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Abstract. In this paper, based on the inner-outer (IO) iteration framework [17], by introducing some
tunable parameters, an SOR-type IO (SIO) iteration method is proposed for solving the Sylvester matrix
equation and coupled Lyapunov matrix equations (CLMEs) in the discrete-time jump linear systems with
Markovian transitions. Fisrtly, the SIO iteration algorithm for solving the discrete Sylvester matrix equation
is developed, its convergence property is analyzed and the choices of the parameters are also discussed.
Next, the SIO iteration algorithm is used to solve the CLMEs. Moreover, by using the latest estimations,
a current-estimation-based SIO (CSIO) iteration algorithms are also constructed for solving the CLMEs,
respectively. The boundedness and monotonicity of the iteration sequence derived from the proposed
algorithm with zero initial conditions are established. Finally, several numerical examples are implemented
to illustrate the superiorities of the proposed iteration algorithms.

1. Introduction

The coupled algebraic Lyapunov matrix equations play an important role in the stability analysis for
discrete-time Markovian jump linear systems [2,4,6,10], and the mean square stability of a discrete-time
Markovian jump system can be equivalent to the existence of positive definite solutions of such matrix
equations. In [13], based on the coupled algebraic Lyapunov matrix equations, a necessary and sufficient
condition of the stochastic stability was given for Markovian jump systems.

In the last decades, some numerical methods have been proposed to solve the coupled algebraic Lya-
punov equations for discrete-time Markovian jump linear systems due to its broad applications. In [2], a
formula for computing the exact solutions was presented by using the matrix inversions and Kronecker
products, which cost is very high if the system dimension and the number of modes are large. In [8], a par-
allel algorithm was constructed for solving coupled discrete Markovian jump Lyapunov equations under
two strong assumptions, which are the zero initial condition and the stability of all subsystems, respectively.
In [12], it is showed that the iteration algorithm [8] was also convergent without the assumption of zero
initial conditions. A gradient-based iteration algorithm was presented to solve the coupled Lyapunov
matrix equations in [14]. A finite iteration algorithm [7] was also developed to solve the coupled Lyapunov
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equations for Markovian jump systems. In [9], a new implicit iteration method was established by using
the updated variables in the current step for estimation of other variables. However, one needs to solve
many normal discrete Lyapunov matrix equations in each iteration step in this algorithm, which is not a
simple task for large discrete-time Markovian jump linear systems. There are some iteration algorithms,
which are established to solve other matrix equations and tensor matrix equations, can also been used to
solve the coupled Lyapunov matrix equations, such as [1,5,15,23,24,26-32].

In [17], an inner-outer (IO) iteration algorithm was proposed for solving the Sylvester matrix equation
and coupled continuous Markovian jump Lyapunov matrix equations, respectively. In this paper, by using
the IO iteration and introducing some tunable parameters, an SIO iteration algorithm is presented to solve
the Sylvester matrix equation and CLMEs, respectively. To improve its performance, a current-estimation-
based SIO iteration algorithm is constructed in the sequel. Moreover, the choices of the parameters in
these algorithms are also discussed, and some heuristical strategies are given for choosing appropriate
parameters. Several numerical examples are used to illustrate the effectiveness of the proposed algorithms.

Throughout this paper, for a matrix A ∈ Rn×n, AT and ρ(A) denote its transpose and spectral radius,
respectively. For two integers m and n with m ≤ n, Π[m,n] denotes the set {m,m + 1, · · · ,n}. For a matrix
A = [a1 a2 · · · an] , vec(A) = [aT

1 aT
2 · · · aT

n ]T. The notation A ⊗ B represents the Kronecker products of the
matrices A and B. The matrix E ≥ 0 means that E is real symmetric and positive semidefinite. The matrix
tuple F = {F1,F2, · · · Fn} ≥ 0 implies all the matrices Fi ≥ 0, i ∈ Π[1,n]. In what follows, it should be stated
that the sum is zero if the upper limit of the sum notation is less than the lower limit.

