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Available at: http://www.pmf.ni.ac.rs/filomat

Quantale-valued Convergence Tower Spaces:
Diagonal Axioms and Continuous Extension
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Abstract. We generalize a result on continuous extension of a mapping on a dense subspace from the
category of convergence spaces to the category of quantale-valued convergence tower spaces. To this end,
we introduce and study diagonal axioms which characterize topologicalness and regularity for quantale-
valued convergence tower spaces.

1. Introduction

A quantale-valued convergence tower space [18] is a set X with a family of convergence structures
indexed by a quantale. The quantale is considered in this way as a variable of the theory and - depending
on the value of this variable, i.e. on the choice of the quantale - we obtain generalizations of different kinds
of convergence spaces. E.g. the choice L = {0, 1} leads to classical convergence spaces [6, 10, 20, 23], for
the so-called Lawvere quantale we obtain limit tower spaces or convergence approach spaces [2], the unit
interval with a left-continuous t-norm as the quantale leads to probabilistic convergence spaces [25] and the
quantale of distance distribution functions leads to probabilistic convergence spaces as studied in [16]. It
was shown in [18] that also L-metric spaces can be characterized internally as quantale-valued convergence
tower spaces.

It is the aim of this paper to obtain an extension theorem for a continuous mapping from a dense subspace
to a continuous mapping defined on the whole space. Such a result was shown by Cook [4] in the category
CONV of convergence spaces. Suitable diagonal axioms characterizing topologicalness and regularity
of spaces are crucial in the proof. Generalizations of such diagonal axioms were studied in many of the
examples for quantale-valued convergence tower spaces. E.g. for convergence spaces such diagonal axioms
characterize topological spaces [19], for convergence approach spaces or limit tower spaces, approach spaces
[22] are characterized and in the probabilistic case, so-called probabilistic topological spaces are obtained.
Furthermore, regularity axioms can be defined using “dual” diagonal axioms.

Aiming to generalize Cook’s extension theorem to the category of quantale-valued convergence tower
spaces, in a first step, we have a careful look at such diagonal axioms and regularity axioms in the
general framework of quantale-valued convergence tower spaces. Most of the results are extensions of
known results and we recapture the special instances if we choose a suitable quantale. Furthermore,
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we formulate the diagonal axioms depending on a mapping γ : L × L −→ L. In this way, we can e.g.
simultaneously accommodate “level-wise spaces” (for γ(α, β) = α∧β) and probabilistic convergence spaces
(with γ(α, β) = α ∗ β for a t-norm ∗ on [0, 1].) The importance of this further variable of our theory, however,
becomes only clear if we consider also quantale-valued generalization of uniform convergence spaces or
Cauchy spaces. We have to postpone this, however, to future work.

In this paper, we shall discuss the following.

• Diagonal axioms, generalizing Kowalsky’s axiom, Fischer’s axiom and Gähler’s neighbourhood con-
dition and which give rise to what we shall call topological L-convergence tower spaces. In particular
we show that quantale-valued metric spaces satisfy these diagonal axioms.

• Regularity axioms and its characterizations via the convergence of closures of filters. Again, we show
that quantale-valued metric spaces are regular.

• A generalization of an extension theorem in CONV, for continuous mappings from a dense subset.
This result ties the diagonal and dual diagonal axioms nicely together.

2. Preliminaries

Let L be a complete lattice with distinct top and bottom elements > , ⊥. In any complete lattice L we
can define the well-below relation α C β if for all subsets D ⊆ L such that β ≤

∨
D there is δ ∈ D such that

α ≤ δ. Then α ≤ β whenever α C β and α C
∨

j∈J β j iff α C βi for some i ∈ J. A complete lattice is completely
distributive if and only if we have α =

∨
{β : β C α} for any α ∈ L, [24]. Similarly, we can define the

way-below relation α ≺ β if for all directed subsets D ⊆ L such that β ≤
∨

D there is δ ∈ D such that α ≤ δ.
This relation has similar properties as the well-below relation if arbitrary subsets are replaced by directed
subsets. However, we have that α, β ≺ γ implies α∨ β ≺ γ. For more details and results on lattices we refer
to [11].

The triple L = (L,≤, ∗), where (L,≤) is a complete lattice with order relation ≤, is called a commutative
and integral quantale if (L, ∗) is a commutative semigroup for which the top element of L acts as the unit, i.e.
α ∗ > = α for all α ∈ L, and ∗ is distributive over arbitrary joins, i.e. (

∨
i∈J αi) ∗ β =

∨
i∈J(αi ∗ β), see e.g. [13].

We consider in this paper only commutative and integral quantales L = (L,≤, ∗) with completely distribu-
tive lattices (L,≤). Typical examples of such quantales are e.g. the unit interval [0, 1] with a left-continuous
t-norm [26]. Another important example is given by Lawvere’s quantale, the interval [0,∞] with the opposite
order and addition α ∗β = α+β, extended by α+∞ = ∞+a = ∞, see e.g. [7]. A further important example is
the quantale of distance distribution functions. A distance distribution function ϕ : [0,∞] −→ [0, 1], satisfies
ϕ(x) = sup{ϕ(y) : y < x} for all x ∈ [0,∞]. The set of all distance distribution functions is denoted by
∆+ and with the pointwise order ∆+ becomes a completely distributive lattice [7]. A quantale operation
∗ : ∆+

× ∆+
−→ ∆+ is also called a sup-continuous triangle function [26].

