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Abstract. We define a new class of Sylvester-Kac matrices and calculate their spectra explicitly. We use the
technique of the left eigenvectors to obtain the claim. We also provide some right eigenvectors which can
be useful in applied computations. The main results are rather general and contain many known particular
characterizations. Matrices belonging to this family represent a convenient test matrices for numerical
eigenvalue computations with known spectrum.

1. Introduction

In 1854, J.J. Sylvester conjectured in [15] that the eigenvalues of the tridiagonal matrix

An =



0 1
n 0 2

n − 1
. . .

. . .
. . .

. . . n − 1
2 0 n

1 0


,

were n − 2k, for k = 0, 1, . . . ,n. Since then, many extensions and proofs have been proposed. Perhaps the
most pertinent results can be found in [2–4, 7–14] and references therein. The matrix An, which we call
Sylvester-Kac matrix, became also known as Clement matrix due to the independent study of P.A. Clement
in [6]. Throughout the text, all non-mentioned entries should be read as zero.
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Recently, R. Oste and J. Van der Jeugt [14] established a study of a new family of matrices. From this
study we can deduce that the eigenvalues of

H2n(a) =



0 1 + a
2n 0 2

2n − 1 + a 0 3 + a

2n − 2
. . .

. . .
. . .

. . . 2n
1 + a 0


are

±2
√

k(k + a) , for k = 0, 1, . . . ,n,

and of

H2n−1(a) =



0 1 + a
2n − 1 + a 0 2

2n − 2 0 3 + a

2n − 3 + a
. . .

. . .
. . .

. . . 2n − 1
1 0


are

±(2k + a + 1) , for k = 0, 1, . . . ,n − 1.

It is interesting to notice that a possible extension of the first case can be

H̃n(a) =



0 1 · r + a
n · s 0 2 · r

(n − 1) · s + a 0 3 · r + a

(n − 2) · s
. . .

. . .
. . .

. . . n · r
1 · s + a 0


,

whose eigenvalues are

±

√
2k(ar + as + 2krs) , for k = 0, 1, . . . , `.

However, for the second case, it seems not possible to advance a close formula.
When the eigenvalues, eigenvectors, determinant, and similar other notions involving spectral proper-

ties of a matrix are known, we refer to such a matrix as a test matrix. Test matrices are used to evaluate the
accuracy of matrix inversion programs since the exact inverses are known (cf. e.g. [1, 14] and references
therein). We believe that this family and the corresponding explicit eigenvalues will make a significant
contribution to these types of special matrices.

Recently, Coelho, Dimitrov, and Rakai in [5] suggested a method for a fast estimation of the largest
eigenvalue of an asymmetric tridiagonal matrix. The proposed procedure was based on the power method
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and the computation of the square of the original matrix. Then they provided numerical results with
simulations in C/C++ implementation in order to demonstrate the effectiveness of the proposed method.
They adopted the Sylvester-Kac test matrix [14] for comparing the power method and the proposed method
performance.

In this spirit, a new family of Sylvester-Kac type matrices is defined in [8] and the corresponding
spectrum is derived. Namely, the authors claim that the eigenvalues of

G2n (a) =



0 1 + a
4n + 2 0 2

4n + 1 + a 0 3 + a
4n 0 4

4n − 1 + a
. . .

. . .
. . .

. . . 2n − 1 + a
2n + 4 0 2n

2n + 3 + a 0


,

are

±2
√

2k
√

a + 2k , for k = 0, 1, . . . ,n,

and the eigenvalues of

G2n−1 (a) =



0 1 + a
4n 0 2

4n − 1 + a 0 3 + a

4n − 2
. . .

. . .
. . .

. . . 2n − 2
2n + 3 + a 0 2n − 1 + a

2n + 2 0


,

are

±2
√

2k + 1
√

a + 2k + 1 , for k = 0, 1, . . . ,n − 1.

It is interesting to notice that 1
2 Gn (0) and the Sylvester-Kac matrix share exactly the same eigenvalues.

The authors used the left eigenvectors to prove the formulas for the eigenvalues. They also provide
explicitly right eigenvectors of G2n−1 (a) corresponding eigenvalues ∓2

√
(2n − 1) (a + 2n − 1) as well as right

eigenvectors of G2n (a) corresponding to eigenvalues ∓2
√

2n (a + 2n).
In this manner, now going further, we generalize the matrix Gn (a) by adding additional parameters

and then derive all eigenvalues of this general matrix explicitly by using left-eigenvector trick. As a
consequence, we evaluate its determinant. Finally we shall compute some right eigenvectors of the matrix.

