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The Extreme Problem for Orlicz and Lq Torsional Rigidity and their
Properties

Zhenzhen Weia, Jin Yanga

aHubei Minzu University

Abstract. In this paper, the extreme problem for Orlicz and Lq torsional rigidity is discussed. Moreover,
we introduce Orlicz and Lq geominimal torsional rigidity, which is defined as being motivated through
Orlicz Lϕ mixed torsional rigidity. Also, the invariance of Orlicz and Lq geominimal torsional rigidity
under orthogonal matrices is proved, and isoperimetric type inequality and circular type inequality for the
torsional rigidity are established as well.

1. Introduction

The setting of this paper is in the n-dimensional Euclidean space Rn. A subset K in Rn is convex if for
all x, y ∈ K and a ∈ [0, 1] satisfying ax + (1 − a)y ∈ K. Let K and K0 be the set of convex bodies (compact
convex set with nonempty interior) and the set of convex bodies which contain the origin o in their interiors,
respectively. Denote |K| as the volume of K ∈ K . In general, Bn

2 is defined as the unit ball of the n-dimensional
Euclidean space with the surface area of Sn−1, and |Bn

2 | = ωn. The volume radius of K ∈ K , denoted by
vrad(K) = (|K|/ωn)

1
n . If K is a compact convex set in Rn, its support function h(K, ·) : Rn

→ R is defined
by h(K, x) = max{x · y : y ∈ K}, where x · y denotes the inner product of x and y. We write h(K,u) = hK(u).
Evidently, for K,L ∈ K and a ≥ 0, haK(u) = ahK(u) and hK+L(u) = hK(u) + hL(u) for any u ∈ Sn−1.

For K,L ∈ K , the mixed volume of K and L, denoted by V1(K,L) in [20], is defined as

V1(K,L) =
1
n

∫
Sn−1

h(L,u)dS(K,u), (1)

where S(K,u) is the surface area measure on Sn−1 of the convex body K (for the definition see section 2). For
a convex body K ∈ K , the geominimal surface area, G(K) of K, rasied by Petty [29], could be defined by

G(K) = inf
{∫

Sn−1
h(L,u)dS(K,u) : L ∈ K0, |L◦| = ωn

}
, (2)
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where L◦ is the polar body of L, i.e., L◦ = {x ∈ Rn : x · y ≤ 1 for y ∈ L}. Combining with (1) and (2), one gets

G(K) = inf{nV1(K,L) : L ∈ K0, |L◦| = ωn}. (3)

This indicates that the classical geominimal surface area was defined on the basis of the mixed volume. The
study of geominimal surface area was first explained by Petty in [29], the classical geominimal surface area
naturally connects relative geometry, affine geometry and Minkowski geometry. Therefore, it received a lot
of attention (see e.g., [1, 7–9, 13]). Related to this is the classical Brunn-Minkowski theory, which originated
from Brunn [3] and Minkowski [27]. It is the core content of convex geometry analysis. Whereafter the
Lp Brunn-Minkowski theory originated from the introduction of Firey − p combination of convex bodies
into the classical Brunn-Minkowski theory by Lutwak [20]. Due to (3), in [21], Lutwak also introduced Lp
geominimal surface area for p > 1. And Ye [38] further expanded the p > 1 form to p ∈ R form. One can also
find more resources for Lp geominimal surface area (see e.g., [19, 21, 22, 30, 33–35, 40, 43, 46, 47]). Lately,
the Lp Brunn-Minkowski theory is extended to the Orlicz-Brunn-Minkowski theory by Lutwak, Yang and
Zhang [23, 24] on the basis of solving asymmetric problems. With the continuous improvement of Orlicz-
Brunn-Minkowski theory (see e.g., [4, 13, 15, 37, 45, 48]), this theory has become the mainstream research
in the field of convex geometry analysis. Recently, Gardner, Hug and Weil [10] and Xi, Jin and Leng [36]
constructed a general framework for Orlicz-Brunn-Minkowski theory, including Orlicz addition and Orlicz
mixed volume, respectively. In addition, they established the new Orlicz-Brunn-Minkowski inequality
and Orlicz-Minkowski mixed volume inequality. The new theory has gained widespread popularity (see
e.g., [16, 17, 23, 24, 36, 41, 49]). At the same time, the geominimal surface area is developed into Orlicz
geominimal surface area (see e.g., [39, 41, 42]). Quite recently, the geominimal surface area associated with
the capacity is also considered (see e.g., [6, 12, 16, 17, 25, 32, 44]).

In [16], the definition of the nonhomogeneous Orlicz Lϕ mixed torsional rigidity was introduced.
Consequently, we will define the homogeneous Orlicz Lϕ mixed torsional rigidity and the Orlicz geominimal
torsional rigidity with respect to E0 which is a nonempty subset of S0 (the set of start bodies about the origin
o). For example, suppose K ∈ K0 and ϕ ∈ I (the definition of I in section 3), the nonhomogeneous Orlicz
geominimal torsional rigidity H1,ϕ(K,E0) of K, is defined by the extreme problem as follows:

H1,ϕ(K,E0) = inf
L∈E0

{τ1,ϕ(K,vrad(L)L◦)}.

Likewise, the homogeneous Orlicz geominimal torsional rigidity Ĥ1,ϕ(K,E0) of K, is defined by the extreme
problem as follows:

Ĥ1,ϕ(K,E0) = inf
L∈E0

{̂τ1,ϕ(K,vrad(L)L◦)}.