For a set X, we denote its power set by P(X) and the set of all filters F,G, ... on X by F(X). The set F(X)
is ordered by set inclusion and maximal elements of F(X) in this order are called ultrafilters. In particular,
for each x ∈ X, the point filter [x] = {A ⊆ X : x ∈ A} is an ultrafilter. If F ∈ F(X) and f : X −→ Y is a
mapping, then we define f (F) ∈ F(Y) by f (F) = {G ⊆ Y : f (F) ⊆ G for some F ∈ F}. In particular, we have
f ([x]) = [ f (x)] for any x ∈ X. For a filter G ∈ F(Y) the set { f−1(G) : G ∈ G} is a filter basis whenever none
of the f−1(G) is empty. In this case we denote by f−1(G) the filter on X generated by this filter basis and
say that f−1(G) exists. We then have f−1( f (F)) ≤ F and G ≤ f ( f−1(G)) in case f−1(G) exists. For a family
of filters (Fi)i∈I we define their join,

∨
i∈I Fi, as the filter generated by the filter basis of finite intersections

Fi1 ∩ ... ∩ Fin with Fik ∈ Fik for k = 1, ...,n, whenever all these intersections are non-empty. For G ∈ F(J) and
F j ∈ F(X) for each j ∈ J, we denote κ(G, (F j) j∈J) =

∨
G∈G

∧
j∈G F j ∈ F(X) the diagonal filter [20].

For notions from category theory we refer to the textbooks [1] and [23]. A construct is a categoryCwith a
faithful functor U : C −→ SET, from C to the category of sets. We always consider a construct as a category
whose objects are structured sets (S, ξ) and morphisms are suitable mappings between the underlying sets.
A construct is called topological if it allows initial constructions, i.e. if for every source ( fi : S −→ (Si, ξi))i∈I
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there is a unique structure ξ on S, such that a mapping 1 : (T, η) −→ (S, ξ) is a morphism if and only if for
each i ∈ I the composition fi ◦ 1 : (T, η) −→ (Si, ξi) is a morphism.

3. L-Convergence Tower Spaces

Definition 3.1. ([18]) Let L = (L,≤, ∗) be a quantale. A pair (X, q) of a set X and a family of mappings
q = (qα : F(X) −→ P(X))α∈L is called an L-convergence tower space [18] if the following axioms are satisfied:

(LC1) x ∈ qα([x]), ∀x ∈ X and ∀α ∈ L;
(LC2) ∀F,G ∈ F(X), with F ≤ G, and α ∈ L implies qα(F) ⊆ qα(G);
(LC3) ∀α, β ∈ L with α ≤ β implies qβ(F) ⊆ qα(F), ∀F ∈ F(X);
(LC4) x ∈ q⊥(F), ∀x ∈ X, F ∈ F(X).

If
(
X, q

)
satisfies x ∈ q∨A(F) whenever x ∈ qα(F) ∀α ∈ A, it is called left-continuous. A mapping f :

(
X, q

)
−→(

X′, q′
)

between L-convergence tower spaces is called continuous if, for all x ∈ X, and for all F ∈ F(X),
f (x) ∈ q′α( f (F)) whenever x ∈ qα(F). The category of all L-convergence tower spaces and continuous
mappings is denoted by L-CTS.

If L = {0, 1}, then L-convergence tower spaces can be identified with classical convergence spaces, [6, 23].
If L = ([0,∞],≥ +) is Lawvere’s quantale, then, demanding an additional axiom, an L-convergence tower
space is a limit tower space [2] and a left-continuous L-convergence tower space is an approach limit spaces
in the sense of Lowen, [22]. For L = ([0, 1],≤, ∗), we obtain probabilistic convergence spaces in the sense
of Richardson and Kent, [25] and if L = (∆+

≤, ∗), then an L-convergence tower space is a probabilistic
convergence space in the definition of [16].

We call a space (X, q) ∈ |L-CTS| a T1-space if x ∈ q>([y]) implies x = y, and we call it a T2-space if
x, y ∈ q>(F) implies x = y. Obviously a T2-space is a T1-space.

The category L-CTS is topological and initial constructions are done as follows. For ( f j : X −→ (X j, q j)) j∈J
we define for F ∈ F(X), x ∈ qα(F) ⇐⇒ f j(x) ∈ qα( f j(F)) for all j ∈ J. In particular, in L-CTS, we have
subspaces, taking the source ιA : A −→ X, x 7−→ x for x ∈ A ⊆ X, and product spaces, taking the source of
projection mappings p j :

∏
i∈J Xi −→ X j.

If all (X j, q j) ∈ |L-CTS| are T1-spaces, respectively T2-spaces for all j ∈ J and if the family ( f j : X −→
(X j, q j)) j∈J is point-separating, i.e. if for x , y there is j ∈ J such that f j(x) , f j(y), then the initial construction
(X, q) is also a T1-space, respectively a T2-space. This applies in particular for subspaces and product spaces.

Example 3.2 (L-metric spaces). For a quantale L = (L,≤, ∗), an L-metric space is a pair (X, d) of a set X and an
L-metric d : X × X −→ L such that

(LM1) d(x, x) = > for all x ∈ X (reflexivity);

(LM2) d(x, y) ∗ d(y, z) ≤ d(x, z) for all x, y, z ∈ X (transitivity).
A mapping between two L-metric spaces, f : (X, d) −→ (X′, d′) is called an L-metric morphism if d(x1, x2) ≤
d′( f (x1), f (x2)) for all x1, x2 ∈ X. We denote the category of L-metric spaces with L-metric morphisms by
L-MET. If the L-metric satisfies d(x, y) = d(y, x) for all x, y ∈ X, it is called symmetric. If d(x, y) = > implies
x = y, it is called separated.

Other names for L-metric spaces are continuity spaces [7], L-categories [13, 21], or L-preordered sets [27]. In
case L = {0, 1}, an L-metric space is a preordered set. If L = ([0,∞],≥,+), an L-metric space is a quasimetric
space. If L = (∆+,≤, ∗), an L-metric space is a probabilistic quasimetric space, see [7].

