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Abstract. We consider the unique determination of Riemann zeta function as a solution of its functional
equaiton under the condition sharing value. Besides, we show how the Riemann zeta function is uniquely
determined by one or two sharing values of truncated multiplicity. The results in present paper extend the
theorems given by Li in [17] and Gao, Li in [12]. Moreover, we generalize the results to L-functions in the
Selberg class.

1. Introduction and Main Results

The Riemann zeta function is defined by the Dirichlet series

ζ(s) =

∞∑
n=1

1
ns , s = σ + it,

for Re(s) = σ > 1, which is absolutely convergent, and admits an analytical continuation as a meromorphic
function in the complex plane. The famous, as yet unproved, Riemann hypothesis states as follows:

Conjecture 1.1 (Riemann Hypothesis). The nontrivial zeros of ζ(s) lie on the line σ = 1
2 .

It is closely related to the distribution of prime numbers and plays a pivotal role in analytic number
theory. The problem of value distribution of the Riemann zeta function has been studied extensively,
including the distribution of the zeros of ζ(s) and, more generally, the c-values of ζ(s), i.e., the roots of
the equation ζ(s) = c (see e.g. [24], [32]). Recently, the problem has been generalized from the Riemann
zeta-function to certain L-function, see eg. monograph [15], [24].

On the other hand, as we know, the functional equation of ζ(s) plays an important role in some properties
of Riemann zeta function, especially the zero distribution, and the unique determination of the Riemann
zeta function as a solution of the functional equation
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has been extensively studied and it is known to have different solutions with certain relations (see [1], [2] ,
[6] etc. for studies of solutions of the Riemann functional equation).

Recently, Hu and Li [14] constructed an entire function of order not greater than 1, with all zeros located
exactly at those nontrivial zeros of ζ(s) on the critical line Re(s) = 1

2 , that is

h(s) =
1
2

∞∏
v=1

(
1 −

s − s2

|sv|
2

)
,

where sv (v = 1, 2, · · · ) are the zeros, counting multiplicities of ζ(s) on the half line Re(s) = 1
2 , Im(s) > 0. It is

easy to show that this function h(s) satisfy the equation

h(s) = h(1 − s).

Further, they defined a meromorphic function η(s) using the same expression as that for ζ(s), that is

h(s) =
1
2

s(s − 1)π−
s
2 Γ

( s
2

)
η(s).

By simple calculation, it can be seen that the function η(s) also satisfies the Riemann functional equation as
ζ(s) does:

η(1 − s) = 21−sπ−s cos
πs
2

Γ(s)η(s).

Moreover, we also can find that the only zeros of η(s) in the domain Re(s) < 0 are the poles of Γ
( s

2

)
, which

are the trivial zeros of ζ(s). Other zeros of η(s) lie on the line Re(s) = 1
2 in view of the construction of h(s)

and η(s). In addition, the point s = 1 is the only pole of η(s), which is a simple pole with residue 1.
Using the function η(s), Hu and Li established a necessary and sufficient condition for the Riemann

Hypothesis as follows.

Theorem 1.2 ([14]). The Riemann hypothesis is true if and only if ζ(s) ≡ η(s).

Obviously, Theorem 1.2 shows that to prove the Riemann hypothesis we now only need to prove that
ζ(s) ≡ η(s), in other words, the famous Riemann hypothesis is transformed into the uniqueness problem of
meromorphic function. Note that η(s) and ζ(s) satisfy the same functional equation, this property means
that η(s) is a solution of the Riemann functional equation. Clearly, we need to seek the conditions that force
the solutions to become unique one – the Riemann zeta function. The following uniqueness problem is
posed by Hu and Li in [14] according to the properties of η(s) .

Question 1.1 (Uniqueness problem[14]). Let f (s) be a meromorphic function (of order ≤ 1 with finitely many
poles) in the complex plane such that
(i) f (s) and ζ(s) satisfy the same functional equation;
(ii) Z( f ) ⊆ Z(ζ).
Under what conditions are f (s) and ζ(s) identically equal?

Here, we point out that, to uniquely determine functions, condition (i) and (ii) in the Question 1.1 are
not sufficient. For example, we consider the following function f (s),

f (s) =
π

s
2

s(s − 1)Γ
(

s
2

) ,
it is easy to see that f (s) satisfies (i) and (ii), but f (s) . ζ(s). In order to have the uniqueness of f (s) and ζ(s),
Hu and Li [14] gave the following uniqueness theorem under an additional condition that f (s) tends to 1 as
σ→ +∞.