For any real numbers t and m, we define the following generalization of the Sylvester-Kac ma-
trix G2n (a, t,m) of order 2n + 1 as following

G2n (a, t,m) =



m 1 + a
4n + 2 t 2

4n + 1 + a m 3 + a
4n t 4

4n − 1 + a
. . .

. . .
. . .

. . . 2n − 1 + a
2n + 4 t 2n

2n + 3 + a m
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or in closed form

(G2n (a, t,m))i, j =



m if i is odd,
t if i is even,

i + a if j = i + 1 and i is odd,
i if j = i + 1 and i is even,

4n + 4 − i if i = j + 1 and i is even,
4n + 4 + a − i if i = j + 1 and i is odd

0 otherwise.

And the general Sylvester-Kac matrix G2n−1 (a, t,m) of order 2n as following

G2n−1 (a, t,m) =



m 1 + a
4n t 2

4n − 1 + a m 3 + a

4n − 2
. . .

. . .
. . .

. . . 2n − 2
2n + 3 + a m 2n − 1 + a

2n + 2 t


or in closed form

(G2n−1 (a, t,m))i, j =



m if i is odd,
t if i is even,

i + a if j = i + 1 and i is odd,
i if j = i + 1 and i is even,

4n + 2 − i if i = j + 1 and i is even,
4n + 2 + a − i if i = j + 1 and i is odd,

0 otherwise.

Since the main diagonal entries are consist of m and t, respectively, it is called a periodic generalization of
the Sylvester-Kac matrix.

Our main purpose is to determine explicitly the spectrum of Gn(a, t,m), denoted by λ(Gn(a, t,m)) :

λ (G2` (a, t,m)) =

{
1
2

(
m + t ±

√
(m − t)2 + 32ak + 64k2

)}`
k=1
∪ {m}

and

λ (G2`−1 (a, t,m)) =

{
1
2

(
m + t ∓

√
(m − t)2 + 16 (2k − 1) (a + 2k − 1)

)}`
k=1
.

When we take the periodicity parameters t and m as 0, then the matrix Gn (a, t,m) is reduced to the
Sylvester matrix Gn (a) .

We first determine the spectrum of Gn(a, t,m) in the next section. In the third section, we provide the
right eigenvectors which can be of independent interest both in pure and numerical applications. We use
basically the left eigenvectors of the matrix and an inductive approach to reach our aims.

As we mentioned above, the Sylvester-Kac is part of a family of matrices known as test matrices, which
are used to compare performance of methods. We hope that this new family of Sylvester-Kac type matrices
defined here will contribute to the literature regarding special matrices with known eigenvalues as test
matrices.
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2. The spectrum of Gn(a, t,m)

In this section we find the spectrum of Gn(a, t,m), denoted by λ(Gn(a, t,m)). For this purpose we shall
focus on the matrix Gn(a, t, 0) and derive its spectrum λ(Gn(a, t, 0)). Then using some transform trick, we
will derive the spectrum of the matrix Gn(a, t,m). In the end, we derive the determinant. For easy writing,
we denote the matrix Gn(a, t, 0) by Gn unless we do not need special values of a and t.

Theorem 2.1. Explicitly, the eigenvalues of Gn are

λ (G2` (a, t, 0)) =
{1

2

(
t ±
√

t2 + 32ak + 64k2
)}`

k=1
∪ {0}

and

λ (G2`−1 (a, t, 0)) =
{1

2

(
t ∓

√
t2 + 16 (2k − 1) (a + 2k − 1)

)}`
k=1
.

We start by finding two eigenvalues of G2n and then two left eigenvectors corresponding to each of
them.

Lemma 2.2. The matrix G2n has the eigenvalues λ+ = t+
√

t2+32an+64n2

2 and λ− = t−
√

t2+32an+64n2

2 with left (2n + 1)-
eigenvectors u+ and u− defined by

u+ =
(

2n + 1 nλ+

2n 2n − 1 (n−1)λ+

2n · · · 5 2λ+

2n 3 λ+

2n 1
)

and

u− =
(

2n + 1 nλ−
2n 2n − 1 (n−1)λ−

2n · · · 5 2λ−
2n 3 λ−

2n 1
)
,

respectively.

Proof. To prove our claim, it is sufficient to show that

u+G2n = λ+u+ and u−G2n = λ−u− .