Let (X, d) ∈ |L-MET|. We define x ∈ qd
α(F) ⇐⇒

∨
F∈F

∧
xy∈F d(x, y) ≥ α. Then (X, qd) ∈ |L-CTS| and an

L-metric morphism f : (X, dX) −→ (Y, dY) becomes continuous as a morphism f : (X, qdX ) −→ (Y, qdY ), [18]. It
can be shown that if (X, d) is symmetric and separated, then (X, qd) is a T2-space.

Given (X, q) ∈ |L-CTS|, we define dq(x, y) =
∨

x∈qα([y])

α. Then (X, dq) ∈ |L-MET| and a continuous mapping

f : (X, qX) −→ (Y, qY) becomes an L-metric morphism f : (X, dqX ) −→ (Y, dqY ). It was further shown in
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[18] that for (X, d) ∈ |L-MET| we have dqd
= d and for (X, q) ∈ |L-CTS| we have q(dq)

α (F) ⊆ qα(F) for all
α ∈ L,F ∈ F(X). Hence, the functor F : L-MET −→ L-CTS, F((X, d)) = (X, qd), F( f ) = f , embeds L-MET into
L-CTS as a coreflective subcategory. It is straightforward to show that if (X, q) is a T2-space, then (X, dq) is
separated.

4. Diagonal Axioms for L-Convergence Tower Spaces: Topologicalness

We first characterize a “pretopological axiom”.

Proposition 4.1. Let (X, q) ∈ |L-CTS|. The following are equivalent:
(LCP)

⋂
j∈J qα(F j) = qα(

∧
j∈J F j);

(LCP’) x ∈ qα(Ux
α), with the α-neighbourhood filter at x,Ux

α =
∧

x∈qα(F) F.

Proof. If (LCP) is true, then x ∈
⋂

x∈qα(F) qα(F) = qα(
∧

x∈qα(F) F) = qα(Ux
α) and we have (LCP’). Conversely,

let x ∈
⋂

j∈J qα(F j). Then for all j ∈ J we have Ux
α ≤ F j and consequently also Ux

α ≤
∧

j∈J F j. This implies
x ∈ qα(Ux

α) ⊆ qα(
∧

j∈J F j) and (LCP) is satisfied.

Proposition 4.2. ([18]) Let (X, d) ∈ |L-MET|. Then (X, qd) satisfies (LCP).

Let (X, q) ∈ |L-CTS| and γ : L × L −→ L. We say that (X, q) satisfies the axiom (LF-γ) if

∀J, ψ : J −→ X,F j ∈ F(X) ( j ∈ J),G ∈ F(J) : x ∈ qα(ψ(G)), ψ( j) ∈ qβ(F j)∀ j ∈ J =⇒ x ∈ qγ(α,β)(κ(G, (F j) j∈J)).

We call (X, q) ∈ |L-CTS| γ-topological if the axiom (LF-γ) is satisfied. For γ(α, β) = α ∗βwe simply speak of
a topological L-convergence tower space. If γ(α, β) = α∧ β, then (LF-γ) is equivalent to all “level spaces” (X, qα)
satisfying the so-called Fischer diagonal axiom, [5]. If γ′ ≤ γ pointwisely, then γ-topologicalness implies
γ′-topologicalness.

Proposition 4.3. Let (Xλ, qλ) ∈ |L-CTS| satisfy the axiom (LF-γ) for all λ ∈ Λ and let ( fλ : X −→ Xλ)λ∈Λ be a
source and let (X, q) be the initial construction. Then (X, q) satisfies (LF-γ).

Proof. Let J be a set, ψ : J −→ X, G ∈ F(J) and for all j ∈ J let F j ∈ F(X). If x ∈ qα(ψ(G)) and for all j ∈ J,
ψ( j) ∈ qβ(F j), then for all λ ∈ Λ we have fλ(x) ∈ qλα( fλ(ψ(G))) and fλ(ψ( j)) ∈ qλβ ( fλ(F j)) for all j ∈ J. We
denote ψλ = fλ ◦ ψ : J −→ Xλ for all λ ∈ Λ. Then fλ(x) ∈ qλ

γ(α,β)(κ(G, (ψλ(F j)) j∈J)) for all λ ∈ Λ. It is not

difficult to show that κ(G, (ψλ(F j)) j∈J) = fλ(κ(G; (F j) j∈J)). Hence fλ(x) ∈ qλ
γ(α,β)( fλ(κ(G; (F j) j∈J))) for all λ ∈ Λ,

i.e. x ∈ qγ(α,β)(κ(G; (F j) j∈J)).

A special case of the axiom (LF-γ) arises if we restrict to J = X and ψ = idX in (LF-γ). We say that (X, q)
satisfies the axiom (LK-γ) if

∀G,Fy ∈ F(X), y ∈ X : x ∈ qα(G), y ∈ qβ(Fy)∀y ∈ X =⇒ x ∈ qγ(α,β)(κ(G, (Fy)y∈X)).

Proposition 4.4. Let (Xλ, qλ) ∈ |L-CTS| satisfy the axiom (LK-γ) and let fλ : X −→ Xλ be injective for all λ ∈ Λ.
Then the initial construction (X, q) satisfies (LK-γ).