Theorem 1.3 ([14]). Let f (s) be a nonconstant meromorphic function in the complex plane of order ≤ 1 with
lim
σ→+∞

f (s) = 1. Then f (s) ≡ ζ(s) if and only if f (s) satisfies the Riemann functional equation and Z( f ) ⊆ Z(ζ).
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Note that if a meromorphic function f (s) satisfies the Riemann functional equation, then we can see
that the zero set of f (s) in Re(s) < 0 is a subset of the zeros set of ζ(s) in Re(s) < 0. Hence, we process the
Question 1.1 under the condition (i) only and an additional condition of sharing value. Two meromorphic
functions f and 1 in the complex plane are said to share a value c ∈ C ∪ {∞} IM (ignoring multiplicities) if
f−1(c) = 1−1(c) as two sets in C, where f−1(c) = {s ∈ C : f (s) = c}. Moreover, f and 1 are said to share a value
c CM (counting multiplicities) if they share the value c IM and if the roots of the equations f (s) = c and
1(s) = c have the same multiplicities. For basic terms and notations of the value distribution of Nevanlinna
one may refer to monographs [13, 35, 36].

Theorem 1.4. Suppose that f (s) is a meromorphic function with finitely many poles. If f (s) and ζ(s) satisfy the same
functional equation and share a ∈ C \ {0} CM, then f (s) ≡ ζ(s).

Remark 1.5. The condition that a , 0 in Theorem 1.4 cannot be dropped. To see this, let f (s) = 1
s(1−s)ζ(s).

Then ζ(s) and f (s) satisfy all the conditions of Theorem 1.4 except that a , 0, but f (s) . ζ(s).

Furthermore, Bombieri and Perelli have mentioned in [3] that two L-functions with “enough” common
zeros (without counting multiplicities) are expected to be dependent in a certain sense. Recently, mathe-
maticians have considered the problem of how an L-function in the Selberg class S (ζ(s) is a special case) is
uniquely determined by preimages of complex values, or sharing values, and got a lot of interesting results,
see e.g. [9], [19], [20], [33] etc.. Particularly, Li in [17] established the following result.

Theorem 1.6 ([17]). Let f (s) be a meromorphic function in the complex plane such that f (s) has finitely many poles,
and let a, b be two distinct finite values. If f (s) and a nonconstant L-function L(s) ∈ S share the value a counting
multiplicities (CM) and the value b ignoring multiplicities (IM), then f (s) ≡ L(s).

Remark 1.7. The author shows that the number “two” in Theorem 1.6 is the best possible. For instance, the
function L = ζ and f = ζe1, where 1 is an entire function, share 0 CM, but they are not identically equal.

Remark 1.8. Theorem 1.6 does not hold without the hypothesis “finitely poles”. Consider the function
L = ζ and f = 2ζ

ζ+1 , it is clear that L and f with infinitely many poles share 0, 1 CM, but they are not
identically equal.

In fact, Theorem 1.6 gives an affirmative answer to the following question which was posed by Liao and
Yang in [18] when one of the values a, b, c is∞.

Question 1.2 ([18]). If f (s) is meromorpic in the complex plane and f (s) share two distinct values a, b CM and a
value c IM with Riemann zeta function ζ(s), where c < C \ {a, b, 0}, can we conclude that f (s) ≡ ζ(s)?

In 2012, Gao and Li [12] considered the uniqueness question for the Riemann zeta function in terms of
the preimages of three complex values. Moreover, they gave an affirmative solution to the Question 1.2 by
the following result.

Theorem 1.9 ([12]). Let a, b, c ∈ C ∪ {∞} be distinct. If a meromorphic function f (s) in the complex plane and the
Riemann zeta function ζ(s) share a, b CM and c IM except possibly at finitely many points, then f (s) ≡ ζ(s).

In the present paper, we will extend Theorem 1.6 and Theorem 1.9 by sharing value with truncated
multiplicity k, and the method of proof is different from that in [17] and [12].

Definition 1.10. Let k be a positive integer number or∞, Ek)(a, f ) denotes the set of all distinct zeros of f − a with
multiplicity no greater than k. In particular, if k = 1, E1)(a, f ) denotes the set of simple zeros of f − a, and k = ∞,

E∞(a, f ) denotes all distinct zeros of f − a. We say that a meromorphic function f shares the value a of truncated
multiplicity k with a meromorphic function 1 if Ek)(a, f ) = Ek)(a, 1).

Obviously, two meromorphic functions f (s) and 1(s) share a IM when E∞(a, f ) = E∞(a, 1), i.e., E(a, f ) =

E(a, 1). Hence, our results will extend Theorem 1.6 and Theorem 1.9 when k = ∞. In fact, we have the
following results.
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Theorem 1.11. Let f (s) be a meromorphic function in the complex plane such that f (s) has finitely many poles, and
let a, b be two distinct finite values. If f (s) and ζ(s) share a CM and Ek)(b, ζ) = Ek)(b, f ) for some integer k ≥ 1, then
f (s) ≡ ζ(s).

Theorem 1.12. Let f (s) be a meromorphic function in the complex plane and a, b, c ∈ C∪ {∞} be distinct. If f (s) and
ζ(s) share a, b CM and Ek)(c, ζ) = Ek)(c, f ) for some integer k ≥ 1, then f (s) ≡ ζ(s).