And then we will stress two special cases as follows, let E0 = K0 and E0 = S0. For the sake of easy,
we replace H1,ϕ(K,K0), Ĥ1,ϕ(K,K0),H1,ϕ(K,S0), Ĥ1,ϕ(K,S0) with H1,ϕ(K), Ĥ1,ϕ(K),F1,ϕ(K), F̂1,ϕ(K), respectively.
And, let’s define BK = vrad(K)Bn

2 to be the origin symmetric ball of radius vrad(K) for K ∈ K0. For definitions
ofD0, I0 andD1, see section 3.

Then we discuss some properties of Orlicz geominimal torsional rigidity, such as establishing some
isopermetric type inequalities, as follows:

Theorem 1.1. Suppose L ∈ K0 and the center or Santaló point of L is the origin o.
(i) If ϕ ∈ D0 ∪ I0 and then

F̂1,ϕ(L)

F̂1,ϕ(BL)
≤

Ĥ1,ϕ(L)

Ĥ1,ϕ(BL)
≤
τ(L)
τ(BL)

.

Equality holds if L is an origin symmetric ball.
(ii) If ϕ ∈ D1, then there exists a constant d > 0 such that

F̂1,ϕ(L)

F̂1,ϕ(BL)
≥

Ĥ1,ϕ(L)

Ĥ1,ϕ(BL)
≥

d · τ(L)
τ(BL)

.
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According to the definitions of Orlicz geominimal torsional rigidity in section 3, let ϕ (t) = tq, in section
4, we define the Lq geominimal torsional rigidity of K with respect toK0 and S0. For instance, for q ≥ 0, we
denote H1,q(K) with respect toK0, by

H1,q(K) = inf
L∈K0

{
τ1,q(K,L)n/n+q

|L◦|q/n+q
}
.

And define F1,q(K) with respect to S0, by

F1,q(K) = inf
L∈S0

{
τ1,q(K,L◦)n/n+q

|L|q/n+q
}
.

We also discuss some properties of Lq geominimal torsional rigidity. For example, we establish some
isopermetric type inequalities for F1,q(K) and H1,r(K).

Theorem 1.2. Let K ∈ K0, the center or Santaló point of K is the origin o.
(i) For q ≥ 0,

F1,q(K)
F1,q(BK)

≤
H1,q(K)
H1,q(BK)

≤

(
τ(K)
τ(BK)

)n/(n+q)

.

(ii) For −n < q < 0,

F1,q(K)
F1,q(BK)

≥
H1,q(K)
H1,q(BK)

≥

(
τ(K)
τ(BK)

)n/(n+q)

.

(iii) For q < −n, there exists a constant a > 0 such that

F1,q(K)
F1,q(BK)

≥
H1,q(K)
H1,q(BK)

≥ anq/(n+q)

(
τ(K)
τ(BK)

)n/(n+q)

.

Theorem 1.3. Let K ∈ K0.
(i) If −n < t < 0 < r < s, or −n < s < 0 < r < t, then

H1,r(K) ≤ (H1,t(K))(r−s)(n+t)/(t−s)(n+r)(H1,s(K))(r−t)(n+s)/(s−t)(n+r).

(ii) If −n < t < r < s < 0, or −n < s < r < t < 0, then

H1,r(K) ≤ (H1,t(K))(r−s)(n+t)/(t−s)(n+r)(H1,s(K))(r−t)(n+s)/(s−t)(n+r).

(iii) If t < r < −n < s < 0, or s < r < −n < t < 0, then

H1,r(K) ≥ (H1,t(K))(r−s)(n+t)/(t−s)(n+r)(H1,s(K))(r−t)(n+s)/(s−t)(n+r).

2. Background and Preliminaries

In this section, we will focus on some detailed preliminaries.
If C,D are compact convex sets in Rn and a ∈ R, the Minkowski addition C + D is the vector addition,

C + D = {x + y : x ∈ C, y ∈ D}, and the scalar multiplication aC = {ax : x ∈ C}. Denote O(n) as the class of
n × n orthogonal matrixs. And we use detφ to represent the determinant of φ. If detφ , 0, then we use φ−1

to denote the inverse of φ, i.e., φ is invertible.
The polar body of K ∈ K0, denoted by K◦, is defined as K◦ = {x ∈ Rn : x · y ≤ 1 for any y ∈ K}. By the

definition of the polar body, it is easy to get that K◦◦ = K for K ∈ K0 in [31]. Define Kp, the polar body of K
with respect to p, by Kp = (K − p)◦ + p, for K ∈ K and p ∈ intK (where intK is the interior of K). The Santaló
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point of K ∈ K , denoted by s(K) ∈ intK, is defined as |Ks(K)
| = inf{|Kw

| : w ∈ intK}, and the Santaló point of K
is unique (see [26]). And there is the distinguished Blaschke-Santaló inequality: For K ∈ K ,

|K| · |Ks(K)
| ≤ ω2

n (4)

with equality if and only if K is an ellipsoid. In addition, the inverse of this inequality (4) is called the
inverse Santaló inequality (see e.g., [2, 14, 28]), for K ∈ K , there exists a contant d > 0 such that

|K| · |Ks(K)
| ≥ dnω2

n. (5)

If for any x ∈ L ⊆ Rn, the line segment from the origin o to x is contained in L, then L is a star-shaped set
with respect to the origin o. For a compact star-shaped set L with respect to the origin o, the radial function
ρL(u) : Sn−1

→ [0,∞) is defined by ρL(u) = max{a ≥ 0 : au ∈ L} for u ∈ Sn−1. Obviously, the radial function is
positive and continuous. We call a star-shaped set M a star body, if the radial function of the star-shaped set
is continuous about the variable x ∈ M. Since S0 is the set of start bodies about the origin o, then K0 ⊆ S0.
And for K ∈ K0, ρK◦ (u) = 1/hK(u) and hK◦ (u) = 1/ρK(u) for u ∈ Sn−1 (see [31]). Furthermore, for K ∈ S0, the
following the formula for the volume of L:

|L| =
1
n

∫
Sn−1

ρL(u)ndu.