From the definitions of G2n and u+, we should show that

(u+G2n)1,1 = (λ+u+)1,1 ,

(u+G2n)1,2n+1 = (λ+u+)1,2n+1

and

(u+G2n)1,m = (λ+u+)1,m , for 1 < m < 2n + 1.

The first two claims are simple to check. For example, the first identity comes from

(u+G2n)1,1 = (2n + 1) × 0 +
nλ+

2n
(4n + 2) = (2n + 1)λ+

and

(λ+u+)1,1 = λ+ (2n + 1) .

We now focus on the case 2 ≤ m ≤ 2n. For even m, say m = 2k, we consider (u+G2n)1,2k = (λ+u+)1,2k. The
product of u+ by G2n provides, for 1 ≤ k ≤ n,

(u+G2n)1,2k = (2n + 3 − 2k) (a + 2k − 1) +
(n − k + 1)λ+t

2n
+ (2n + 1 − 2k) (4n + 3 − 2k + a)

= 4 (a + 2n) (n − k + 1) +
(n − k + 1)λ+t

2n

= (n − k + 1)
[
4 (a + 2n) +

λ+t
2n

]
,
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which, by the definition of λ+, gives us

(u+G2n)1,2k =
n + 1 − k

2n
(λ+)2 .

On the other hand, we see that

(λ+u+)1,2k = (λ+)2 n + 1 − k
2n

,

as claimed. The other case, i.e., u−G2n = λ−u−, can be handled in a similar fashion.

We shall now consider the matrix G2n. Define the matrix Y of order 2n + 1 as

Y =


2n + 1 nλ+

2n 2n − 1 (n−1)λ+

2n · · · 5 2λ+

2n 3 λ+

2n 1

2n + 1 nλ−
2n 2n − 1 (n−1)λ−

2n · · · 5 2λ−
2n 3 λ−

2n 1

0(2n−1)×2 I2n−1

 .
Similarly to the previous case, we obtain

Y−1 =


λ−

(2n+1)(2λ−−t)
λ+

(2n+1)(2λ+−t) −
2n−1
2n+1 0 −

2n−3
2n+1 0 · · · 0 −3

2n+1 0 −1
2n+1

2
2λ+−t

2
2λ−−t 0 −

n−1
n 0 −

n−2
n · · ·

−2
n 0 −1

n 0

0(2n−1)×2 I2n−1

 .
Therefore, G2n is similar to D = YG2nY−1 where

D =


λ+ 0

0 λ− 02×(2n−1)
2(a+4n+1)

2λ+−t
2(a+4n+1)

2λ−−t

0(2n−2)×2 Q


,

where Q =
(
Qi, j

)
is the matrix, of order 2n − 1, given by

Qi, j =



t if i = j is even,
i + a + 2 if j = i + 1 and i > 1 is odd,

i + 2 if j = i + 1 and i is even,
4n + 2 − i if i = j + 1 and i is even,

4n + 2 + a − i if i = j + 1 and i is odd,
0 otherwise,

with the exceptional entries Q1,2 j = −
(n− j)(a+4n+1)

n for j > 1 and Q1,2 = a + 3 − (n−1)(a+4n+1)
n .

Clearly it has the form

Q =



0 a + 3 − (n−1)(a+4n+1)
n 0 −(n−2)(a+4n+1)

n · · · 0 −
a+4n+1

n 0
4n t 4

a + 4n − 1 0 a + 5
4n − 2 t 6

a + 4n − 3 0
. . .

. . .
. . . 2n − 2
. . . 0 a + 2n − 1

2n + 4 t 2n
a + 2n + 3 0



.
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Similarly to the previous case, we shall give two eigenvalues of G2n−1 and then two corresponding left
eigenvectors associated to each of them.

Lemma 2.3. The matrix G2n−1 has the eigenvalues

µ+ =
1
2

(
t +

√
t2 + 16 (2n − 1) (a + 2n − 1)

)
and µ− =

1
2

(
t −

√
t2 + 16 (2n − 1) (a + 2n − 1)

)
with left 2n-eigenvectors v+ and v− defined by

v+ =
(

2n (2n−1)µ+

2(2n−1) 2n − 2 (2n−3)µ+

2(2n−1) · · · 4 3µ+

2(2n−1) 2 µ+

2(2n−1)

)
and

v− =
(

2n (2n−1)µ−

2(2n−1) 2n − 2 (2n−3)µ−

2(2n−1) · · · 4 3µ−

2(2n−1) 2 µ−

2(2n−1)

)
,

respectively.