It is evident that Theorem 1.11 and Theorem 1.12 are still valid when k = ∞.

2. Preliminaries

The Riemann zeta function is defined by the Dirichlet series

ζ(s) =

∞∑
n=1

1
ns , s = σ + it,

for Re(s) = σ > 1, which is absolutely convergent, and admits an analytical continuation as a meromorphic
function in the complex plane C of order 1, which has only a simple pole at s = 1 with residue equal to 1. It
satisfies the following Riemann functional equation:

π−
s
2 Γ

( s
2

)
ζ(s) = π−

1−s
2 Γ

(1 − s
2

)
ζ(1 − s), (1)

where Γ(s) is the Euler gamma function

Γ(s) =

∫
∞

0
ts−1e−tdt, Re(s) > 0,

it can be analytically continued as a meromorphic function in the complex plane of order 1 without any
zeros and with simple poles at s = 0,−1,−2, · · · . There are equivalent forms of the functional equation (1).
For instance, if we use the identity

Γ(s)Γ(1 − s) =
π

sinπs
and

π
1
2 Γ(s) = 21−sΓ

( s
2

)
Γ
(1 + s

2

)
,

(1) implies

ζ(1 − s) = 21−sπ−s cos
πs
2

Γ(s)ζ(s). (2)

The allied function
ξ(s) =

1
2

s(s − 1)π−
s
2 Γ

( s
2

)
ζ(s) (3)

is an entire function of order equal to 1 satisfying the functional equation

ξ(1 − s) = ξ(s). (4)

It is easy to see that ζ(s) has no zeros for Re(s) > 1, and by the functional equation, the only zeros of ζ(s)
in the domain Re(s) < 0 are the poles of Γ

(
s
2

)
, which are called the trivial zeros of ζ(s). Other zeros, called

nontrivial zeros, lie in the critical strip 0 < Re(s) < 1. Moreover, for any nonzero complex number a, the
zeros of ζ(s) − a, which we denote by ρa = βa + iγa, are called the a-points of ζ(s), and their distribution has
long been an interesting object of study (one may see [16], [23], [32] for the principal results and further
references). The related results are also quite beautiful as the zeros distribution. Some of the most basic
facts are these. First, there exists a number n0(a) such that ζ(s) − a has a zero quite close to s = −2n for all
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integers n ≥ n0(a), and there are at most finitely many other zeros in Re(s) ≤ 0 (Levinson [16] states this
for Re(s) ≤ −2, but it is not difficult to see that it holds for Re(s) ≤ 0), we call these zeros of ζ(s) − a trivial
a-points. The remaining zeros all lie in a strip 0 < Re(s) < A, where A > 0 depends on a, and we call these
nontrivial a-points. For these we have

Na(T) =
∑

0<γa<T, βa>0

1 =
T

2π
log

T
2π
−

T
2π

+ Oa(log T)

if a , 1; if a = 1, there is an additional term log T
π on the right-hand side of the above equation (cf. [16] or

[23]). The zeros of ζ(s)− a cluster near the line Re(s) = 1
2 (Levinson [16]), as do the zeros of ζ(s) (Titchmarsh

[32]), of which there are approximately the same number in the strip 0 < Re(s) < A.Garunkštis and Steuding
[11] have recently shown that for every a an infinite number of a-points are simple.

In addition, an L-function in the Selberg class, which includes the Riemann zeta function and essentially
those Dirichlet series where one might expect a Riemann hypothesis. Introduced by Selberg [23], the Selberg
class S is the set of all Dirichlet series

L(s) =

∞∑
n=1

a(n)
ns

absolutely convergent for Re(s) > 1 that satisfy the following axioms:

(1) Ramanujan hypothesis: for any ε > 0, a(n)� nε;
(2) Analytic continuation: the function (s−1)k

L(s) is an entire function of finite order for some non-negative
integer k;
(3) Functional equation: L(s) satisfies a functional equation of type

ΛL(s) = ωΛL(1 − s), where ΛL := L(s)Qs
K∏

j=1

Γ(λ js + µ j)

with positive real numbers Q, λ j, and complex numbers µ j, ω with Re(µ j) ≥ 0 and |ω| = 1;
(4) Euler product. L(s) satisfies

L(s) =
∏

p

Lp(s),

where

Lp(s) = exp
( ∞∑

k=1

b(pk)
pks

)
with suitable coefficients b(pk) satisfying b(pk)� pkθ for some θ < 1

2 .

The extended Selberg class S] is defined as the set of all functions L(s) satisfying axioms (1) − (3). The
degree of L(s) is defined by dL = 2

∑K
j=1 λ j, where K, λ j are the number in the axiom (3) (see [21]). As far as

we know, the characteristic function of L-functions in S] have an asymptotic formula as follows:

T(r,L) =
dL
π

r log r + O(r).