Proof. This proof is essentially from [25]. Let G,Fy ∈ F(X) for all y ∈ X and let x ∈ qα(G) and y ∈
qβ(Fy) for all y ∈ Y. For λ ∈ Λ and xλ ∈ Xλ we define Hxλ = fλ(Fy) if fλ(y) = xλ and Hxλ = [xλ]
if xλ < fλ(X). We note that y is uniqueliy determined by the requirement fλ(y) = xλ as the mappings
fλ are injections. We then have fλ(x) ∈ qλα( fλ(G)) and xλ ∈ qλβ (Hxλ ) for all λ ∈ Λ and hence, by (LK-γ)

for (Xλ, qλ) we conclude fλ(x) ∈ qλ
γ(α,β)(κ( fλ(G), (Hxλ )xλ∈Xλ )) for all λ ∈ Λ. It is not difficult to show that

κ( fλ(G), (Hxλ )xλ∈Xλ ) ≤ fλ(κ(G, (Fy)y∈X)) and hence we have fλ(x) ∈ qλ
γ(α,β)( fλ(κ(G, (Fy)y∈X)) for all λ ∈ Λ from

which x ∈ qγ(α,β)(κ(G, (Fy)y∈X)) follows.
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In particular, the axiom (LK-γ) is preserved by the formation of subspaces.

Proposition 4.5. Let (X, q) ∈ |L-CTS| satisfy the axiom (LCP). Then (LK-γ) is equivalent toUx
γ(α,β) ≤ κ(Ux

α, (U
y
β)y∈X).

Proof. Let (LK-γ) be satisfied. By (LCP) we have x ∈ qα(Ux
α) and y ∈ qβ(U

y
β) for all y ∈ X. Then x ∈

qγ(α,β)(κ(Ux
α, (U

y
β)y∈X)) which showsUx

γ(α,β) ≤ κ(Ux
α, (U

y
β)y∈X).

For the converse, let x ∈ qα(G) and for all y ∈ X, let y ∈ qβ(Fy). ThenUx
α ≤ G andUy

β ≤ Fy for all y ∈ X.

Hence,Ux
γ(α,β) ≤ κ(Ux

α, (U
y
β)y∈X) ≤ κ(G, (Fy)y∈X) which yields with (LCP) that x ∈ qγ(α,β)(κ(G, (Fy)y∈X)).

Proposition 4.6. Let (X, q) ∈ |L-CTS| and let γ(>, α) = α for all α ∈ L. Then (LF-γ) is equivalent to (LK-γ) and
(LCP).

Proof. Clearly (LF-γ) implies (LK-γ). We need to show that it also implies (LCP). Let J be a set and consider
G = [J], F j ∈ F(X) for j ∈ J. We define ψ( j) = x for all j ∈ J. Then ψ(G) = [x] and κ(G, (F j) j∈J) =

∧
j∈J F j. If

x ∈ qα(F j) for all j ∈ J, then ψ( j) ∈ qα(F j) for all j ∈ J. Also x ∈ q>([x]) = q>(ψ(G)). The axiom (LF-γ) implies
x ∈ qγ(>,α)(κ(G, (F j) j∈J)) = qα(

∧
j∈J F j).

Conversely, let (LCP) and (LK-γ) be satisfied. Considerψ : J −→ X,G ∈ F(J) and F j ∈ F(X) for all j ∈ J. If
x ∈ qα(ψ(G)) andψ( j) ∈ qβ(F j) for all j ∈ J, thenUx

α ≤ ψ(G) andUψ( j)
β ≤ F j for all j ∈ J. Hence, by Proposition

4.2, Ux
γ(α,β) ≤ κ(Ux

α, (U
ψ( j)
β ) j∈J) ≤ κ(ψ(G), (F j) j∈J). This means, by (LC2) that x ∈ qγ(α,β)(κ(ψ(G), (F j) j∈J)) and

(LF-γ) is true.

Theorem 4.7. Let (X, d) ∈ |L-MET|. Then (X, qd) satisfies the axiom (LF-γ) for γ(α, β) = α ∗ β.

Proof. We need only show the topological axiom (LK-γ). Let
∨

G∈G
∧

y∈G d(x, y) ≥ β and for each y ∈ X, let∨
Fy∈Fy

∧
z∈Fy d(y, z) ≥ α. Consider εCβ and δCα. Then there is G ∈ G such that for all y ∈ G we have d(x, y) ≥ ε

and for each y ∈ X there is Fy
∈ Fy such that for all z ∈ Fy we have d(y, z) ≥ δ. The set HG =

⋃
y∈G Fy

∈∧
y∈G Fy ≤ κ(G, (Fy)y∈Y) and for z ∈ HG then z ∈ Fy for some y ∈ G. Hence d(x, z) ≥ d(x, y) ∗ d(y, z) ≥ ε ∗ δ. We

conclude
∧

z∈HG d(x, z) ≥ ε ∗ δ and from this we obtain
∨

K∈κ(G,(Fy)y∈Y)
∧

u∈K d(x,u) ≥
∧

z∈HG d(x, z) ≥ ε ∗ δ. This
is true for all ε C β and all δ C α and L being a quantale and (L,≤) being completely distributive, the claim
follows.

We can generalize Proposition 4.5 to a neighbourhood condition à la Gähler [10]. In the case of Lawvere’s
quantale and convergence approach spaces such a condition was established in [14]. We denote, forF ∈ F(X),
the α-neighbourhood filter of F byUα(F) = κ(F, (Uy

α)y∈X). ThenUα(F) ≤ F andUα([x]) = Ux
α.

Proposition 4.8. Let (X, q) ∈ |L-CTS|. Then the following are equivalent:
(i) (X, q) satisfies (LF-γ);
(ii) (X, q) satisfies (LG-γ): qβ(F) ⊆ qγ(α,β)(Uα(F)) for all α, β ∈ L.

