

(qk − 1)3

]
+

2∑
k=1

bk

 qN+2
k

(1 − qk)3

 =
e2πiωa

(2πiωh)3 −
e2πiωa

2(2πiωh)2 −
e2πiω(h+a)Kω,3
( e2πiωh − 1)3

,

2∑
k=1

ak

 qN+1
k

(1 − qk)2

 +

2∑
k=1

bk

[
qk

(qk − 1)2

]
=

e2πiωb

(2πiωh)2 −
e2πiω(h+b)Kω,3
(1 − e2πiωh)2

,

2∑
k=1

ak

 q2
k − qN+2

k

(1 − qk)3

 +

2∑
k=1

bk

 qN+1
k − qk

(qk − 1)3

 = ( e2πiωb
− e2πiωa)

(
1

(2πiωh)3 +
1

2(2πiωh)2 +
e4πiωhKω,3

(1 − e2πiωh)3

)
,

(36)

and for ωh ∈ Z with ω , 0 have the form

C̊0,ω[a, b] = h

− e2πiωa

2πiωh
+

2∑
k=1

ak
qk

qk − 1
+ bk

qN
k

1 − qk


 ,

C̊β,ω[a, b] = h

 2∑
k=1

(
akqβk + bkqN−β

k

) , β = 1, 2, ...,N − 1,

C̊N,ω[a, b] = h

 e2πiωb

2πiωh
+

2∑
k=1

ak
qN

k

1 − qk
+ bk

qk

qk − 1


 ,
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Figure 1: Shepp-Logan phantom images of size 512 × 512: without noise (left) and with noise (right)

where ak and bk are defined as follows

2∑
k=1

ak

[
qk

(qk − 1)2

]
+

2∑
k=1

bk

 qN+1
k

(1 − qk)2

 =
e2πiωa

(2πiωh)2 ,

2∑
k=1

ak

[
qk

(qk − 1)3

]
+

2∑
k=1

bk

 qN+2
k

(1 − qk)3

 =
e2πiωa

(2πiωh)3 −
e2πiωa

2(2πiωh)2 ,

2∑
k=1

ak

 qN+1
k

(1 − qk)2

 +

2∑
k=1

bk

[
qk

(qk − 1)2

]
=

e2πiωb

(2πiωh)2 ,

2∑
k=1

ak

q2
k − qN+2

k

(1 − qk)3

 +

2∑
k=1

bk

qN+1
k − qk

(qk − 1)3

 = ( e2πiωb
− e2πiωa)

(
1

(2πiωh)3 +
1

2(2πiωh)2

)
,

(37)

qk, k = 1, 2, are roots of the Euler-Frobenius polynomial

E4(x) = x4 + 26x3 + 66x2 + 26x + 1 (38)

with |qk| < 1, and

Kω,3 =

(
sinπωh
πωh

)6 5!
2[cos 4πωh + 26 cos 2πωh] + 66

. (39)

3. Application: CT image reconstruction

In this section, we give numerical results of CT image reconstruction by applying the second and third-
order optimal quadrature formulas (Corollaries 2.11 and 2.12) to calculate the Fourier transform and its
inversion. One of the most commonly used CT reconstruction algorithms is FBP [9, 15, 22, 28] and as in [22],
the implementation of the FBP consists of four steps: (1) sinogram acquisition, (2) Fourier transform of the
sinogram, (3) application of Ram-Lak filter and the Fourier inversion, and (4) back-projection. To show the
effect of the proposed optimal quadrature formula, we implement the FBP in two different ways: one uses
fft and ifft for the Fourier transform and its inversion, respectively, and the other uses the proposed optimal
quadrature formulas. Then, we compare the quality of the resulting reconstructed images. Also, we test
the performance of the proposed algorithm by adding the 10% of Poisson noise to the given sinogram. In
this section, we deal with the second and third order optimal quadrature formulas only. For the numerical
results with the first order optimal quadrature formula, see [20].