Combining with each K ∈ K0, the surface area measure of K on Sn−1 is denoted by S(K, ·) (see [18]), which
is defined as: for any subset measurable A ⊆ Sn−1,

S(K,A) =

∫
ν−1

K (A)
dHn−1(u),

where ν−1
K : Sn−1

→ ∂K is the inverse Gauss map and Hn−1 is the (n − 1)-dimensional Hausdorff measure
on ∂K (the boundary of K). Let C∞c (intK), C∞(intK), C(K), C+(Sn−1) be the set of all infinitely differentiable
functions on intK with compact supports, the set of all infinitely differentiable functions on intK, the set of
all continuous functions on K and the set of all positive continuous functions on Sn−1, respectively. If the
surface area measure S(K, ·) of K ∈ K is absolutely continuous about spherical measure σ(·), then K has a
curvature function 1K(·) : Sn−1

→ R, and 1K(u) = dS(K,u)/dσ(u) almost everywhere about σ(·). Define G+
0 , a

subset ofK0, by G+
0 = {K ∈ K0 : 1K(u) ∈ C+(Sn−1)}.

For K ∈ K , the torsional rigidity of K, denoted by τ(K), is defined as follows [5]:

1
τ(K)

= inf
{∫

K |∇v(x)|2dx

(
∫

K |v(x)|dx)2
: v ∈W1,2

0 (intK) and
∫

K
|v(x)|dx > 0

}
,

where ∇v is the gradient of the function v and W1,2(intK) is the Sobolev space of the functions in L2(intK)
whose first-order weak derivatives belong to L2(intK), and W1,2

0 (intK) represents the closure of C∞c (intK) in
the Sobolev space W1,2(intK). By this definition, for K ∈ K0 and b > 0, one has

τ(bK) = bn+2τ(K). (6)

For any K ∈ K0, there exists a unique solution uτ,K ∈ C∞(intK) ∩ C(K) to the following boundary value
problem:∆u = −2 in K

u = 0 on ∂K.
(7)

In addition, one can easily get the following property by Li and Zhu [16].
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Remark 2.1. For any φ ∈ O(n) and K ∈ K0, the solution uτ,φK to (7) in φK has this simple property,

uτ,φK(u) = uτ,K(φtu) (8)

for u ∈ Sn−1.

The torsional rigidity measure µτ(K, ·) on Sn−1, as follows [6]:

µτ(K,A) =

∫
ν−1

K (A)
|∇uτ,K(x)|2dHn−1(x) for any measurable subset A ⊆ Sn−1.

It is easy to calculate that

dµτ(K,u) = |∇uτ,K(ν−1
K (u))|2dS(K,u) for u ∈ Sn−1. (9)

Evidently, the torsional rigidity measure µτ(K, ·) is not concentrated on a great subsphere.
According to the above information, the formula was given by Colesanti and Fimiani [6]: If K ∈ K , then

τ(K) =
1

n + 2

∫
∂K

hK(ν(x))|∇uτ,K(x)|2dHn−1(x)

=
1

n + 2

∫
Sn−1

hK(v)dµτ(K, v). (10)

In particular, if K = Bn
2 , then

τ(Bn
2) =

2
n − 2

ωn (11)

and

dµτ(Bn
2 ,u) =

2(n + 2)
n(n − 2)

dσ(u) for u ∈ Sn−1. (12)

By (10), one can define the following probability measure µ∗τ(K, ·) on Sn−1, if K ∈ K0,

µ∗τ(K,u) =
1

n + 2
·

hK(u)µτ(K,u)
τ(K)

for u ∈ Sn−1.

3. The Orlicz geominimal torsional rigidity

In this section, according to the definitions of the nonhomogeneous and homogeneous Orlicz mixed
torsional rigidity, we will consider the extreme problems associated with them by studying the properties
of the corresponding mixed torsional rigidity.

First of all, letD be the set of continuous functions ϕ : (0,∞)→ (0,∞), such that ϕ is strictly decreasing
with limt→0+ ϕ(t) = ∞, limt→∞ ϕ(t) = 0 and ϕ(1) = 1. Let I be the set of continuous functions ϕ : (0,∞) →
(0,∞), such that ϕ is strictly increasing with limt→0+ ϕ(t) = 0, limt→∞ ϕ(t) = ∞ and ϕ(1) = 1. The following
two definitions will be required.

Definition 3.1. (see [16] Definition 4.1) Let ϕ ∈ I ∪ D and K,L ∈ K0. The nonhomogeneous Orlicz Lϕ mixed
torsional of K and L is written as τ1,ϕ(K,L). Define

τ1,ϕ(K,L) =
1

n + 2

∫
Sn−1

ϕ

(
hL(u)
hK(u)

)
hK(u)dµτ(K,u).
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Accordingly, by Definition 3.1, one can easily know that
(i) If K and L are dilates, i.e., K = aL for some a > 0, then

τ1,ϕ(K,L) = ϕ(a)τ(K);

(ii) If L ∈ S0, one has

τ1,ϕ(K,L◦) =
1

n + 2

∫
Sn−1

ϕ

(
1

ρL(u)hK(u)

)
hK(u)dµτ(K,u).

Definition 3.2. Suppose ϕ ∈ I ∪D and K,L ∈ K0. The homogeneous Orlicz Lϕ mixed torsional rigidity of K and
L, denoted by τ̂1,ϕ(K,L), is defined as∫

Sn−1
ϕ

(
τ(K)hL(u)

τ̂1,ϕ(K,L)hK(u)

)
dµ∗τ(K,u) = 1. (13)

If s, t > 0, one can get

τ̂1,ϕ(sK, tL) = sn+1
· t · τ̂1,ϕ(K,L), (14)

then τ̂1,ϕ(K,L) is homogeneous. In particular, if L ∈ S0, then (13) and (14) can be written as∫
Sn−1

ϕ

(
τ(K)

τ̂1,ϕ(K,L◦)ρL(u)hK(u)

)
dµ∗τ(K,u) = 1.