2. Previous results

Consider the following discrete-time Markovian jump linear system:

x(k + 1) = Aθ(k)xk, x(0) = x0, θ(0) = θ0, (2.1)

where x(k) ∈ Rn is the state vector, and the system parameter Aθ(k) is changing in accordance with a discrete-
time Markovian random process θ(k), which takes values in a discrete finite set Ω = {1, 2, · · · ,N}. The
dynamics of the probability distribution of the Markov chain is described by the differential equation

π̇(t) = π(t)P, (2.2)

where π is an N-dimensional row vector of unconditional probabilities, P is the transition rate matrix
denoted by [pi j]n×n and satisfies the following relation:

pi j = Pr{θ(k + 1) = j|θ(k) = i} (2.3)

with the properties that pi j ≥ 0(i, j = 1, 2, · · · ,N) and
n∑

j=1
pi j = 1. The coupled Lyapunov matrix equations

associated with the system (2.1)-(2.3) are given by

Ki = AT
i

 N∑
j=1

pi jK j

 Ai + Qi, i ∈ Ω, (2.4)

where Qi ≥ 0 (i ∈ Ω) and the subscript i indicates that the system is in mode θ j = i which implies
Ai = A(θ j = i).

Now, some main explicit numerical algorithms proposed for solving Eqs.(2.4) are listed as follows.
Lemma 2.1 [8]. Assume that Eqs. (2.4) have unique positive semidefinite or positive definite solutions with
given Qi ≥ 0 (i ∈ Ω), and the matrices Ai (i ∈ Ω) are Schur stable, then the solutions of Eqs. (2.4) can be
generated by the following iteration algorithm:

Ki(m + 1) = AT
i

 N∑
j=1

pi jK j(m)

 Ai + Qi, Ki(0) = 0, i ∈ Ω, (2.5)
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which satisfies
lim

m→∞
Ki(m) = Ki, i ∈ Ω.

Lemma 2.2 [12]. Assume that Eqs. (2.4) has solutions Ki > 0 (i ∈ Ω) for any given Qi > 0 (i ∈ Ω), then the
solutions of Eqs. (2.4) can be obtained by the following iteration algorithm:

Ki(m + 1) = AT
i

 N∑
j=1

pi jK j(m)

 Ai + Qi, i ∈ Ω (2.6)

for any initial conditions Ki(0) (i ∈ Ω).
Lemma 2.3 [9]. If Eqs. (2.4) have unique positive semidefinite or positive definite solutions with Qi ≥ 0 (i ∈
Ω), and the matrices Ai (i ∈ Ω) are Schur stable, then the solutions of Eqs. (2.4) can be derived from the
following iteration algorithm:

Ki(m + 1) = AT
i

 i−1∑
j=1

pi jK j(m + 1) +

N∑
j=i

pi jK j(m)

 Ai + Qi, Ki(0) = 0, i ∈ Ω. (2.7)

Next, several implicit iteration algorithms are presented. In these algorithms, one should solve N normal
discrete Lyapunov matrix equations in each iteration step.
Lemma 2.4 [12]. Assume that Eqs. (2.4) have unique solutions and ρ(Φ) < 1, where Φ is the matrix defined as
in Theorem 1 [12], then the iteration sequences Ki(m) (i ∈ Ω) generated by the following iteration algorithm:

piiAT
i Ki(m + 1)Ai − Ki(m + 1) = −AT

i

 N∑
j=1, j,i

pi jK j(m)

 Ai −Qi, i ∈ Ω, (2.8)

converge to the solutions of Eqs. (2.4) for any initial conditions Ki(0) (i ∈ Ω).
Lemma 2.5 [9]. If Eqs. (2.4) have unique positive semidefinite or positive definite solutions with Qi ≥ 0 (i ∈
Ω), and the matrices Ai (i ∈ Ω) are Schur stable, then the solutions of Eqs. (2.4) can be obtained from the
following iteration algorithm:

piiAT
i Ki(m + 1)Ai − Ki(m + 1)

= −AT
i

i−1∑
j=1

pi jK j(m + 1) +
N∑

j=i+1
pi jK j(m)

 Ai −Qi, Ki(0) = 0, i ∈ Ω
(2.9)

converge to the unique solutions of Eqs. (2.4).