Proof. Let first (LF-γ) be satisfied and let x ∈ qβ(F). We define J = {(x,G) : x ∈ qα(F)} and the mapping
ψ : J −→ X by ψ((x,G)) = x. Furthermore, for (x,G) ∈ J, we define F(x,G) = G. From (LC1) we see that
(x, [x]) ∈ J and hence the mapping ψ is a surjection. We define K = ψ−1(F) ∈ F(J). Then ψ(K) = F and
ψ((x,G)) = x ∈ qα(G) = qα(F(x,G)) for all (x,G) ∈ J. From the axiom (LF-γ) we obtain x ∈ qγ(α,β)(κ(K, (F j) j∈J)).
As κ(K, (F j) j∈J) =

∨
H∈ψ−1(F)

∧
(x,G)∈H F(x,G) ≤

∨
F∈F

∧
(x,G)∈ψ−1(F)G =

∨
F∈F

∧
x∈F

∧
G:(x,G)∈J G =

∨
F∈F

∧
x∈FU

x
α =

Uα(F) we see that x ∈ qγ(α,β)(Uα(F)) and (LG-γ) is true.
Let now (LG-γ) be satisfied and letψ : J −→ X be a mapping,G ∈ F(J) with x ∈ qβ(ψ(G)) andψ( j) ∈ qα(F j)

for all j ∈ J. Then F j ≥ U
ψ( j)
α for all j ∈ J and from (LG-γ) we infere x ∈ qγ(α,β)(Uα(ψ(G))). Now we note that

Uα(ψ(G)) =
∨

H∈ψ(G)
∧

z∈HU
z
α =

∨
G∈G

∧
z∈ψ(G)U

z
α =

∨
G∈G

∧
j∈GU

ψ( j)
α ≤

∨
G∈G

∧
j∈G F j = κ(G, (F j) j∈J). Hence,

by (LC2), we obtain x ∈ qγ(α,β)(κ(G, (F j) j∈J)) and (LF-γ) is true.
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We are finally going to characterize the topological axiom (LK-γ) by interior and closure operators. We
define for (X, q) ∈ |L-CTS|, α ∈ L, the α-interior of A ⊆ X, Aα ⊆ X, by

x ∈ Aα ⇐⇒ A ∈ Ux
α.

For the principal filter of ∅ , A ⊆ X, [A] = {F ⊆ X : A ⊆ F}, we have B ∈ Uβ([A]) if and only if A ⊆ Bβ.

The α-closure of A is defined as A
α

= (Ac
α)c, with the complement Ac = {x ∈ X : x < A}. The usual

characterization of the α-closure can be shown, i.e. for (X, q) ∈ |L-CTS|, A ⊆ X and α ∈ L we have x ∈ A
α

if
and only if there is a (ultra-)filter F ∈ F(X) such that x ∈ qα(F) and A ∈ F.

Proposition 4.9. Let (X, q) ∈ |L-CTS| satisfy the axiom (LCP). Then the following are equivalent:
(i) (X, q) satisfies (LK-γ);
(ii) For all A ⊆ X, Aγ(α,β) ⊆ Aβ

α
;

(iii) For all A ⊆ X, A
β
α

⊆ A
γ(α,β)

.

Proof. We show that (i) ⇐⇒ (ii). The equivalence of (ii) and (iii) follows in the usual way.
Let first the axiom (LK-γ) be satisfied and let x ∈ Aγ(α,β). Then A ∈ Ux

γ(α,β) ≤ Uβ(Ux
α) =

∨
U∈Ux

α

∧
y∈UU

y
β .

Hence there is U ∈ Ux
α such that for all y ∈ U we have A ∈ Uy

β , i.e. y ∈ Aβ. This means U ⊆ Aβ and therefore
Aβ ∈ U

x
α, i.e. x ∈ Aβ

α
.

Let now x ∈ Ux
γ(α,β). Then x ∈ Aγ(α,β) ⊆ Aβ

α
, i.e. Aβ ∈ U

x
α. Hence there is U ∈ Ux

α such that U ⊆ Aβ and

we have for all y ∈ U that A ∈ Uy
β . We conclude A ∈

∧
y∈UU

y
β ≤ κ(Ux

α, (U
y
β)y∈X) and (LK-γ) is true.

In a slightly different lattice context, an early example of a closure operator satisfying property (iii) of
Proposition 4.9 is given in [9].

Remark 4.10 (α-interior and α-closure in L-MET). For an L-metric space (X, d), we define for ε ∈ L, the
ε-ball at x ∈ X by Bd(x, ε) = {y ∈ X : d(x, y) � ε}. Because ⊥ ≺ α and by the interpolation property
⊥ ≺ ε ≺ α for some ε ∈ L, the set B = {Bd(x, ε) : ε ≺ α} is not empty. As ε1, ε2 ≺ α implies ε1 ∨ ε2 ≺ α and
Bd(x, ε1 ∨ ε2) ⊆ Bd(x, ε1) ∩ Bd(x, ε2), the set B is a filter basis. We denote the generated filter by Ud,x

α . It is

shown in [17] thatUd,x
α = U

qd,x
α with the α-neighbourhood filter in (X, qd). For A ⊆ X then we have x ∈ Aα if

and only if A ∈ Ud,x
α if and only if there is ε ≺ α such that Bd(x, ε) ⊆ A.

In an L-metric space (X, d), we define the α-d-closure of A ⊆ X by x ∈ A
d,α

iff d(x,A) =
∨

a∈A d(x, a) ≥ α.

We show that A
α
⊆ A

d,α
with the α-closure A

α
in (X, qd). Let x ∈ A

α
. Then there is F ∈ F(X) with A ∈ F

and
∨

F∈F
∧

y∈F d(x, y) ≥ α. For ε C α, there is Fε ∈ F such that for all y ∈ Fε we have d(x, y) ≥ ε. The set
A ∩ Fε ∈ F and we have

∨
a∈A d(x, a) ≥

∨
y∈Fε∩A d(x, y) ≥ ε. As ε C α was arbitrary, we obtain

∨
a∈A d(x, a) ≥ α

and x ∈ A
d,α

.
It was shown in [17] that for a value quantale L, i.e. for a quantale for which α, β C > implies α ∨ β C >,

we have A
d,>

= A
>

. If in (L,≤) the way-below and the well-below relations coincide, then we even have

A
d,α

= A
α

for all α ∈ L. To see this, let x ∈ A
d,α

, i.e.
∨

a∈A d(x, a) ≥ α. For ε C α then there is y ∈ A such that
d(x, y) B ε and hence, for all ε C α there is y ∈ Bd(x, ε) with y < Ac, i.e. x < Ac

α which means x ∈ A
α
.