τ̂1,ϕ(sK, (tL)◦) = sn+1
· t−1
· τ̂1,ϕ(K,L◦). (15)

In order to facilitate the study of the Orlicz geominimal torsional rigidity, the following concept will be
helpful:

I0 = I ∩ {ϕ : (0,∞)→ (0,∞)|ϕ(t−1/n) is strictly convex};
D0 = D∩ {ϕ : (0,∞)→ (0,∞)|ϕ(t−1/n) is strictly concave};
D1 = D∩ {ϕ : (0,∞)→ (0,∞)|ϕ(t−1/n) is strictly convex}.

For any L ∈ K0, due to |(vrad(L◦)L)◦| = ωn, hvrad(L◦)L = vrad(L◦)hL and for any L ∈ S0, ρvrad(L◦)L = vrad(L◦)ρL,
we can define the following Orlicz geominimal torsional rigidity. Suppose E0 is a subset of S0 and is
nonempty.

Definition 3.3. Suppose K ∈ K0, the nonhomogeneous Orlicz geominimal torsional rigidity of K with respect to E0,
denoted by H1,ϕ(K,E0), is defined as

H1,ϕ(K,E0) = inf
L∈E0

{τ1,ϕ(K,vrad(L)L◦)} for ϕ ∈ I ∪D1,

H1,ϕ(K,E0) = sup
L∈E0

{τ1,ϕ(K,vrad(L)L◦)} for ϕ ∈ D0.

Definition 3.4. Suppose K ∈ K0, the homogeneous Orlicz geominimal torsional rigidity of K with respect to E0,
denoted by Ĥ1,ϕ(K,E0), is defined as

Ĥ1,ϕ(K,E0) = inf
L∈E0

{̂τ1,ϕ(K,vrad(L)L◦)} for ϕ ∈ I ∪D0,

Ĥ1,ϕ(K,E0) = sup
L∈E0

{̂τ1,ϕ(K,vrad(L)L◦)} for ϕ ∈ D1.

Next we have the following two special cases according to the previous definitions and will discuss
their related properties.
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Remark 3.5. (i) If E0 = K0, one gets

H1,ϕ(K) = H1,ϕ(K,K0);

Ĥ1,ϕ(K) = Ĥ1,ϕ(K,K0).

(ii) If E0 = S0, one gets

F1,ϕ(K) = H1,ϕ(K,S0);

F̂1,ϕ(K) = Ĥ1,ϕ(K,S0).

As a result ofK0 ⊆ S0, one has

F1,ϕ(K) ≤ H1,ϕ(K) for ϕ ∈ I ∩D1,

F1,ϕ(K) ≥ H1,ϕ(K) for ϕ ∈ D0

and

F̂1,ϕ(K) ≤ Ĥ1,ϕ(K) for ϕ ∈ I ∩D0,

F̂1,ϕ(K) ≥ Ĥ1,ϕ(K) for ϕ ∈ D1.

From (14) and (15), if a > 0, one has

Ĥ1,ϕ(aK) = an+1Ĥ1,ϕ(K);

F̂1,ϕ(aK) = an+1F̂1,ϕ(K).

Proposition 3.6. Suppose ϕ ∈ I ∪D0 ∪D1 and K ∈ K0, then for any φ ∈ O(n) , one has

H1,ϕ(φK) = H1,ϕ(K), Ĥ1,ϕ(φK) = Ĥ1,ϕ(K)

and

F1,ϕ(φK) = F1,ϕ(K), F̂1,ϕ(φK) = F̂1,ϕ(K).

Proof. We only prove H1,ϕ(φK) = H1,ϕ(K), the other conclusions follow along the same argument. Let
φ ∈ O(n) and L ∈ K0, then |φL| = |L|, vrad(φL) = vrad(L), by (8) and (9) for u ∈ Sn−1, one has

dµτ(φK,u) = |∇uτ,φK(ν−1
φK(u))|2dS(φK,u)

= |∇uτ,K(ν−1
K (φtu))|2dS(K, φtu)

= dµτ(K, φtu). (16)

Let L ∈ K0 and φ ∈ O(n), by (φL)◦ = φL◦ and (16), one has

τ1,ϕ(φK,vrad(φL)(φL)◦) = τ1,ϕ(φK,vrad(L)φL◦)

=
1

n + 2

∫
Sn−1

ϕ

(
hvrad(L)φL◦ (u)

hφK(u)

)
hφK(u)dµτ(φK,u)

=
1

n + 2

∫
Sn−1

ϕ

(
hvrad(L)L◦ (φtu)

hK(φtu)

)
hK(φtu)dµτ(K, φtu)

= τ1,ϕ(K,vrad(L)L◦).
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Together with Definition 3.3, then if ϕ ∈ I ∪D1,

H1,ϕ(φK) = inf
φL∈K0

{τ1,ϕ(φK,vrad(φL)(φL)◦)}

= inf
L∈K0

{τ1,ϕ(K,vrad(L)L◦)}

= H1,ϕ(K).

In addition, it is difficult to calculate H1,ϕ(K), Ĥ1,ϕ(K), F1,ϕ(K) and F̂1,ϕ(K). But in some special cases, one
can calculate their exact values, i.e., let K = λBn

2 for some λ > 0.