3. The SIO iteration algorithm for solving the discrete Sylvester matrix equation

In this section, we firstly review the IO iteration algorithm [17] for solving the discrete Sylvester matrix
equation. Next, we propose the SIO iteration algorithm by introducing a tunable parameter, analyze its
convergence properties, and discuss the choices of the parameters in this algorithm.

3.1. The IO iteration algorithm
Consider the following discrete Sylvester matrix equation [18]

X − AXB = C, (3.1)

where A ∈ Rm×m, B ∈ Rn×n, C ∈ Rm×n are known matrices, and X ∈ Rm×n is the unknown matrix to be
determined. If B = AT, Eq. (3.1) is the well-known discrete Lyapunov matrix equation.

The IO iteration algorithm for solving Eq. (3.1) is described as follows:

Xk+1 − βAXk+1B = (1 − β)AXkB + C, k = 0, 1, 2, · · · (3.2)
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with 0 < β < 1. (3.2) is the so-called outer iteration of the IO iteration algorithm.
Let Wk = (1 − β)AXkB + C and Y = Xk+1. Then (3.2) can be written equivalently in the following form:

Y − βAYB = Wk,

and Xk+1 can be obtained by the following inner iteration:

Y j+1 = βAY jB + Wk, j = 0, 1, 2, · · · , sk − 1 (3.3)

with Y0 = Xk as the initial guess and Ysk as the approximate solution to Xk+1 in (3.2).
Theorem 3.1 [17]. Let 0 < β < 1, and sk be the number of the inner iteration steps at the k−th outer iteration.
If ρ(A)ρ(B) < 1, then the iteration sequence {Xk}

∞

k=0 generated by Algorithm 1 converges to the exact solution
X∗ to Eq. (3.1). Furthermore, the IO iteration algorithm converges faster than the Smith method for any
initial vector.

3.2. The SIO iteration algorithm
By introducing a tunable parameter ω, then we have

X = ωX + (1 − ω)X (3.4)

From (3.1) and (3.2), it follows that
X − βAXB = (1 − β)AXB + C (3.5)

By using the Kronecker products [11], (3.4) and (3.5) can be equivalently rewritten asx = ωx + (1 − ω)x,

x = (I − βBT
⊗ A)−1((1 − β)BT

⊗ Ax + c)
(3.6)

with x = vec(X) and c = vec(C). Then, from (3.6) it is clear that

x = ω(I − βBT
⊗ A)−1((1 − β)BT

⊗ Ax + c) + (1 − ω)x,

which leads to
(I − βBT

⊗ A)x = ω((1 − β)BT
⊗ Ax + c) + (1 − ω)(I − βBT

⊗ A)x,

or equivalently,
X − βAXB = ω((1 − β)AXB + C) + (1 − ω)(X − βAXB)

= ω(1 − β)AXB − (1 − ω)βAXB + (1 − ω)X + ωC
= (ω − β)AXB + (1 − ω)X + ωC.

(3.7)

Based on (3.7), an outer iteration sequence can be given as follows:

Xk+1 − βAXk+1B = (ω − β)AXkB + (1 − ω)Xk + ωC. (3.8)