This shows that the countion function N(r,L) dominates the porximity function m(r,L), which is different
from the genenal meromorphic functions, one may refer such as [5], [35] for getting more results concerning
the relationship between the countion function and characteristic function of meromorphic functions. We
next introduce two Lemmas to show the properties of the zero distribution of L-functions in the extended
Selberg class, and they will paly a crucial effect in our following proof. To do this, we state some notations
as follows. The zeros ofL(s) located at the poles of gamma-factors appearing in the functional equation are
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called trivial. They all lie in σ ≤ 0, and may have multiplicity greater than one. Actually, it is easily seen
that they are located at

s = −
m + µ j

λ j
with m = 0, 1, 2, · · · , and 1 ≤ j ≤ K.

All other zeros are said to be non-trivial (see [24]). We shall denote the trivial zeros of L(s) by ρ1, ρ2, ρ3 · · · ,
where Re(ρ1) ≥ Re(ρ2) ≥ Re(ρ3) ≥ · · · , and where each zero is listed as many times as its multiplicity.
Moreover, we have the following facts (see [10]):

Lemma 2.1 ([10]). The trivial zeros of L-function in the extend Selberg class satisfy
(i) |Imρn| ≤ B0 for n = 1, 2, 3, · · · , where B0 = max1≤ j≤K |Imµj|/λj;
(ii) D0 = minρn,ρm |ρn − ρm| exists and D0 > 0;
(iii)

∑
−U<Re(ρn)≤0 1 = (

∑
1≤ j≤K λ j)U + O(1) =

dLU
2 + O(1), as U→ +∞;

(iv) there is a number A0 > 0 such that L(s) has only trivial zeros in σ ≤ −A0.

Let ρ denote a zero of L(s), for σ1, σ2 and t > 0, define

NL(σ1, σ2) =
∑

σ1<Re(ρ)≤σ2

1,

NL(σ1, σ2; t) =
∑

σ1<Re(ρ)≤σ2,|Imρ|≤t

1.

Then we clearly have

NL(−U,−A0) = NL(−U,−A0; B0) =
dLU

2
+ O(1).

The following Lemma was proved by Steven M. Gonek, Jaeho Haan and Haseo Ki (see [10]).

Lemma 2.2 ([10]). Suppose that L(s) is in the extended Selberg class, for any fixed complex number c , 0,
there exist positive constants A1,B1 and C1 depending at most on K and the µ j and λ j, such that
(i) NL−c(−U,−A1) = NL−c(−U,−A1; B1) =

dLU
2 + O(1), as U→ +∞;

(ii) each zero of L(s) − c in σ ≤ −A1 is within |ρn|
−C1 log |ρn |of a trivial zero ρn of L(s);

(iii) all the zeros of L(s) − c in σ ≤ −A1 are simple.

Obviously, Lemma 2.2 implies that for a nonzero complex number c, there are infinitely many simple
trivial c-points of L(s), which is different with the case of c = 0.

3. Proof of the main theorem

Proof of Theorem 1.4.

We first show that the order of f (s) is less than or equal to 1. In fact, In view of f (s) and ζ(s) satisfy the
same functional equation, we can deduce that

f (s)
f (1 − s)

=
ζ(s)

ζ(1 − s)
=

1
21−sπ−s cos πs

2 Γ(s)
, (5)

it yields that

f (s) − a =
ζ(s)

ζ(1 − s)
f (1 − s) − a.

Note that f (s) and ζ(s) share a(, 0) CM and the number of the a-points of ζ(s) is O(r log r), it then follows
that

N
(
r,

1
f (s) − a

)
= N

(
r,

1
ζ(s) − a

)
= O(r log r). (6)



A.D. Wu, W.C. Lin / Filomat 35:11 (2021), 3841–3854 3847

Furthermore, we have

N
(
r,

1
f (s) − a

)
= N

r,
1

ζ(s)
ζ(1−s) f (1 − s) − a


= N

r,
1
ζ(s)
ζ(1−s)

 + N

r,
1

f (1 − s) − a ζ(1−s)
ζ(s)

 + O(r).

Take notice of N
(
r, 1

ζ(s)
ζ(1−s)

)
= O(r), it implies that

N

r,
1

f (1 − s) − a ζ(1−s)
ζ(s)

 = O(r log r). (7)

If λ( f (s)) = λ( f (1 − s)) > 1, then for any ε > 0 we have

T
(
r, f (1 − s)

)
> r1+ε.

On the other hand,

T
(
r,

aζ(1 − s)
ζ(s)

)
≤ O(r log r) + O(r),

it then follows that

T
(
r,

aζ(1 − s)
ζ(s)

)
= o

(
T(r, f (1 − s))

)
. (8)

From the Nevanlinna’s second fundamental theorem, we have

T
(
r, f (1 − s)

)
≤ N

(
r, f (1 − s)

)
+ N

(
r,

1
f (1 − s) − a

)
+ N

r,
1

f (1 − s) − a ζ(1−s)
ζ(s)

 + S(r, f )

≤ O(r log r) + S(r, f ) = S(r, f ),

which is a contradiction, in view of (6), (7), (8) and the fact that f (s) has finitely many poles. Thus, the order
of the f (s) is not greater than 1.