Theorem 3.7. Suppose ϕ ∈ I0 ∪D0 ∪D1 and λ > 0. Then

F̂1,ϕ(Bn
2) = Ĥ1,ϕ(Bn

2) = τ(Bn
2), (17)

F1,ϕ(λBn
2) = H1,ϕ(λBn

2) = ϕ(1/λ)τ(λBn
2). (18)

Proof. Since the proof process of ϕ ∈ D0 ∪D1 and ϕ ∈ I0 of (17) and (18) are similar, so we just prove that
ϕ ∈ I0. First, we prove (17). Let L0 = L/vrad(L) for any L ∈ S0. Then vrad(L0) = 1 and |L0| = ωn. By ϕ ∈ I0,
combining with Jensen’s inequality, (11) and (12), one has

1 =

∫
Sn−1

ϕ

 τ(Bn
2)

τ̂1,ϕ(Bn
2 ,L
◦

0)ρL0 (u)hBn
2
(u)

 dµ∗τ(B
n
2 ,u)

=

∫
Sn−1

ϕ

(
τ(Bn

2)

τ̂1,ϕ(Bn
2 ,L
◦

0)ρL0 (u)

)
dσ(u)
nωn

> ϕ

(∫
Sn−1

(
τ(Bn

2)

τ̂1,ϕ(Bn
2 ,L
◦

0)ρL0 (u)

)−n dσ(u)
nωn

)−1/n
= ϕ

(
τ(Bn

2)

τ̂1,ϕ(Bn
2 ,L
◦

0)

)
.

Due to ϕ ∈ I0 and ϕ(1) = 1, then

τ(Bn
2) ≤ τ̂1,ϕ(Bn

2 ,L
◦

0) = τ̂1,ϕ(Bn
2 ,vrad(L)L◦).

According to the definition of Ĥ1,ϕ(K,E0) in Definition 3.4, one has

τ(Bn
2) ≤ F̂1,ϕ(Bn

2) ≤ Ĥ1,ϕ(Bn
2) = inf

L∈K0

{̂τ1,ϕ(Bn
2 ,vrad(L)L◦)} ≤ τ(Bn

2).

Therefore, τ(Bn
2) = F̂1,ϕ(Bn

2) = Ĥ1,ϕ(Bn
2). Along the same line, one can prove (18).

Recall that BK = vrad(K)Bn
2 be the origin symmetric ball of radius vrad(K) for K ∈ K0. The following

theorems are the isoperimetric type inequalities of F1,ϕ(·), H1,ϕ(·), F̂1,ϕ(·), and Ĥ1,ϕ(·).

Theorem 3.8. Suppose L ∈ K0 and the center or Santaló point of L is the origin o.
(i) If ϕ ∈ D0 ∪ I0 and then

F̂1,ϕ(L)

F̂1,ϕ(BL)
≤

Ĥ1,ϕ(L)

Ĥ1,ϕ(BL)
≤
τ(L)
τ(BL)

.

Equality holds if L is an origin symmetric ball.
(ii) If ϕ ∈ D1, then there exists a constant d > 0 such that

F̂1,ϕ(L)

F̂1,ϕ(BL)
≥

Ĥ1,ϕ(L)

Ĥ1,ϕ(BL)
≥

d · τ(L)
τ(BL)

.



Z. Wei, J. Yang / Filomat 35:12 (2021), 4033–4048 4041

Proof. (i) If ϕ ∈ D0 ∪ I0. By Theorem 3.7, the homogeneity of Ĥ1,ϕ(·), F̂1,ϕ(·) and τ(·), one has

F̂1,ϕ(BL) = Ĥ1,ϕ(BL) =
τ(BL)

vrad(L)
. (19)

Due to (14) and Definition 3.4, one gets

F̂1,ϕ(L) ≤ Ĥ1,ϕ(L) ≤ τ̂1,ϕ(L,vrad(L◦)L) = vrad(L◦)τ(L).

Combining with (4) and (19), one gets

F̂1,ϕ(L)

F̂1,ϕ(BL)
≤

Ĥ1,ϕ(L)

Ĥ1,ϕ(BL)
≤
τ(L)
τ(BL)

.

Let L = cBn
2 for some c > 0, one can easily get L = BL and then the equality holds.

(ii) According to the same argument above, if ϕ ∈ D1, by (5), one has

F̂1,ϕ(L)

F̂1,ϕ(BL)
≥

Ĥ1,ϕ(L)

Ĥ1,ϕ(BL)
≥

vrad(L) · vrad(L◦) · τ(L)
τ(BL)

≥
d · τ(L)
τ(BL)

.

In the same manner, one can check the similar results for F1,ϕ(L) and H1,ϕ(L).

Theorem 3.9. Suppose L ∈ K0 and the center or Santaló point of L is the origin o.
(i) If ϕ ∈ D1 ∪ I0 and then

F1,ϕ(L)
F1,ϕ((BL◦ )◦)

≤
H1,ϕ(L)

H1,ϕ((BL◦ )◦)
≤

τ(L)
τ((BL◦ )◦)

.

In addition, if ϕ ∈ I0, then

F1,ϕ(L)
F1,ϕ(BL)

≤
H1,ϕ(L)
H1,ϕ(BL)

≤
τ(L)
τ(BL)

.

Equality holds if L is an origin symmetric ball.
(ii) If ϕ ∈ D0, then

F1,ϕ(L)
F1,ϕ(BL)

≥
H1,ϕ(L)
H1,ϕ(BL)

≥
τ(L)
τ(BL)

.

Equality holds if L is an origin symmetric ball.