Now our purpose is to find similar matrices to G2n and G2n−1, respectively. We start with the matrix
G2n−1.

Define a matrix T of order 2n as shown

T =


2n (2n−1)µ+

2(2n−1) 2n − 2 (2n−3)µ+

2(2n−1) · · · 4 3µ+

2(2n−1) 2 µ+

2(2n−1)

2n (2n−1)µ−

2(2n−1) 2n − 2 (2n−3)µ−

2(2n−1) · · · 4 3µ−

2(2n−1) 2 µ−

2(2n−1)

02(n−1)×2 I2n−2

 ,
where 02(n−1)×2 is the 2(n − 1) × 2 zero matrix and I2n−2 is the identity matrix of order 2n − 2. Its inverse is

T−1 =


µ−

2n(2µ−−t)
µ+

2n(2µ+−t) −
n−1

n 0 −
n−2

n 0 · · ·
−2
n 0 −1

n 0

2
2µ+−t

2
2µ−−t 0 −

2n−3
2n−1 0 −

2n−5
2n−1 · · · 0 −3

2n−1 0 −1
2n−1

02(n−1)×2 I2n−2

 .
We can check that G2n−1 is similar to the matrix

E =


µ+ 0

0 µ− 02×(2n−2)
2(a+4n−1)

2µ+−t
2(a+4n−1)

2µ−−t

0(2n−3)×2 W


,

where W =
(
Wi, j

)
is the block of order 2n − 2 defined by

Wi, j =



t if i = j is even,
i + a + 2 if j = i + 1 and i > 1 is odd,

i + 2 if j = i + 1 and i is even,
4n − i if i = j + 1 and i is even,

4n + a − i if i = j + 1 and i is odd,
0 otherwise,
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with the exceptional entries W1,2 j = −
(2n−2 j−1)(a+4n−1)

2n−1 for j > 1 and W1,2 = a + 3 − (2n−3)(a+4n−1)
2n−1 . Clearly it has

the form

W =



0 a + 3 − (2n−3)(a+4n−1)
2n−1 0 −(2n−5)(a+4n−1)

2n−1 0 · · · 0 −(a+4n−1)
2n−1

4n − 2 t 4
4n − 3 + a 0 5 + a

4n − 4 t 6

4n − 3 + a
. . .

. . .
. . . t 2n − 2

2n + 3 + a 0 2n − 1 + a
2n + 2 t


,

since E = TG2n−1T−1. Consequently, µ+ and µ− are eigenvalues of E.
To compute the remaining eigenvalues of G2n−1 and G2n, we proceed providing some auxiliary results.
Define an upper triangular matrix U2n of order 2n with

Ui,i =
(2n + 1 − bi/2c) (a + 4n + 1 − 2 b(i − 1) /2c)

(n + 1) (a + 2n + 3)
, for 1 ≤ i ≤ 2n

and

Ui,i+2r =
(2n + 1 − 2r − i) (a + 4n + 3)

(n + 1) (a + 2n + 3)
, for 1 ≤ i ≤ 2n − 2 and 1 ≤ r ≤ n − 1,

and 0 otherwise, where b·c stands for the floor function.
For example, when n = 4, we have

U8 =



9(a+17)
5(a+11) 0 6(a+19)

5(a+11) 0 4(a+19)
5(a+11) 0 2(a+19)

5(a+11) 0
0 8(a+17)

5(a+11) 0 5(a+19)
5(a+11) 0 3(a+19)

5(a+11) 0 1(a+19)
5(a+11)

0 0 8(a+15)
5(a+11) 0 4(a+19)

5(a+11) 0 2(a+19)
5(a+11) 0

0 0 0 7(a+15)
5(a+11) 0 3(a+19)

5(a+11) 0 1(a+19)
5(a+11)

0 0 0 0 7(a+13)
5(a+11) 0 2(a+19)

5(a+11) 0
0 0 0 0 0 6(a+13)

5(a+11) 0 1(a+19)
5(a+11)

0 0 0 0 0 0 6(a+11)
5(a+11) 0

0 0 0 0 0 0 0 5(a+11)
5(a+11)


.