We note that in general the way-below and the well-below relations are different, see e.g. [17]. In the

general case we have A
d,α

=
⋂
εCα A

ε
. To see this, let

∨
a∈A d(x, a) ≥ α B ε. Then there is aε ∈ A such that

d(x, aε)B ε and hence also d(x, aε) � ε, i.e. a ∈ Bd(x, ε). Let U ∈ Ux
ε. Then there is ε′ ≺ ε such that Bd(x, ε′) ⊆ U.

Also, d(x, a) � ε′, i.e. a ∈ Bd(x, ε′) and hence A ∩ U , ∅. This there is Fε ≥ Ux
ε with A ∈ Fε which implies

x ∈ A
ε
. Hence A

d,α
⊆

⋂
εCα A

ε
. The other inclusion is clear.
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5. Dual Diagonal Axioms for L-Convergence Tower Spaces: Regularity

Let γ : L × L −→ L be a mapping. We say that a space (X, q) ∈ |L-CTS| is γ-regular if it satisfies the
following “dual diagonal axiom” (LDF-γ)

∀J, ψ : J −→ X,F j ∈ F(X) ( j ∈ J),G ∈ F(J) : x ∈ qα(κ(G, (F j) j∈J)), ψ( j) ∈ qβ(F j)∀ j ∈ J =⇒ x ∈ qγ(α,β)(ψ(G)).

For γ(α, β) = α ∗ β, we call a γ-regular space regular. For γ(α, β) = α ∧ β, γ-regularity is equivalent to all
“level spaces” (X, qα) being regular convergence spaces [5]. If γ′ ≤ γ pointwisely, then γ-regularity implies
γ′-regularity.

Proposition 5.1. Let (Xλ, qλ) ∈ |L-CTS| be γ-regular for all λ ∈ Λ and let ( fλ : X −→ Xλ)λ∈Λ be a source and let
(X, q) be the initial construction. Then (X, q) is γ-regular.

Proof. Let J be a set and let ψ : J −→ X be a mapping, G ∈ F(J) and for all j ∈ J let F j ∈ F(X) such that
ψ( j) ∈ qβ(F j) and x ∈ qα(κ(G, (F j) j∈J)). We define ψλ = fλ ◦ψ and Fλj = fλ(F j). Then, noting fλ(κ(G, (F j) j∈J)) =

κ(G, (Fλj ) j∈J) we have for all j ∈ J that ψλ( j) ∈ qλβ (Fλj ) and fλ(x) ∈ qα(κ(G, (Fλj ) j∈J)). The axiom (LDF-γ) for

(Xλ, qλ) thus implies fλ(x) ∈ qλ
γ(α,β)(ψλ(G)) = qλ

γ(α,β)( fλ(ψ(G))) for all λ ∈ Λ and we get x ∈ qγ(α,β)(ψ(G)).

Proposition 5.2. Let (X, q) ∈ |L-CTS| be a T1-space and let γ : L × L −→ L satisfy γ(>,>) = >. If (X, q) is
γ-regular, then it is a T2-space.

Proof. Let x, y ∈ q>(F). We define J = {G ∈ F(X) : y ∈ q>(G)} and for G ∈ J we define FG = G. Furthermore,
we define the mappingψ : J −→ X byψ(G) = y. Then [F] = {K ⊆ J : F ∈ K} ∈ F(J) and we haveψ([F]) = [y]
and κ([F], (FG)G∈J) = F. Hence we have x ∈ q>(κ([F], (FG)G∈J)) and ψ(G) ∈ q>(FG) for all G ∈ J. The axiom
(LDF-γ) thus implies x ∈ qγ(>,>)(ψ([F])) = q>([y]) and (X, q) being a T1-space, this implies x = y.

Theorem 5.3. Let (X, d) ∈ |L-MET|. Then (X, qd) satisfies the axiom (LDF-γ) for γ(α, β) = α ∗ β.

Proof. Let ψ : J −→ X, ψ( j) ∈ qd
β(F j) for all j ∈ J and x ∈ qd

α(κ(G, (F j) j∈J)). Further, let α′ C α and β′ C β. Then
for all j ∈ J there is F j ∈ F j such that for all z ∈ F j we have d(ψ( j), z) ≥ β′ and there is H ∈ κ(G, (F j) j∈J)
such that for all y ∈ H we have d(x, y) ≥ α′. Hence there is G ∈ G such that for all j ∈ G we have
H ∈ F j and for all y ∈ H we have d(x, y) ≥ α′. For all j ∈ J the set H j = H ∩ F j ∈ F j and for all u ∈ H j
we have d(ψ( j),u) ≥ β′ and d(x,u) ≥ α′. From the symmetry of (X, d) and (LM2) we conclude for all
j ∈ 1, d(x, ψ( j)) ≥ d(x,u) ∗ d(u, ψ( j)) ≥ α′ ∗ β′ and hence

∧
j∈G d(x, ψ( j)) ≥ α′ ∗ β′ from which we conclude∨

H∈ψ(G)
∧

y∈H d(x, y) ≥ α′ ∗ β′. Using the complete distributivity we obtain x ∈ qd
α∗β(ψ(G)).

We can characterize γ-regularity by closures of filters. We define, for F ∈ F(X) and α ∈ L, the α-closure
F
α

as the filter on X generated by the filter basis {F
α

: F ∈ F}.