Next suppose that α1, α2, · · · , αm are all poles of f (s) with the order k1, k2, · · · , km respectively, then
(s − α1)k1 (s − α2)k2 · · · (s − αm)km f (s) is an entire function. Set

F(s) =
ζ(s) − a

Q(s)( f (s) − a)
,

where

Q(s) =
(s − α1)k1 (s − α2)k2 · · · (s − αm)km

(s − 1)
(9)

is a ration function. Since f (s) and ζ(s) share non-zero complex number a CM, F(s) is an entire function
without any zeros and poles in the complex plane, there exist an entire function h(s) such that

F(s) =
ζ(s) − a

Q(s)( f (s) − a)
= eh(s). (10)
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Note that the order of ζ(s) and f (s) are at most 1, so h(s) is a polynomial with the degree at most one.
Suppose that

h(s) = c1s + c0,

where c1, c0 are complex numbers.
In view of f (s) and ζ(s) satisfy the same functional equation, this implies that the trivial zeros of ζ(s) are

also the zeros of f (s), except possibly at finitely many points. Hence, from Lemma 2.1, we can choose a
subsequence {sn} = {−2n}∞n=p of the trivial zeros of ζ(s). Then for two distinct common trivial zeros sn = −2n,
sn+1 = −2(n + 1) of ζ(s) and f (s) we obtain

(sn − 1)
(sn − α1)k1 (sn − α2)k2 · · · (sn − αm)km

= ec1sn+c0 , (11)

and
(sn+1 − 1)

(sn+1 − α1)k1 (sn+1 − α2)k2 · · · (sn+1 − αm)km
= ec1sn+1+c0 . (12)

Therefore, combine (11) and (12), we get

(sn − α1)k1 (sn − α2)k2 · · · (sn − αm)km (sn+1 − 1)
(sn+1 − α1)k1 (sn+1 − α2)k2 · · · (sn+1 − αm)km (sn − 1)

= ec1(sn+1−sn) = e−2c1 .

(13)

Let n tend to +∞, from (13) we can deduce that c1 = kπi, here k is an integer. So we get∣∣∣e−2c1n+c0
∣∣∣ = eRe(c0) =

∣∣∣∣ (−2n − 1)
(−2n − α1)k1 (−2n − α2)k2 · · · (−2n − αm)km

∣∣∣∣. (14)

This implies that k1 + · · ·+ km = 1, that is, there is only a pole of f (s), for convenience we also denote it as α1.
Otherwise, if k1 + · · · + km > 1, then we can get eRe(c0) = 0 as n→ +∞, this is impossible. Further, let n tend
to +∞ again, we get Re(c0) = 0. Denote c0 = ci, where c is a real numbers. Consider the function

G(s) =
ζ(s) − a
f (s) − a

=
s − α1

s − 1
eskπi+ci. (15)

It follows from [[24], Theorem 1.3, p.9] that in any strip 1 < σ < 1 + ε, ζ(s) takes any nonzero value infinitely
often, where ε > 0 is a positive number. So, ζ(s) − a has infinitely many zeros ξn = µn + iνn on the strip

Z =
{
s : 1 < Re(s) <

7
6
, Im(s) > 0

}
.

In addition, in views of ζ(s) and f (s) satisfy the same equation, we have

ζ(s) f (1 − s) = f (s)ζ(1 − s). (16)

Note the assumption f (s) and ζ(s) share a CM, and from (16) , we can see that for any a-points ξn ∈ Z, we
have f (1 − ξn) = ζ(1 − ξn).

Furthermore, since there exists a number n0 such that ζ(s) − a has a zero quite close to s = −2n for
all integers n ≥ n0, and there are at most finitely many other zeros in Re(s) ≤ 0. Therefore, we have
f (1 − ξn) = ζ(1 − ξn) , a with finitely many exceptions. Without loss of generality, we assume that µn → µ0
and νn → +∞ as n→ +∞. Thus, (15) leads that

1 =

∣∣∣∣∣ζ(1 − ξn) − a
f (1 − ξn) − a

∣∣∣∣∣ =

∣∣∣∣∣1 − µn − iνn − α1

1 − µn − iνn − 1

∣∣∣∣∣ ekπνn , (17)
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which implies that k = 0.Otherwise, we can see that 1 = ∞ as n→ +∞ if k > 0 and 1 = 0 as n→ +∞ if k < 0.
In view of f (s) and ζ(s) satisfy the same functional equation, therefore (15) also shows that all the trivial
zeros of ζ(s) with finitely many exceptions are the roots of equation

eci s − α1

s − 1
− 1 = 0.

Since there are infinitely many trivial zeros of ζ(s), we must have

eci s − α1

s − 1
≡ 1.

Thus, we get f (s) ≡ ζ(s).