Let Ek = (ω − β)AXkB + (1 − ω)Xk + ωC, then an inner iteration can be defined by

Z j+1 = βAZ jB + Ek, j = 0, 1, 2, · · · , lk − 1, (3.9)

where Z0 = Xk is the initial condition, and Zlk is treated as the approximate solution to Xk+1 in (3.8). Ifω = 1,
then (3.8) and (3.9) reduce to the IO iteration algorithm.
Algorithm 1: The SIO iteration algorithm for solving Eq. (3.1)
Input: A,B,C, ω, β, ε
Output: X
1: X← C
2: Z← AXB
3: while ‖C + Z − X‖ ≥ ε
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4: E← (ω − β)Z + (1 − ω)X + ωC
5: for i=1:lk
6: X← βZ + E
7: Z← AXB
8: end
9: end while
Lemma 3.1 [11]. For all operator norms ρ(W) ≤ ‖W‖. For all W and for all ε > 0, there is an operator norm
‖W‖? ≤ ρ(W) + ε. The norm ‖ · ‖? depends on both W and ε.
Lemma 3.2 [11]. Let ‖AB‖ ≤ ‖A‖ · ‖B‖. Then ‖X‖ < 1 implies that I − X is invertible, (I − X)−1 =

∑
∞

i=0 Xi, and
‖(I − X)−1

‖ ≤
1

1−‖X‖ .
Now, we analyze the convergence property of the SIO iteration algorithm. First, the SIO iteration

algorithm can be rewritten as the following equivalent iteration framework:
Xk,0 = Xk,X0 = C, Xk+1 = Xk,lk ,

Xk, j+1 = βAXk, jB + (ω − β)AXkB + (1 − ω)Xk + ωC,
k = 0, 1, 2, · · · , j = 0, 1, 2, · · · , lk − 1.

(3.10)

Theorem 3.2. Let lk be the number of the inner iteration steps at the k−th outer iteration in (3.10). If
ρ(A)ρ(B) < 1, 0 < β < 1 and β < ω < 2

1+ρ(A)ρ(B) , then the iteration sequence {xk}
∞

k=0 generated by (3.10)
converges to the exact solution X∗ to Eq. (3.1).
Proof. By making use of the Kronecker products [11], from (3.10) it follows that

xk, j+1 = βGxk, j + (ω − β)Gxk + (1 − ω)xk + ωc (3.11)

with G = BT
⊗ A, xk, j+1 = vec(Xk, j+1) and xk = vec(Xk), respectively.

According to (3.10) and (3.11), then we have

xk+1 = xk,lk = βGxk,lk−1 + (ω − β)Gxk + (1 − ω)xk + ωc
= βG

(
βGxk,lk−2 + (ω − β)Gxk + (1 − ω)xk + ωc

)
+ (ω − β)Gxk + (1 − ω)xk + ωc

= (βG)2xk,lk−2 +
1∑

s=0
(βG)s((ω − β)G + (1 − ω)I)xk + ω

1∑
s=0

(βG)sc

= (βG)lk xk +
lk−1∑
s=0

(βG)s((ω − β)G + (1 − ω)I)xk + ω
lk−1∑
s=0

(βG)sc.

(3.12)

From (3.12), then
xk+1 = Fkxk + ωHkc, k = 0, 1, 2, · · · (3.13)

with 
Fk = (βG)lk +

lk−1∑
s=0

(βG)s((ω − β)G + (1 − ω)I),

Hk =

lk−1∑
s=0

(βG)s.

Since X∗ is the exact solution to Eq. (3.1), then from (3.10) and (3.11) it follows that

x∗ = Fkx∗ + ωHkc, k = 0, 1, 2, · · · . (3.14)

Subtracting (3.14) from (3.13), then we obtain

xk+1 − x∗ = Fk(xk − x∗) = · · · = FkFk−1 · · · F0(x0 − x∗), k = 0, 1, 2, · · · . (3.15)
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Let λi be an eigenvalue of the matrix G. Since

Fk = (βG)lk +
lk−1∑
s=0

(βG)s((ω − β)G + (1 − ω)I)

= (βG)lk +
lk−1∑
s=0

(βG)s(I − βG) − ω
lk−1∑
s=0

(βG)s(I − G)

= (βG)lk + I − (βG)lk − ω
lk−1∑
s=0

(βG)s(I − G)