Proof. (i) If ϕ ∈ D1 ∪ I0, together with Definition 3.3, one has

F1,ϕ(L) ≤ H1,ϕ(L) ≤ τ1,ϕ(L,vrad(L◦)L) = ϕ(vrad(L◦))τ(L). (20)

Since (18) and (BL◦ )◦ = (vrad(L◦)Bn
2)◦ = (1/vrad(L◦))Bn

2 , then

F1,ϕ(BL) = H1,ϕ(BL) = ϕ(1/vrad(L))τ(BL); (21)

F1,ϕ((BL◦ )◦) = H1,ϕ((BL◦ )◦) = ϕ(vrad(L◦))τ((BL◦ )◦). (22)

Together with (20) and (22), one has

F1,ϕ(L)
F1,ϕ((BL◦ )◦)

≤
H1,ϕ(L)

H1,ϕ((BL◦ )◦)
≤

τ(L)
τ((BL◦ )◦)

.

If ϕ ∈ I0, by (4) and (20), one has

F1,ϕ(L) ≤ H1,ϕ(L) ≤ ϕ(vrad(L◦))τ(L) ≤ ϕ(1/vrad(L))τ(L). (23)

The desired inequality follows from (21) and (23). If L is an origin symmetric ball, the equality obviously
holds. In the case of ϕ ∈ D0, we can prove that (ii) is true by the same way.
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4. The Lq geominimal torsional rigidity

In Definition 3.1, ϕ ∈ D ∪ I, here we let ϕ (t) = tq and think about the Lq geominimal torsional rigidity
of K with respect toK0 and S0. Namely, let

τ1,q (K,L) =
1

n + 2

∫
Sn−1

(
hL (u)
hK (u)

)q

hK (u) dµτ (K,u) for L ∈ K0;

τ1,q (K,L◦) =
1

n + 2

∫
Sn−1

(
1

ρL (u) hK (u)

)q

hK (u) dµτ (K,u) for L ∈ S0.

Definition 4.1. Suppose K ∈ K0 and −n , q ∈ R. Define the Lq geominimal torsional rigidity H1,q(K) onK0, by

H1,q(K) = inf
L∈K0

{
τ1,q(K,L)n/(n+q)

|L◦|q/(n+q)
}
, q ≥ 0; (24)

H1,q(K) = sup
L∈K0

{
τ1,q(K,L)n/(n+q)

|L◦|q/(n+q)
}
,−n , q < 0. (25)

Define the Lq geominimal torsional rigidity F1,q(K) about S0, by

F1,q(K) = inf
L∈S0

{
τ1,q(K,L◦)n/(n+q)

|L|q/(n+q)
}
, q ≥ 0; (26)

F1,q(K) = sup
L∈S0

{
τ1,q(K,L◦)n/(n+q)

|L|q/(n+q)
}
,−n , q < 0. (27)

Obviously, H1,0(K) = F1,0(K) = τ(K) for K ∈ K0. And, for ϕ (t) = tq(q , −n),

H1,q(aK) = a(n+2−q)n/(n+q)H1,q(K),

F1,q(aK) = a(n+2−q)n/(n+q)F1,q(K)

for any a > 0;

H1,q(φK) = H1,q(K),

F1,q(φK) = F1,q(K)

for φ ∈ O(n). In addition, if q , 0,−n, by ϕ (t) = tq, then

Ĥ1,ϕ(K) =
τ(K)1−(1/q)

ω1/n
n

H1,q(K)(n+q)/nq; (28)

F̂1,ϕ(K) =
τ(K)1−(1/q)

ω1/n
n

F1,q(K)(n+q)/nq. (29)

According to (17) and (24), one can get the following corollary.

Corollary 4.2. If −n , q ∈ R, then

H1,q(Bn
2) = F1,q(Bn

2)

= (τ(Bn
2))n/(n+q)

|Bn
2 |

q/(n+q)

= (τ1,q(Bn
2 ,B

n
2))n/(n+q)

|Bn
2 |

q/(n+q).
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Using the following theorem we will introduce a convenient way to calculate F1,q(K). Let

1µ,q(K,u) = h1−q
K (u)|∇uτ,K(ν−1

K (u))|21K(u) for K ∈ G+
0 , q , −n,

where 1K(·) is the curvature function of K in Sn−1, uτ,K is the solution of (7). For −n , q ∈ R, let

ζµ,q =
{
K ∈ G+

0 : ∃D ∈ S0, s.t. 1µ,q(K,u) = ρD(u)n+q,u ∈ Sn−1
}
.

Thus,

1µ,q(Bn
2 ,u) =

2(n + 2)
n(n − 2)

= ρD0 (u)n+q for u ∈ Sn−1,

where D0 =
(

2(n+2)
n(n−2)

)1/(n+q)
Bn

2 ∈ S0.

Theorem 4.3. If K ∈ ζµ,q, then for −n , q ∈ R,

F1,q(K) =

(
1

n + q

)n/(n+q) (1
n

)q/(n+q) ∫
Sn−1
1µ,q(K,u)n/(n+q)dσ(u).

Proof. Let L ∈ S0, if q = 0,

F1,0(K) =
1

n + 2

∫
Sn−1

hK(u)dµτ(K,u) = τ(K),

the conclusion is clearly true.
If q > 0, by the integral form of the Hölder inequality [11], one has( 1

n + 2

)n/(n+q) (1
n

)q/(n+q) ∫
Sn−1
1µ,q(K,u)n/(n+q)dσ(u)

=
( 1

n + 2

)n/(n+q) (1
n

)q/(n+q) ∫
Sn−1

[1µ,q(K,u) · ρL(u)−q
· ρL(u)q]n/(n+q)dσ(u)

≤

(
1
n

∫
Sn−1

ρL(u)ndσ(u)
)q/(n+q)

·

(
1

n + 2

∫
Sn−1

1µ,q(K,u)
ρL(u)q dσ(u)

)n/(n+q)

= |L|q/(n+q)
· τ1,q (K,L◦)n/(n+q) . (30)