For odd orders, we define an upper triangular matrix U2n+1 of order 2n + 1 with

Ui,i =
(2n + 2 − bi/2c) (a + 4n + 3 − 2 b(i − 1) /2c)

(n + 2) (a + 2n + 3)
, for 1 ≤ i ≤ 2n + 1

and

Ui,i+2r =
(2n + 2 − 2r − i) (a + 4n + 5)

(n + 2) (a + 2n + 3)
, for 1 ≤ i ≤ 2n and 1 ≤ r ≤ n,

and 0 otherwise.
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For example, when n = 3, we get

U7 =



8(a+15)
5(a+9) 0 5(a+17)

5(a+9) 0 3(a+17)
5(a+9) 0 1(a+17)

5(a+9)

0 7(a+15)
5(a+9) 0 4(a+17)

5(a+9) 0 2(a+17)
5(a+9) 0

0 0 7(a+13)
5(a+9) 0 3(a+17)

5(a+9) 0 1(a+17)
5(a+9)

0 0 0 6(a+13)
5(a+9) 0 2(a+17)

5(a+9) 0
0 0 0 0 6(a+11)

5(a+9) 0 1(a+17)
5(a+9)

0 0 0 0 0 5(a+11)
5(a+9) 0

0 0 0 0 0 0 5(a+9)
5(a+9)


.

A routine calculation leads us to the inverse matrix U−1
2n =

(
Ci j

)
, with

Cii =
a + 2n + 3

a + 4n + 1 − 2 b(i − 1) /2c
×

n + 1
2n + 1 − bi/2c

for 1 ≤ i ≤ 2n,

Ci,i+2 = −
(a + 2n + 3) (a + 4n + 3)

(a + 4n + 1 − 2 b(i − 1) /2c) (a + 4n − 1 − 2 b(i − 1) /2c)
×

(n + 1) (2n − 1 − i)
(2n + 1 − bi/2c) (2n − bi/2c)

,

for 1 ≤ i ≤ 2n − 2, while, for 1 < r ≤ n − 1,

Ci,i+2r = − (a + 2n + 3) (a + 4n + 3)
r−1∏
t=1

(a + 2t + 1) ×
r∏

t=0

1
(a + 4n + 1 − 2t − 2 b(i − 1) /2c)

× (n + 1) (2n + 1 − 2r − i) × (r − 1)!
(
b(i + 1) /2c + r − 1

r − 1

)
×

r+1∏
t=1

1
(2n + 2 − t − bi/2c)

and 0 otherwise.
On the other hand, U−1

2n+1 =
(
Si j

)
is

Sii =
a + 2n + 3

a + 4n + 3 − 2 b(i − 1) /2c
×

n + 2
2n + 2 − bi/2c

for 1 ≤ i ≤ 2n + 1,

Si,i+2 = −
(a + 2n + 3) (a + 4n + 5)

(a + 4n + 3 − 2 b(i − 1) /2c) (a + 4n + 1 − 2 b(i − 1) /2c)
×

(n + 2) (2n − i)
(2n + 1 − bi/2c) (2n − bi/2c)

for 1 ≤ i ≤ 2n − 1, and

Si,i+2r = − (a + 2n + 3) (a + 4n + 5)
r−1∏
t=1

(a + 2t + 1) ×
r∏

t=0

1
(a + 4n + 3 − 2t − 2 b(i − 1) /2c)

× (n + 2) (2n + 2 − 2r − i) × (r − 1)!
(
b(i + 1) /2c + r − 1

r − 1

)
×

r+1∏
t=1

1
(2n + 3 − t − bi/2c)

,

for 1 < r ≤ n, and 0 otherwise.
Taking into account the definition of Un, we clearly have

G2n−2 = U2n−1 QU−1
2n−1 and G2n−1 = U2n W U−1

2n .

For the readers convenience, we give a sketch proof for the equality G2n−1 = U2n W U−1
2n as a showcase to

show how such similar equalities could be proven. But later we leave some similar equalities without
giving proofs.
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We want to prove the equality

G2n−1 = U2nWU−1
2n

or equivalently

G2n−1U2n = U2nW.

Denote G2n−1U2n and U2nW by An =
(
Ai, j

)
and Bn =

(
Bi, j

)
, respectively. Thus, we have to prove that An = Bn.