= I − ω
lk−1∑
s=0

(βG)s(I − G),

then

θ(k)
i = 1 −

ω(1 − λi)(1 − (βλi)lk )
1 − βλi

(3.16)

is an eigenvalue of Fk.
From (3.16), then ∣∣∣θ(k)

i

∣∣∣ =
∣∣∣∣1 − ω(1−λi)(1−(βλi)lk )

1−βλi

∣∣∣∣
=

∣∣∣∣ 1−ω+(ω−β)λi+ω(1−λi)(βλi)lk

1−βλi

∣∣∣∣
≤
|1−ω|+(ω−β)ρ(G)+ω(1+ρ(G))(βρ(G))lk

|1−βλi |

≤
|1−ω|+(ω−β)ρ(G)

1−βρ(G) .

(3.17)

with an appropriate lk and ρ(G) = ρ(A)ρ(B) < 1.
For the case β < ω < 1, from (3.17) we have∣∣∣θ(k)

i

∣∣∣ ≤ |1−ω|+(ω−β)ρ(G)
1−βρ(G)

=
1−ω+(ω−β)ρ(G)

1−βρ(G)

<
1−β

1−βρ(G) < 1

(3.18)

with ρ(G) < 1.
For the case 1 < ω < 2

1+ρ(G) , from (3.17) we obtain∣∣∣θ(k)
i

∣∣∣ ≤ |1−ω|+(ω−β)ρ(G)
1−βρ(G)

=
ω−1+(ω−β)ρ(G)

1−βρ(G)

<
2

1+ρ(G)−1+
(

2
1+ρ(G)−β

)
ρ(G)

1−βρ(G)

=
1+ρ(G)−βρ(G)−βρ2(G)
1+ρ(G)−βρ(G)−βρ2(G) = 1.

(3.19)

Let δ := supk∈N
(
ρ(Fk)

)
< 1 (k = 0, 1, 2, · · · ) and %i be an eigenvalue of FkFk−1 · · · F0, so

%i =
k
Π
s=0

(
1 −

ω(1 − λi)(1 − (βλi)ls )
1 − βλi

)
.

Thus,
ρ(FkFk−1 · · · F0) ≤ ρ(Fk)ρ(Fk−1) · · ·ρ(F0) ≤ δk+1 < 1.

By Lemmas 3.1 and 3.2, there exists an operator norm ‖ · ‖χ such that

‖FkFk−1 · · · F0‖χ < δ̂
k+1

with δ < δ̂ < 1. Thus,
‖xk+1 − x∗‖χ ≤ ‖FkFk−1 · · · F0‖χ‖x0 − x∗‖χ < δ̂k+1

‖x0 − x∗‖χ. (3.20)
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Therefore, the iteration sequence {xk}
∞

k=0 converges to the exact solution x∗ as k → ∞ according to (3.20) ,
and the proof is completed. �
Remark 1. From the analysis of the computational complexity of the SIO iteration algorithm, it increase
the computational cost slightly compared with the IO iteration algorithm. In each iteration of (3.8), the SIO
iteration algorithm only needs an extra scalar-matrix multiplication and matrix-matrix addition to calculate
the matrix (1 − ω)Xk with o(mn) flops.

3.3. The analyses of the parameters in the SIO iteration algorithm
For the choices of the parameters β and lk, the similar conclusions can be drawn as the corresponding

parameters in the IO iteration algorithm [17], respectively.
Now, we mainly discuss the choice of the parameter ω. From (3.17), it follows that

ρ(Fk) = max
1≤i≤nm

∣∣∣θ(k)
i

∣∣∣ ≤ |1 − ω| + (ω − β)ρ(G)
1 − βρ(G)

, (3.21)

equivalently,

ρ(Fk) ≤


1 − ω + (ω − β)ρ(G)

1 − βρ(G)
(β < ω < 1),

ω − 1 + (ω − β)ρ(G)
1 − βρ(G)

(
1 < ω <

2
1 + ρ(G)

)
.