Proposition 5.4. Let (X, q) ∈ |L-CTS|. The following are equivalent:
(i) (X, q) satisfies (LDF-γ);

(ii) (X, q) satisfies (LR-γ): qα(F) ⊆ qγ(α,β)(F
β
) for all α, β ∈ L, F ∈ F(X).

Proof. Let (X, q) satisfy (LDF-γ) and let x ∈ qα(F). For β ∈ L we define J = {(y,G) : y ∈ qβ(G)}, the mapping
ψ : J −→ X by ψ((y,G)) = y and F(y,G) = G. We further denote by S the filter on J generated by the filter
basis {SF : F ∈ F} with SF = {(y,G) ∈ J : F ∈ G}. Then for F ∈ F we have ψ(SF) = {ψ((y,G)) : F ∈

G, (y,G) ∈ J} = {y ∈ X : y ∈ qβ(G),F ∈ G} = F
β

and hence ψ(S) = F
β
. Furthermore, we have for F ∈ F,∧

F∈GG =
∧

(y,G)∈SF
F(y,G) ≤ κ(S, (F(y,G))(y,G)∈J) and hence x ∈ qα(F) implies x ∈ qα(κ(S, (F(y,G))(y,G)∈J)). From

ψ((y,G)) = y ∈ qβ(G) = qβ(F(y,G)) for all (y,G) ∈ J we conclude with (LDF-γ) that x ∈ qγ(α,β)(ψ(S)) = qγ(α,β)(F
β
)

and the condition (ii) is true.
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Let now the condition (ii) be satisfied and let x ∈ qα(κ(G, (F j) j∈J)) and ψ( j) ∈ qβ(F j) for all j ∈ J. We

first show that κ(G, (F j) j∈J)
β
≤ ψ(G). Let H ∈ κ(G, (F j) j∈J). Then there is K ∈ κ(G, (F j) j∈J) such that K

β
⊆ H

and hence there is G ∈ G such that for all j ∈ G we have K ∈ F j. As ψ( j) ∈ qβ(F j) we conclude ψ( j) ∈ K
β

for all j ∈ G, i.e. ψ(G) ⊆ K
β
. Therefore, K

β
∈ ψ(G) and hence H ∈ ψ(G). The condition (ii) thus implies

x ∈ qγ(α,β)(κ(G, (F j) j∈J)
β
) ⊆ qγ(α,β)(ψ(G)) and (LDF-γ) is satisfied.

Proposition 5.5. Let (X, q) ∈ |L-CTS| satisfy the axiom (LCP). Then (LDF-γ) is equivalent toUx
γ(α,β) ≤ U

x
α
β
.

Proof. Let the axiom (LDF-γ) be satisfied. From (LCP) we know that x ∈ qα(Ux
α) and hence x ∈ qγ(α,β)(Ux

α
β
),

which implies Ux
γ(α,β) ≤ U

x
α
β
. For the converse implication, let x ∈ qα(F). Then F ≥ Ux

α and hence

F
β
≥ Ux

α
β
≥ Ux

γ(α,β). By (LCP) then x ∈ qγ(α,β)(F
β
).

Remark 5.6 (Regularity in L-MET). From Proposition 5.5 we immediately conclude that for (X, d) ∈ |L-MET|

the space (X, qd) is γ-regular if and only if for all ε � γ(α, β) there is δ � α such that Bd(x, δ)
β
⊆ Bd(x, ε). We

note here that the occuring β-closure is taken in (X, qd).

6. An Extension Theorem

Let (X, qX) and (Y, qY) be L-convergence tower spaces and let A ⊆ X. The subspace (A, qX|A) is defined
as initial construction for the embedding ιA : A −→ X, ι(a) = a for a ∈ A, i.e. we have x ∈ (qX

|A)α(F) iff
x ∈ qX

α (ιA(F)) for F ∈ F(A). For simplicity, we write [F] = ιA(F) for the filter on X with filterbasis F. We
consider the following extension problem: if f : ((A, qX|A) −→ (Y, qY) is continuous, find conditions such that
f can be extended to a continuous mapping 1 : (X, qX) −→ (Y, qY) such that 1 ◦ ιA = f . This problem was
treated for the case of convergence approach spaces, i.e. left-continuous spaces for Lawvere’s quantale, in
[15], where a classical result of Cook [4] for convergence spaces was generalized. A notable improvement
of the results in [15] was obtained in [3], where the extension problem was related to function spaces. We
adapt the theory developped in [15], as it applies our diagonal axioms.

We first introduce the following notation. For x ∈ X, A ⊆ X and α ∈ L we denote

Hα
A(x) = {F ∈ F(X) : FA ∈ F(A), x ∈ qX

α (F)}

FαA(x) =

{
{y ∈ Y : y ∈ qY

α ( f (FA))∀F ∈ Hα
A(x)} if Hα

A(x) , ∅
Y if Hα

A(x) = ∅

We note that Hβ
A(x) ⊆ Hα

A(x) whenever α ≤ β amd that x ∈ A
α

if and only if Hα
A(x) , ∅. If we call A ⊆ X dense

in (X, qX) if A
>

= X, then for a dense subset A ⊆ X all Hα
A(x) are non-empty.

Lemma 6.1. Let (X, qX), (Y, qY) ∈ |L-CTS|, A ⊆ X and let f : (A, qX|A) −→ (Y, qY) be continuous. Then A ⊆ {x ∈
A
>

:
⋂
α∈L FαA(x) , ∅}.

Proof. Let x ∈ A. From (LC1) we immediately conclude that A ⊆ A
>

. Hence Hα
A(x) , ∅ for all α ∈ L.

For α ∈ L and F ∈ Hα
A(x) we have [FA] ≥ F and hence x ∈ (qX

|A)α(FA). As f is continuous, we conclude
f (x) ∈ qY

α ( f (FA)), i.e. we have f (x) ∈ FαA(x). This shows
⋂
α∈L FαA(x) , ∅.