The matrix Un =
(
Ui, j

)
is an upper triangular matrix and its almost half of entries at the upper band

are zero. The matrix G2n−1 =
(
Gi, j

)
is a tridiagonal matrix and the matrix W =

(
Wi, j

)
is almost a tridiagonal

matrix as well as it has first row entries. Considering these facts and from a matrix multiplication, we write
the entries of the matrix An as

A1, j = G1,2U2, j for even j,
Ai,i−1 = Gi,i−1Ui−1,i−1 for 2 ≤ i ≤ n,
Ai, j = Gi,i−1Ui−1, j + Gi,i+1Ui+1, j for odd i and even j, or, vice versa,
Ai, j = t ·Ui, j for even i and j,
Ai, j = 0 for odd i and j,
Ai, j = 0 for i > j + 1.

And similarly we write the entries of the matrix Bn as

B1, j = U1, j−1W j−1, j + U1, j+1W j+1, j −U1,1z j/2 for even j,
Bi,i−1 = Ui,iWi,i−1 for 2 ≤ i ≤ n,
Bi, j = Ui, j−1W j−1, j + Ui, j+1W j+1, j for odd i and even j, or, vice versa,
Bi, j = t ·Ui, j for even i and j,
Bi, j = 0 for odd i and j,
Bi, j = 0 for i > j + 1,

where z j = −
(
2n − 2 j + 1

)
(a + 4n + 3) / (2n + 1) .

In order to prove An = Bn, we shall chose the first two of entries and leave the others to the reader to do
not bother. Now we show that

A1, j = B1, j.

By using the definitions of the matrices G2n−1,U2n and W, first consider

A1,2 j = 11,2u2,2 j = (a + 1) u2,2+2( j−1),

which by taking i = 2, r = j − 1, gives

A1, j = (a + 1) ×
(
2n + 1 − 2 j − 2

)
(a + 4n + 3)

(n + 1) (a + 2n + 3)
.

Next, we consider

Bi,2 j = U1,2 j−1W2 j−1,2 j + U1,2 j+1W2 j+1,2 j −U1,1k j

=

(
2n − 2 j + 2

)
(a + 4n + 3)

(
a + 2 j + 1

)
(n + 1) (a + 2n + 3)

+

(
2n − 2 j

)
(a + 4n + 3)

(
4n − 2 j + 3 + a

)
(n + 1) (a + 2n + 3)

−
(2n + 1) (a + 4n + 1)
(n + 1) (a + 2n + 3)

×

(
2n − 2 j + 1

)
(a + 4n + 3)

(2n + 1)
,
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which, by summing the first two rational statements, gives

Bi,2 j =
(a + 4n + 3) · 2

(
2n − 2 j + 1

)
(a + 2n + 1)

(n + 1) (a + 2n + 3)
−

(a + 4n + 1)
(
2n − 2 j + 1

)
(a + 4n + 3)

(n + 1) (a + 2n + 3)

=
(a + 1)

(
2n − 2 j + 1

)
(a + 4n + 3)

(n + 1) (a + 2n + 3)
,

which equals A1,2 j as claimed.

As a second showcase, we shall prove that Ai,i−1 = Bi,i−1 for only odd integers i. In that case, we have to
prove that A2i+1,2i = B2i+1,2i. Now consider

A2i+1,2i = G2i+1,2iU2i,2i

= (4n + a − 2i + 1) ×
(2n + 1 − i) (a + 4n + 1 − 2 (i − 1))

(n + 1) (a + 2n + 3)

= (4n + a − 2i + 1) ×
(2n + 1 − i) (a + 4n − 2i + 3)

(n + 1) (a + 2n + 3)
.

On the other hand, consider

B2i+1,2i = Ui,iWi,i−1

=
(2n + 1 − i) (a + 4n − 2i + 1)

(n + 1) (a + 2n + 3)
× (a + 4n − 2i + 3) ,

which gives the claimed result, A2i+1,2i = B2i+1,2i.
The remaining cases

Ai, j = Gi,i−1Ui−1, j + Gi,i+1Ui+1, j for odd i and even j, or, vice versa,
Ai, j = t ·Ui, j for even i and j,

could be proven similarly.
If we define the matrix of order n

Mn =

(
I2 02×(n−2)

0(n−2)×2 Un−2

)
,

then we get

M2nEM−1
2n =


µ+ 0 02×(2n−2)

0 µ−

(a+4n−3)(a+4n−1)
(a+2n+1)(2µ+−t)

2(2n−1)
n

(a+4n−3)(a+4n−1)
(a+2n+1)(2µ−−t)

2(2n−1)
n

0(2n−3)×2 U2n−2WU−1
2n−2


and

M2n+1DM−1
2n+1 =


λ+ 0 02×(2n−1)

0 λ−

(a+4n−1)(a+4n+1)
(a+2n+1)(2λ+−t)

4n
n+1

(a+4n−3)(a+4n−1)
(a+2n+1)(2λ−−t)

4n
n+1

0(2n−2)×2 U2n−1QU−1
2n−1


.
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So far, we derived the identities

D = YG2nY−1,

E = TG2n−1T−1,

G2n−2 = U2n−1 QU−1
2n−1,

G2n−1 = U2n−2 W U−1
2n−2.