Algorithm 1 is the pseudo code of the algorithm for CT image reconstruction using optimal quadrature
formulas. For Step 2 and Step 3, the optimal quadrature formulas are used for approximating Fourier
integrals. For the numerical experiment, we use the Shepp-Logan phantom (SL) in [22] and we also
consider the case with noise (see Fig. 1). Both are of size 512 × 512 and the sinograms are generated using
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Algorithm 1 Reconstruction algorithm with optimal quadrature formula
1: A sinogram P(tm, θk) for tm ∈ [a, b], θ ∈ [0, π] is given as a discrete form.
2: Compute the Fourier transform using the proposed optimal quadrature:

S(ω, θ) � S(ω, θk) =

M∑
m=0

C̊m,−ωP(tm, θk), ω ∈ R.

3: Compute the inverse Fourier transform using the proposed optimal quadrature:

Q(t, θ) � Q(t, θk) =

N∑
n=0

C̊n,tS(ωn, θk)|ωn|.

4: Reconstruct the CT image using back-projection:

f (x, y) =

∫ π

0
Q(t, θ)dθ �

π
K

K−1∑
k=0

Q(t, θk).

Figure 2: Reconstruction results of the conventional FBP using fft and ifft (left), using the second order optimal quadrature formula
(middle), and using the third order optimal quadrature formula (right).

half rotation sampling with sampling angle 0.5◦. For the implementation, we use qk =
tk+
√

t2
k−4

2 (k = 1, 2),
where tk = −13 ±

√
105, the roots of (38) with |qk| < 1. For q1 and q2, dk are obtained from the 2 × 2 linear

system (35), and ak and bk are obtained from the 4 × 4 linear systems (36) and (37). For the numerical
experiments, MATLAB 2019b is used. For the image quality analysis, we compare maximum error (Emax),
mean squared error (MSE), and the peak signal-to-noise ratio (PSNR):

Emax(I) = max
i, j
|I(i, j) − Ire f (i, j)|,

MSE(I) =
1

mn

m∑
i=1

n∑
j=1

|I(i, j) − Ire f (i, j)|2 ,

PSNR(I) = 10 log10

(
I2
max

MSE(I)

)
,

where Imax is the maximum pixel value of the image I. Images of original simulated phantoms are denoted
by Ire f (Fig. 1).

Figs. 2 and 3 show the results of CT image reconstruction using optimal quadrature formulas of the
second and third orders and profiles of the results, respectively. As shown in Fig. 3, the profile lines of
conv-FBP and optimal quadrature formula almost coincide. Figs. 4 and 5 show the results of noise test and
we observe that the resulting reconstructed images are very similar, visually. Table 1 shows Emax, MSE,
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Figure 3: Profiles of the reconstructed image of the Shepp-Logan: horizontal (left) and vertical (right).

Figure 4: Noise test: reconstruction results of the conventional FBP using fft and ifft (left), using the second order optimal quadrature
formula (middle), and using the third order optimal quadrature formula (right).

Shepp-Logan without noise Shepp-Logan with noise
conv-FBP
fft and ifft

OQF
m = 2

OQF
m = 3

conv-FBP
fft and ifft

OQF
m = 2

OQF
m = 3

Emax 0.3458 0.3526 0.3307 0.3722 0.3634 0.3472
MSE 7.9648e-04 7.2111e-04 6.5084e-04 7.9088e-04 7.4509e-04 6.4990e-04

PSNR 30.9883 31.4200 31.8652 31.0189 31.2779 31.8715

Table 1: Quantitative analysis for the reconstructed CT image from FBP using conventional fft-ifft and the second and third order
optimal quadrature formulas in Corollaries 2.11 and 2.12.
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Figure 5: Noise test: Profiles of the reconstructed image of the Shepp-Logan: horizontal (left) and vertical (right).

and PSNR for the reconstruction results using the second and third order optimal quadrature formulas.
The second order optimal quadrature formula performs similar to or slightly better than the conventional
FBP. The proposed third order optimal quadrature formula produces more improved quality than the
conventional FBP particularly in terms of MSE and PSNR. The third order optimal quadrature formula also
shows the best performance when noise was added.

Remark 3. The computational complexity of optimal quadrature formulas for Fourier integration is
O(n2) for the n × n matrix multiplication and addition and it is larger than O(n log n) for the fast Fourier
transformation. However, once the coefficients of optimal quadrature formulas for Fourier integral are
computed, they can be used several times for the same size of input signals. Moreover, they can be well
optimized using parallelization.

Remark 4. It should be noted that since the coefficients of the optimal quadrature formulas of the form
(33) are continuous functions of the parameter ω, it is not needed any interpolation in Algorithm 1.
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