Proof of Theorem 1.11.

Firstly, we assert that the order of f (s) is equal to 1. In fact, by the Nevanlinna’s second fundamental
theorem, we have

T(r, f ) ≤ N
(
r,

1
f − a

)
+ N

(
r,

1
f − b

)
+ N(r, f ) + S(r, f )

≤ N
(
r,

1
ζ − a

)
+ Nk)

(
r,

1
ζ − b

)
+ N(k+1

(
r,

1
f − b

)
+ S(r, f )

≤ 2T(r, ζ) +
1
2

T(r, f ) + S(r, f ),

it then follows that
T(r, f ) ≤ 4T(r, ζ) + S(r, f ).

Similarly, we can obtain
T(r, ζ) ≤ 4T(r, f ) + S(r, ζ).

Therefore, we can deduce that λ( f ) = λ(ζ) = 1.
Next suppose that α1, α2, · · · , αm are all poles of f (s) with the order k1, k2, · · · , km respectively, then

(s − α1)k1 (s − α2)k2 · · · (s − αm)km f (s) is an entire function. Set

F(s) =
ζ(s) − a

Q(s)( f (s) − a)
,

where

Q(s) =
(s − α1)k1 (s − α2)k2 · · · (s − αm)km

(s − 1)
(18)

is a ration function. Since f (s) and ζ(s) share a non-zero complex number a CM, F(s) is an entire function
without any zeros and poles in the complex plane, there exists an entire function h(s) such that

F(s) =
ζ(s) − a

Q(s)( f (s) − a)
= eh(s). (19)

Note that λ(ζ) = λ( f ) = 1, so h(s) is a polynomial whose degree is at most one. Denote h(s) as follows,

h(s) = c1s + c0,

where c1, c0 are complex numbers.
Firstly, we consider the case when k = 1, that is E1)(b, ζ) = E1)(b, f ).
From Lemma 2.2,we can see that there are infinitely many simple trivial zeros of ζ(s)−b in {s = σ+ it|σ <

−A}, where A is a positive real number.



A.D. Wu, W.C. Lin / Filomat 35:11 (2021), 3841–3854 3850

If b = 0, it is well know that the trivial zeros of ζ(s) are
{
ρn

}
=

{
− 2n

}∞
n=1
, and each zeros is simple. Then

we can deduce the result similar to the proof of Theorem 1.4.
For b , 0, each zeros of ζ(s) − b is within the sufficiently small neighborhood of a trivial zero ρn of ζ(s)

if |ρn| is large enough. Without loss of generality, we denote the subset of the zeros of ζ(s) − b as S = {sn},
where

sn ∈ U
(
ρn, |ρn|

−C1 log |ρn |
)
, n = 1, 2, · · · ,

and C1 is a positive constant. Let Ωn = U
(
ρn, |ρn|

−C1 log |ρn |
)
, then there exists some n0 such that for n > n0,

Ωn
⋂

Ωn+1 = ∅. Furthermore, we have

Re(ρn) − |ρn|
−C1 log |ρn | < Re(sn) < Re(ρn) + |ρn|

−C1 log |ρn |,

and

Re(ρn+1) − |ρn+1|
−C1 log |ρn+1 | < Re(sn+1) < Re(ρn+1) + |ρn+1|

−C1 log |ρn+1 |.

It then yiels that

−2 − αn < Re(sn+1 − sn) < −2 + αn,

where

αn = |ρn|
−C1 log |ρn | + |ρn+1|

−C1 log |ρn+1 |.

This implies that

lim
n→+∞

Re(sn+1 − sn) = −2.

Similarly, we can get ∣∣∣Im(sn+1 − sn)
∣∣∣ ≤ |ρn|

−C1 log |ρn | + |ρn+1|
−C1 log |ρn+1 | → 0,

as n→ +∞. Hence,

lim
n→+∞

(
sn+1 − sn

)
= −2. (20)

In addition, from (19), for two distinct simple zeros sn = σn + itn, sn+1 = σn+1 + itn+1∈ S of ζ(s) − b, we have(
sn − 1

)
(
sn − α1

)k1
(
sn − α2

)k2
· · ·

(
sn − αm

)km
= ec1sn+c0 , (21)

and (
sn+1 − 1

)
(
sn+1 − α1

)k1
(
sn+1 − α2

)k2
· · ·

(
sn+1 − αm

)km
= ec1sn+1+c0 . (22)

Denote

sn+1 = sn − hn,

where

hn = (σn − σn+1) + i(tn − tn+1),
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it then yields that

ec1

(
sn+1−sn

)
=

(
sn − α1

)k1
(
sn − α2

)k2
· · ·

(
sn − αm

)km
(
sn+1 − 1

)
(
sn+1 − α1

)k1
(
sn+1 − α2

)k2
· · ·

(
sn+1 − αm

)km
(
sn − 1

)

=

(
sn − α1

)k1
(
sn − α2

)k2
· · ·

(
sn − αm

)km
(
sn − hn − 1

)
(
sn − hn − α1

)k1
(
sn − hn − α2

)k2
· · ·

(
sn − hn − αm

)km
(
sn − 1

)

=

(
1 − α1

sn

)k1
(
1 − α2

sn

)k2
· · ·

(
1 − αm

sn

)km
(
1 − hn

sn
−

1
sn

)
(
1 − hn

sn
−

α1
sn

)k1
(
1 − hn

sn
−

α2
sn

)k2
· · ·

(
1 − hn

sn
−

αm
sn

)km
(
1 − 1

sn

) .