From the definition of Gn, both M2nEM−1
2n and M2n+1DM−1

2n+1 can be rewritten in the following lower
triangular block form

µ+ 0

0 µ−
0

∗ G2n−1

 and


λ+ 0

0 λ−
0

∗ G2n−2

 , (1)

respectively.
From (1), we get the recurrences on n > 0,

det G2n = λ+λ− det G2n−2, with det G0 = 1

and

det G2n+1 = µ+µ− det G2n−1, with det G1 = 1.

Finally, we obtain Theorem 2.1.
Let In be the identity matrix of order n. For any real number m, if we consider the summation Gn

(
a, t̂, 0

)
+

mIn, then we get that Gn

(
a, t̂, 0

)
+ mIn = Gn

(
a, t̂ + m,m

)
and its spectrum as

λ
(
G2`

(
a, t̂, 0

)
+ mI2`

)
= λ

(
G2`

(
a, t̂ + m,m

))
=

m +
1
2

t̂ ±
1
2

√(
t̂
)2

+ 32ak + 64k2


`

k=1

∪ {m}

and

λ
(
G2`−1

(
a, t̂, 0

)
+ mI2`−1

)
= λ

(
G2`−1

(
a, t̂ + m,m

))
=

m +
1
2

t̂ ∓
1
2

√(
t̂
)2

+ 16 (2k − 1) (a + 2k − 1)


`

k=1

.

After this, we denote t̂ + m by a new parameter t and then we get the matrix Gn (a, t,m) , which is our
main matrix. We see the fact that the terms in square roots in the above expressions for the eigenvalues of
the matrix Gn

(
a, t̂ + m,m

)
only depend on the parameter t̂, not the other parameter m. Considering this fact

and the transformation t̂ + m→ t, we get the claimed result that the spectrum of Gn(a, t,m) is given by

λ (G2` (a, t,m)) =

{
1
2

(
m + t ±

√
(t −m)2 + 32ak + 64k2

)}`
k=1
∪ {m}

and

λ (G2`−1 (at,m)) =

{
1
2

(
m + t ∓

√
(t −m)2 + 16 (2k − 1) (a + 2k − 1)

)}`
k=1
.
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So, we can compute the determinant of the matrix Gn(a, t,m) as following

det G2n (a, t,m) = m
n∏

k=1

[
1
2

(
m + t ±

√
(t −m)2 + 32ak + 64k2

)]

= m
n∏

k=1

(
mt − 8ak − 16k2

)
and

det G2n−1 (a, t,m) =

n∏
k=1

[
1
2

(
m + t ∓

√
(t −m)2 + 16 (2k − 1) (a + 2k − 1)

)]

=

n∏
k=1

[mt − 4 (2k − 1) (a + 2k − 1)] .

3. The right eigenvectors

We used the left eigenvectors in the previous section to prove the formulas for the eigenvalues of
the matrix Gn(a, t,m). In this final section, we first consider the matrix Gn(a, t, 0), or shortly Gn, and
provide explicitly right eigenvectors corresponding to λ+ and λ−. We realize how these eigenvectors can
be complicated, and this fact can be important to the interested readers. Thus, we only note the right
eigenvectors of the matrix Gn(a, t,m) by again using the same transform.

So, regarding the right eigenvectors, the formulas seem rather intricate and providing a compact for-
mulation of them seems difficult to achieve. This is mainly due to the fact that they include combinatorial
expressions with certain rational coefficients.