In the sequel we will need to demand the following property from a mapping γ : L × L −→ L:∨
βC>

γ(γ(α, β), β) ≥ α for all α, β ∈ L.
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A simple example for such a mapping is γ(α, β) = α ∧ β. A further example is γ(α, β) = α ∗ β for a value
quantale L = (L,≤, ∗). Then we have

∨
βC> β ∗ β = >: For δ C > there is βδ C > such that δ C βδ ∗ βδ, see [7].

Hence > =
∨
δC> δ ≤

∨
δC> βδ ∗ βδ ≤

∨
βC> β ∗ β and we conclude

∨
βC>(α ∗ β) ∗ β = α ∗

∨
βC> β ∗ β = α ∗ > = α.

For L = [0, 1] with the usual order, also the arithmetic mean γ(α, β) =
α+β

2 satisfies this property. In fact
we have

sup
β<1

α+β
2 + β

2
=
α
4

+
3
4
≥
α
4

+
3α
4

= α.

Our final example uses the implication operation α → β =
∨
{γ ∈ L : α ∗ γ ≤ β} which is available in a

quantale. Then δ ≤ α → β iff α ∗ δ ≤ β. From this it immediately follows that α ≤ (α → β) → β and hence
the mapping γ(α, β) = α→ β satisfies the desired property.

Theorem 6.2. Let γ : L × L −→ L satisfy
∨
βC> γ(γ(α, β), β) ≥ α for all α, β ∈ L..

Let (X, qX), (Y, qY) ∈ |L-CTS| and let (X, qX) satisfy (LK-γ) and (Y, qY) be left-continuous and satisfy (LDF-γ).
Let further A ⊆ X, f : (A, qX|A) −→ (Y, qY) be continuous and denote X0 = {x ∈ A

>

:
⋂
α∈L FαA(x) , ∅}. Then there

is a continuous mapping 1 : (X0, qX|X0 ) −→ (Y, qY) such that 1 ◦ ιA = f .

Proof. For x ∈ X0 \ A we choose a fixed yx ∈
⋂
α∈L FαA(x) and we define 1(x) = f (x) if x ∈ A and 1(x) = yx for

x ∈ X0 \ A. We show that 1 is continuous. First, we note that the subspace (X0, qX|X0 ) satisfies the axiom
(LK-γ). Let x0 ∈ (qX

|X0 )α(G) and let β C >. For each x ∈ X0 we choose a filter Fx ∈ Hβ
A(x). Then the trace

(Fx)A ∈ F(A) and as A ⊆ X0, the trace Hx = (Fx)X0 ∈ F(X0) and we have x ∈ qX
β (Fx) = (qX

|X0 )β(Hx) for all
x ∈ X0. The axiom (LK-γ) then implies x0 ∈ (qX

|X0 )γ(α,β)(κ(G, (Hx)x∈X)). As every filterHx has a trace on A, it is
not difficult to prove that also κ(G, (Hx)x∈X) has a trace on A and we conclude [(κ(G, (Hx)x∈X))A] ∈ Hγ(α,β)

A (x0).
Therefore 1(x0) ∈ qY

γ(α,β)( f ([(κ(G, (Hx)x∈X))A])) = qY
γ(α,β)( f (κ(G, (Hx)x∈X))).

We define now for x ∈ X0 the filter K = f ((Hx)A) ∈ F(Y). As [Hx] ∈ Hβ
A(x) we conclude 1(x0) ∈

qY
β ( f ([Hx]A)) = qY

β (Kx). Now we note that κ(G, (Kx)x∈X0 ) = f (κ(G, (Hx)x∈X0 )) and with J = X0, ψ = 1

and (Y, qY) being γ-regular we conclude 1(x0) ∈ qY
γ(γ(α,β),β)(1(G)). This is true for all β C > and noting that∨

βC> γ(α, γ(β, β)) ≥ α, the left-contiunuity then yields 1(x0) ∈ qY
α (1(G)) and 1 is continuous.

It is clear that if (Y, qY) is a T2-space, then F>A(x) contains at most one point and hence also
⋂
α∈L FαA(x)

contains at most one point. The extension 1 from Theorem 6.2 will then be unique. This yields the main
theorem of this section.

Theorem 6.3. Let γ : L × L −→ L satisfy
∨
βC> γ(γ(α, β), β) ≥ α for all α, β ∈ L.

Let (X, qX), (Y, qY) ∈ |L-CTS| and let (X, qX) satisfy (LK-γ) and (Y, qY) be a left-continuous T2-space and satisfy
(LDF-γ). Let further A ⊆ X be dense in (X, qX) and let f : (A, qX|A) −→ (Y, qY) be continuous. The following are
equivalent:

(i) There is a unique continuous mapping 1 : (X, qX) −→ (Y, qY) such that 1 ◦ ιA = f .
(ii) for each x ∈ X,

⋂
α∈L FαA(x) , ∅.

Proof. If we have a continuous extension 1 : (X, qX) −→ (Y, qY), then because A
>

= X we see that Hα
A(x) , ∅

for all x ∈ X. Let now F ∈ Hα
A(x). Then FA ∈ F(A) and x ∈ qX

α (F). Noting that 1([FA]) = 1 ◦ ιA(FA) = f (FA)
we conclude 1(x) ∈ qY

α (1(F)) ⊆ qY
α (1([FA])) = qY

α ( f (FA)) and we have 1(x) ∈ FαA(x).

The converse follows with X0 = A
>

= X from Theorem 6.2.
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[15] G. Jäger, Extensions of contractions and uniform contractions on dense subspaces, Quaest. Math. 37 (2014) 111–125.
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