(23)

Note that
lim

n→+∞

hn

sn
= 0,

then from (23), we can deduce that

lim
n→+∞

ec1

(
sn+1−sn

)
= 1.

This combine with (20), we get
e−2c1 = 1.

Therefore, c1 = kπi, where k is an integer. So we get from (21)∣∣∣ekπisn+c0
∣∣∣ = e−kπtn+Re(c0)

=
∣∣∣∣ (σn − 1 + itn)
(σn − α1 + itn)k1 (σn − α2 + itn)k2 · · · (σn − αm + itn)km

∣∣∣∣. (24)

This implies that k1 + · · · + km = 1, that is, there is only a pole of f (s), for convenience we also denote it as
α1. Otherwise, note that lim

n→+∞
σn = −∞, and lim

n→+∞
tn = 0, so if k1 + · · · + km > 1, then we can get eRe(c0) = 0 as

n→ +∞, this is impossible. Further, let n tend to +∞ again, we get Re(c0) = 0.Denote c0 = ci and α1 = u+ iv,
where u, v and c are all real numbers. Consider the function

G(s) =
ζ(s) − a
f (s) − a

=
s − α1

s − 1
eskπi+ci. (25)

For any s = σ + it, it follows from (25) that∣∣∣G(σ + it)
∣∣∣2 =

(σ − u)2 + (t − v)2

(σ − 1)2 + t2 e−2kπt. (26)

It follows from [11] that for any b, there exists a positive number A such that ζ(s) − b has infinitely many
simple zeros ξn = µn + iνn on the strip

Z =
{
s : 0 < Re(s) < A, Im(s) > 0

}
.

Without loss of generality, we assume that µn → µ0 and νn → +∞ as n→ +∞. Thus, (25) and (26) leads that

1 =
∣∣∣∣ζ(ξn) − a

f (ξn) − a

∣∣∣∣2 =
(µn − u)2 + (νn − v)2

(µn − 1)2 + ν2
n

e−2kπνn , (27)
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which implies that k = 0.Otherwise, we can see that 1 = ∞ as n→ +∞ if k < 0 and 1 = 0 as n→ +∞ if k > 0.
Therefore, (25) also shows that all the simple zeros of ζ(s) − b in Z are zeros of

eci s − α1

s − 1
− 1.

Since there are infinitely many points in Z, we must have

eci s − α1

s − 1
≡ 1,

hence, we get f (s) ≡ ζ(s).
For k ≥ 2, it is easy to see that E1)(b, ζ) ⊆ Ek)(b, ζ), therefore, we can deduce the result from above process.

Proof of Theorem 1.12.

If one of a, b, c is∞, then we can get the result from Theorem 1.11 immediately. For a, b, c are all not equal
to∞, analogues of the proof of Theorem 1.11, we may consider the function

F(s) =
(ζ(s) − a)( f (s) − b)
(ζ(s) − b)( f (s) − a)

,

then F(s) is an entire function without any poles and zeros. Then we can deal with it similar to the proof of
Theorem 1.11 and deduce the result.

4. Further more results

Analogues of the properties of value distribution of ζ(s) are known to hold for L-functions in the extended
Selberg class S]. The above proof therefore can be extended to them.

Theorem 4.1. Suppose that f (s) is a meromorphic function with finitely many poles, an L-function L(s) ∈ S] with
positive degree and a ∈ C\{0}. If f (s) andL(s) satisfy the same functional equation and share a CM, then f (s) ≡ L(s).

Theorem 4.2. Let f (s) be a meromorphic function in the complex plane such that f (s) has finitely many poles, and
let a, b(, 0) be two distinct finite values. If L(s) ∈ S] is an L-function with positive degree such that f (s) and L(s)
share a CM and Ek)(b,L) = Ek)(b, f ) for some integer k ≥ 1, then f (s) ≡ L(s).

Theorem 4.3. Let f (s) be a meromorphic function in the complex plane, and a, b, c(, 0) ∈ C ∪ {∞} be three distinct
complex numbers. If L(s) ∈ S] is an L-function with positive degree such that f (s) and L(s) share a, b CM and
Ek)(c,L) = Ek)(c, f ) for some integer k ≥ 1, then f (s) ≡ L(s).