Notice that the matrix G2n−1 has the eigenvalues

1
2

(
t +

√
t2 + 16 (2n − 1) (a + 2n − 1)

)
and

1
2

(
t −

√
t2 + 16 (2n − 1) (a + 2n − 1)

)
associated with the following eigenvectors

1
b (n − 1,n − 1)



c (n − 1, 0) s(a;0,n−2)
s(a;n+1,2n−1)λ

+

b (n − 1, 0) s(a;1,n−1)
s(a;n+1,2n−1)

c (n − 1, 1) s(a;1,n−2)
s(a;n+1,2n−2)λ

+

b (n − 1, 1) s(a;2,n−1)
s(a;n+1,2n−2)

...

c (n − 1, k − 1) s(a;k−1,n−2)
s(a;n+1,2n−k)λ

+

b (n − 1, k − 1) s(a;k,n−1)
s(a;n+1,2n−k−1)

...

c (n − 1,n − 1) s(a;n−1,n−2)
s(a;n+1,n) λ

+

b (n − 1,n − 1) s(a;n,n−1)
s(a;n+1,n)



→ 1st row
→ 2nd row
→ 3rd row
→ 4th row

→ (2k − 1) st row
→ (2k) th row

→ (2n − 1) st row
→ (2n) th row
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and

1
b (n − 1,n − 1)



−c (n − 1, 0) s(a;0,n−2)
s(a;n+1,2n−1)λ

−

b (n − 1, 0) s(a;1,n−1)
s(a;n+1,2n−1)

−c (n − 1, 1) s(a;1,n−2)
s(a;n+1,2n−2)λ

−

b (n − 1, 1) s(a;2,n−1)
s(a;n+1,2n−2)

...

−c (n − 1, k − 1) s(a;k−1,n−2)
s(a;n+1,2n−k)λ

−

b (n − 1, k − 1) s(a;k,n−1)
s(a;n+1,2n−k−1)

...

−c (n − 1,n − 1) s(a;n−1,n−2)
s(a;n+1,n) λ

−

b (n − 1,n − 1) s(a;n,n−1)
s(a;n+1,n)



,

respectively, for 1 ≤ k ≤ n, where

b (n, k) = 4 (2n − 1)
(
2n
k

)
2n − 2k + 1
2n − k + 1

,

c (n, k) =

(
2n + 1

k

)
2 (n − k + 1)
2n − k + 2

and

s (a; m,n) =

n∏
k=m

(a + 2k + 1)

= (a + 1) (a + 3) (a + 5) · · · (a + 2n + 1) .

Similarly, the matrix G2n of order 2n + 1 has the eigenvalues

2
√

(2n − 1) (a + 2n − 1) and − 2
√

(2n − 1) (a + 2n − 1)

and the following corresponding eigenvectors

1
c (n − 1,n − 1)



d (n, 0) s(a;0,n−1)
s(a;n+1,2n)

c (n − 1, 0) s(a;1,n−1)
s(a;n+1,2n)λ

+

d (n, 1) s(a;1,n−1)
s(a;n+1,2n−1)

c (n − 1, 1) s(a;2,n−1)
s(a;n+1,2n−1)λ

+

...

c (n − 1, k − 1) s(a;k,n−1)
s(a;n+1,2n−k+1)λ

+

d (n, k) s(a;k,n−1)
s(a;n+1,2n−k)

...

c (n − 1,n − 1) s(a;n,n−1)
s(a;n+1,n+1)λ

+

d (n,n) s(a;n,n−1)
s(a;n+1,n)



→ 1st row
→ 2nd row
→ 3rd row
→ 4th row

→ (2k) th row
→ (2k + 1) th row

→ (2n) th row
→ (2n + 1) th row
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and

1
c (n − 1,n − 1)



d (n, 0) s(a;0,n−1)
s(a;n+1,2n)

−c (n − 1, 0) s(a;1,n−1)
s(a;n+1,2n)λ

−

d (n, 1) s(a;1,n−1)
s(a;n+1,2n−1)

−c (n − 1, 1) s(a;2,n−1)
s(a;n+1,2n−1)λ

−

...

−c (n − 1, k − 1) s(a;k,n−1)
s(a;n+1,2n−k+1)λ

−

d (n, k) s(a;k,n−1)
s(a;n+1,2n−k)

...

−c (n − 1,n − 1) s(a;n,n−1)
s(a;n+1,n+1)λ

−

d (n,n) s(a;n,n−1)
s(a;n+1,n)


for 0 ≤ k ≤ n respectively, where c (n, k) and s (a; k,n) are defined as before and

d (n, k) =

(
2n
k

)
2n − 2k + 1
2n − k + 1

.

We would like to finish the paper mentioning that for the right eigenvectors of the matrix Gn(a, t,m), it
is enough to take t − m instead of the parameter t in each eigenvector of the matrix Gn(a, t, 0) given in this
section.
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