And equality holds if and only if ρL(u)n+q = 1µ,q(K,u) for u ∈ Sn−1. Taking minimize both sides of (30), one
has ( 1

n + 2

)n/(n+q) (1
n

)q/(n+q) ∫
Sn−1
1µ,q(K,u)n/(n+q)dσ(u) ≤ F1,q(K). (31)

Since K ∈ ζµ,q, then there exists a star body Q ∈ S0 such that

ρQ(u) = 1µ,q(K,u)1/(n+q),

for u ∈ Sn−1. And by (26), then( 1
n + 2

)n/(n+q) (1
n

)q/(n+q) ∫
Sn−1
1µ,q(K,u)n/(n+q)dσ(u)

= τ1,q (K,Q◦)n/(n+q)
· |Q|q/(n+q)

≥ F1,q(K). (32)

Combining with (31) and (32), one gets

F1,q(K) =
( 1

n + 2

)n/(n+q) (1
n

)q/(n+q) ∫
Sn−1
1µ,q(K,u)n/(n+q)dσ(u).

In the case of −n , q < 0 can be obtained by using the same lines.
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For K ∈ ζµ,q, and −n , q ∈ R, one can define Θµ,qK ∈ S0, the torsional rigidity q-curvature image of K, by

1µ,q(K,u) =
n + 2

n|Θµ,qK|
ρΘµ,qK(u)n+q,u ∈ Sn−1. (33)

By Theorem 4.3, one can also get

F1,q(K) =
(
τ1,q(K, (Θµ,qK)◦)

)n/(n+q)
|Θµ,qK|q/(n+q). (34)

For −n , q ∈ R, u ∈ Sn−1,

ηµ,q =
{
K ∈ G+

0 : ∃Q ∈ K0, s.t. 1µ,q(K,u) = ρQ(u)n+q
}
.

Obviously, ηµ,q ⊆ ζµ,q. In particular, we have Bn
2 ∈ ηµ,q that implies ηµ,q , ∅. The following proposition

provide a simple method for calculating H1,q(K) for K ∈ ηµ,q.

Proposition 4.4. If −n , q ∈ R,K ∈ ηµ,q, then H1,q(K) = F1,q(K).

Proof. First, we will show that Θµ,qK ∈ K0 if K ∈ ηµ,q. Assume K ∈ ηµ,q, then there exists a convex body
Q ∈ K0 such that 1µ,q(K,u) = ρQ(u)n+q for u ∈ Sn−1, combining with (33), one has

n + 2
n|Θµ,qK|

ρΘµ,qK(u)n+q = ρQ(u)n+q for u ∈ Sn−1,

thus

Θµ,qK =

(
n|Θµ,qK|

n + 2

)1/(n+q)

Q ∈ K0.

Next, we prove H1,q(K) = F1,q(K).
If q = 0, it is easy to prove that H1,0(K) = F1,0(K).
If q > 0, by (24) and (26), one gets H1,q(K) ≥ F1,q(K). By Θµ,qK ∈ K0, (24) and (34), one has

F1,q(K) ≥ H1,q(K).

Thus H1,q(K) = F1,q(K).
If −n , q < 0, by (25), (27), (34) and Θµ,qK ∈ K0, one gets

H1,q(K) ≤ F1,q(K) ≤ H1,q(K).

Therefore, H1,q(K) = F1,q(K).

In addition, one can easily get the following isoperimetric type inequality.

Theorem 4.5. Let K ∈ K0, the center or Santaló point of K is the origin o.
(i) For q ≥ 0,

F1,q(K)
F1,q(BK)

≤
H1,q(K)
H1,q(BK)

≤

(
τ(K)
τ(BK)

)n/(n+q)

.

(ii) For −n < q < 0,

F1,q(K)
F1,q(BK)

≥
H1,q(K)
H1,q(BK)

≥

(
τ(K)
τ(BK)

)n/(n+q)

.

(iii) For q < −n, there exists a constant a > 0 such that

F1,q(K)
F1,q(BK)

≥
H1,q(K)
H1,q(BK)

≥ anq/(n+q)

(
τ(K)
τ(BK)

)n/(n+q)

.
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Proof. (i) If q = 0, since F1,0(K) = H1,0(K) = τ(K) for K ∈ K0, then obviously

F1,q(K)
F1,q(BK)

=
H1,q(K)
H1,q(BK)

=

(
τ(K)
τ(BK)

)n/(n+q)

holds. If q > 0, by (i) in Theorem 3.8, (28) and (29), one has

τ(K)1−(1/q)

ω1/n
n

F1,q(K)(n+q)/nq

τ(BK)1−(1/q)

ω1/n
n

F1,q(BK)(n+q)/nq

≤

τ(K)1−(1/q)

ω1/n
n

H1,q(K)(n+q)/nq

τ(BK)1−(1/q)

ω1/n
n

H1,q(BK)(n+q)/nq

≤
τ(K)
τ(BK)

.

After simple calculation, one can get the following result:

F1,q(K)
F1,q(BK)

≤
H1,q(K)
H1,q(BK)

≤

(
τ(K)
τ(BK)

)n/(n+q)

.

On the basis of the same way, again, using Theorem 3.8 , (28) and (29), according to Theorem 3.9, one
can prove (ii) and (iii).

The following theorem gives the cyclic inequality for H1,r(K).

Theorem 4.6. Let K ∈ K0.
(i) If −n < t < 0 < r < s, or −n < s < 0 < r < t, then

H1,r(K) ≤ (H1,t(K))(r−s)(n+t)/(t−s)(n+r)(H1,s(K))(r−t)(n+s)/(s−t)(n+r).

(ii) If −n < t < r < s < 0, or −n < s < r < t < 0, then

H1,r(K) ≤ (H1,t(K))(r−s)(n+t)/(t−s)(n+r)(H1,s(K))(r−t)(n+s)/(s−t)(n+r).