For the functionL(s) in the extended Selberg class, the degree ofL(s) is defined by dL = 2
∑K

j=1 λ j, where
K, λ j are the number in the axiom (3) as show in section 2. The following example shows that the condition
that an L-function with positive degree is necessary.

Remark 4.4. Let L(s) = 1 + 2
4s , f (s) = 1 + 4s

2 . Then it is easy to verify that 2s
L(s) = 21−s

L(1 − s), thus, L(s) ∈ S]

with degree zero. Moreover, f (s) and L(s) share 0, 1,∞ CM, but f (s) . L(s).

Obviously, Lemma 2.2 implies that for a nonzero complex number c, there are infinitely many trivial
c-points of L(s). Furthermore, these trivial c-points ofL(s) are all simple, which is different with the case of
c = 0. As stated previously, the trivial zeros of L(s) may have multiplicity greater than one. Note that we
can not do without the condition that infinitely many simple trivial zeros in the proof of Theorem 1.11 and
Theorem 1.12 if k = 1. Hence, for Theorem 4.2 and Theorem 4.3 we require that b , 0 and c , 0 respectively.
In fact, Theorem 4.2 and Theorem 4.3 respectively holds when b = 0 and c = 0, if L(s) in the extended
Selberg class has infinitely simple trivial zeros, such as Riemann zeta function, Dirichlet L-functions and so
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on. If an L-function in the extended Selberg class with trivial zeros that multiplicity greater than one, then
Theorem 4.2 and Theorem 4.3 respectively holds when b = 0 and c = 0 if k ≥ 2 (see [34]).

In addition, it is remarkable that one of the fundamentally important higher transcendental functions of
analytic number theory is the familiar general Hurwitz-Lerch zeta function Φ(z, s, a). It contains, as its spe-
cial cases, not only the Riemann zeta function ζ(s), the Hurwitz (or generalized) zeta function ζ(s, a) and the
Lerch zeta function `s(ξ), but also other important functions of analytic number theory as Polylogarithmic
function Lis(z) and the Lipschitz-Lerch zeta function φ(ξ, a, s), for details, one may refer to monographs,
for example, [8, 27] etc. Indeed, just as the Riemann zeta function ζ(s), the Hurwitz (or generalized) zeta
function ζ(s, a), the Hurwitz-Lerch zeta function Φ(z, s, a) also can be continued meromorphically to the
whole complex plane, except for a simple pole at s = 1 with its residue 1. For several novel properties
and some other applications of the Hurwitz-Lerch zeta function, the interested reader may refer to the
recent works such as [25, 26, 28] ect. for the principal results and further references by Srivastava and
others. Moreover, as far as we know, many researchers also study many different generalizations and
extensions of the familiar Hurwitz-Lerch zeta function Φ(z, s, a) by inserting certain additional parameters
to the series representation of the Hurwitz-Lerch zeta function. For instance, Choi and Parmar [7] intro-
duced and studied the extension of the generalized Hurwitz-Lerch zeta function Φa,b,b′,c(z, t, r, α) in two
variables, whereafter, H. M. Srivastava, Recep Şahin and ğuz Yağci investigate an extended family of the
generalized incomplete Hurwitz-Lerch zeta functions of two variables satisfy a decomposition formula
in terms of Φa,b,b′,c(z, t, r, α) and obtain integral representations including the Mellin-Barnes contour inte-
gral representation, derivative formulas, summation formulas, series relations and recurrence relations(see
[29]). Besides, Irem Kucukoğlu, Yilmaz Simsek and H. M. Srivastava (see [22]) construct Lerch-type zeta
functions ζw(s, x, k, λ) which interpolate numbers W(k)

n (λ) and polynomials W(k)
n (x, λ) at negative integers,

where if we set x = 0 and k = 1, then the functions reduces to ζw(s, 1, λ) which interpolate the Apostol-type
numbers such as the Apostol-Euler numbers, the Apostol-Genocchi numbers etc., meanwhile, the function
ζw(s, 1, λ) are closed related to the Hurwitz-Lerch zeta function Φ(z, s, a), the Polylogarithmic function Lis(z)
, the Riemann zeta function ζ(s) and so on. For details about some properties of these Lerch-type zeta
functions with other well-known families of zeta functions, some functional equations of the Lerch-type
zeta functions and properties involving the numbers W(k)

n (λ) and the polynomials W(k)
n (x, λ) one may refer

to [22, 30, 31]. In this paper, we mainly study the uniqueness of L-functions in the extended Selberg class,
which include the Riemann zeta function and essentially those Dirichlet series where one might expect a
Riemann hypothesis. Naturally, we are interesting to know what happen on the subject of the Hurwitz (or
generalized) zeta function, the Lerch zeta function, and even incluing the familiar (generalized) Hurwitz-
Lerch zeta function under sharing-value conditions. It would be a very interesting and meaningful work if
one can deal with them.

Acknowledgements. The authors wish to express thanks to the referee for reading the manuscript very
carefully and making a number of valuable suggestions and comments towards the improvement of the
paper.
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