(iii) If t < r < −n < s < 0, or s < r < −n < t < 0, then

H1,r(K) ≥ (H1,t(K))(r−s)(n+t)/(t−s)(n+r)(H1,s(K))(r−t)(n+s)/(s−t)(n+r).

Proof. First of all, let K,L ∈ K0, s, r, t ∈ R such that 0 <
t − r
t − s

< 1, by the integral form of the Hölder inequality,
one has

τ1,r(K,L) =
1

n + 2

∫
Sn−1

hL(u)rhK(u)1−rdµτ(K,u)

≤
1

n + 2

(∫
Sn−1

hL(u)shK(u)1−sdµτ(K,u)
)(r−t)/(s−t)

·

(∫
Sn−1

hL(u)thK(u)1−tdµτ(K,u)
)(r−s)/(t−s)

= (τ1,s(K,L))(r−t)/(s−t)(τ1,t(K,L))(r−s)/(t−s). (35)

(i) If −n < t < 0 < r < s, then

(r − s)(n + t)
(t − s)(n + t)

> 0 and
(r − t)(n + s)
(s − t)(n + r)

> 0.
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Combining with Definition 4.1 and (35), one has

H1,r(K) = inf
L∈K0

{
τ1,r(K,L)n/(n+r)

|L◦|r/(n+r)
}

≤ inf
L∈K0

{[τ1,t(K,L)n/(n+t)
|L◦|t/(n+t)](r−s)(n+t)/(t−s)(n+r)

· [τ1,s(K,L)n/(n+s)
|L◦|s/(n+s)](r−t)(n+s)/(s−t)(n+r)

}

≤ sup
L∈K0

{τ1,t(K,L)n/(n+t)
|L◦|t/(n+t)

}
(r−s)(n+t)/(t−s)(n+r)

· inf
L∈K0

{τ1,s(K,L)n/(n+s)
|L◦|s/(n+s)

}
(r−t)(n+s)/(s−t)(n+r)

= H1,t(K)(r−s)(n+t)/(t−s)(n+r)
·H1,s(K)(r−t)(n+s)/(s−t)(n+r).

The case −n < s < 0 < r < t can be proved follow along the same lines.
(ii) If −n < t < r < s < 0, then

(r − s)(n + t)
(t − s)(n + r)

> 0 and
(r − t)(n + s)
(s − t)(n + r)

> 0.

Combining with Definition 4.1 and (35), one has

H1,r(K) = sup
L∈K0

{
τ1,r(K,L)n/(n+r)

|L◦|r/(n+r)
}

≤ sup
L∈K0

{[τ1,t(K,L)(r−s)/(t−s)τ1,s(K,L)(r−t)/(s−t)]n/(n+r)
|L◦|r/(n+r)

}

≤ sup
L∈K0

{τ1,t(K,L)n/(n+t)
|L◦|t/(n+t)

}
(r−s)(n+t)/(t−s)(n+r)

· sup
L∈K0

{τ1,s(K,L)n/(n+s)
|L◦|s/(n+s)

}
(r−t)(n+s)/(s−t)(n+r)

= H1,t(K)(r−s)(n+t)/(t−s)(n+r)
·H1,s(K)(r−t)(n+s)/(s−t)(n+r).

By transposing s and t, the case −n < s < r < t < 0 can be proved.
(iii) If t < r < −n < s < 0, then

(r − s)(n + t)
(t − s)(n + r)

> 0 and
(r − t)(n + s)
(s − t)(n + r)

< 0.

Combining with Definition 4.1 and (35), one has

H1,r(K) = sup
L∈K0

{
τ1,r(K,L)n/(n+r)

|L◦|r/(n+r)
}

≥ sup
L∈K0

{[τ1,t(K,L)(r−s)/(t−s)τ1,s(K,L)(r−t)/(s−t)]n/(n+r)
|L◦|r/(n+r)

}

≥ sup
L∈K0

{τ1,t(K,L)n/(n+t)
|L◦|t/(n+t)

}
(r−s)(n+t)/(t−s)(n+r)

· sup
L∈K0

{τ1,s(K,L)n/(n+s)
|L◦|s/(n+s)

}
(r−t)(n+s)/(s−t)(n+r)

= H1,t(K)(r−s)(n+t)/(t−s)(n+r)
·H1,s(K)(r−t)(n+s)/(s−t)(n+r).

By transposing s and t, the case s < r < −n < t < 0 can be proved.
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[4] F. W. Chen, J. Z. Zhou and C. L. Yang, On the reverse Orlicz Busemann-Petty centroid inequality, Advances in Applied Mathe-

matics 47 (2011) 820-828.
[5] A. Colesanti, Brunn-Minkowski inequalities for variational functionals and related problems, Advances in Mathematics 194

(2005) 105-140.
[6] A. Colesanti and M. Fimiani, The Minkowski problem for the torsional rigidity, Indiana University Mathematics Journal 59 (2010)

1013-1040.
[7] R. J. Gardner, On the Busemann-Petty problem concerning central sections of centrally symmetric convex bodies, Bulletin of the

American Mathematical Society 30 (1994) 222-226.
[8] R. J. Gardner, A positive answer to the Busemann-Petty problem in three dimensions, Annals of Mathematics 140 (1994) 435-447.
[9] R. J. Gardner and P. Gronchi, A Brunn-Minkowski inequality for the integer lattice, Transactions of the American Mathematical

Society 353 (2001) 3995-4024.
[10] R. J. Gardner, D. Hug and W. Weil, The Orlicz-Brunn-Minkowski theory: A general framework, additions, and inequalities,

Journal of Differential Geometry 97 (2013) 427-476.
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