(3.22)

Let f (ω) =
|1−ω|+(ω−β)ρ(G)

1−βρ(G) , then from (3.21) and (3.22) we have

f ′(ω) =


ρ(G) − 1

(1 − βρ(G))2 < 0 (β < ω < 1),

1 + ρ(G)
(1 − βρ(G))2 > 0

(
1 < ω <

2
1 + ρ(G)

) (3.23)

with ρ(G) < 1, which turns out that f (ω) obtains its minimum value with ω = 1. Here, we mention that
the optimal parameter ω = 1 only minimizes the upper bound of the spectral radius ρ(Fk), which may
not minimize the spectral radius ρ(Fk) itself. However, the SIO iteration algorithm often achieve better
numerical results with the parameter ω > 1 and close to 1, which are verified by the numerical experiments
in Section 5.

4. The SIO iteration algorithm for solving Eqs. (2.4)

First, we reformulate Eqs.(2.4) as follows:

Ki − piiAT
i KiAi = AT

i

 N∑
j=1, j,i

pi jK j

 Ai + Qi, i ∈ Ω. (4.1)

Let

Q̃i = AT
i

 N∑
j=1, j,i

pi jK j

 Ai + Qi.

Then from (4.1) it follows that
Ki − piiAT

i KiAi = Q̃i, i ∈ Ω. (4.2)

Now, we apply the SIO iteration algorithm presented in Section 3 to solve each equation in (4.2). The
outer iteration sequence has the following form:

Ki(m + 1) − βipiiAT
i Ki(m + 1)Ai = (ωi − βi)piiAT

i Ki(m)Ai + (1 − ωi)Ki(m) + ωiQ̃i(m), i ∈ Ω, (4.3)
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where

Q̃i(m) = AT
i

 N∑
j=1, j,i

pi jK j(m)

 Ai + Qi.

Let Wi(m) = (ωi − βi)piiAT
i Ki(m)Ai + (1 − ωi)Ki(m) + ωiQ̃i(m), then from (4.3) we have

Ki(m + 1) − βipiiAT
i Ki(m + 1)Ai = Wi(m), i ∈ Ω. (4.4)

Let Yi = Ki(m + 1), then we need to solve the following matrix equations

Yi − βipiiAT
i YiAi = Wi(m), i ∈ Ω (4.5)

to get the approximations to Ki(m + 1)(i ∈ Ω).
The inner iteration sequences for solving (4.5) are defined by

Yi( j + 1) = βipiiAT
i Yi( j)Ai + Wi(m), j = 0, 1, · · · ,mk − 1, i ∈ Ω, (4.6)

where Yi(0) (i ∈ Ω) are given by Ki(m) (i ∈ Ω) as the initial conditions, and Yi(mk) (i ∈ Ω) are treated as the
approximations to Ki(m + 1) (i ∈ Ω) in (4.4).

Let the relative residual

ζ =

√√√√√√ N∑
i=1

∥∥∥∥∥∥∥∥Ki(m) − AT
i

 N∑
j=1

pi jK j(m)

 Ai −Qi

∥∥∥∥∥∥∥∥
2

F

, (4.7)

where m denotes the iteration number of the SIO iteration algorithm for solving Eqs. (2.4).
Algorithm 2: The SIO iteration algorithm for solving Eqs. (2.4)
Input: Ai, Q̃i, αi, βi, pi j, εi, ε, i, j ∈ Ω
Output: Ki
1:while ζ ≥ ε
2: for i=1:N
3: Ki ← Q̃i
4: Zi ← piiAT

i KiAi

5: while ‖Q̃i + Zi − Ki‖F ≥ εi
6: Wi ← (1 − ωi)Ki + (ωi − βi)Zi + ωiQ̃i
7: for s=1: mk
8: Ki ← βiZi + Wi
9: Zi ← piiAT

i KiAi
10: end
11: end
12: end
13: Update ζ, Q̃i
14:end

4.1. A current-estimation-based SIO iteration algorithm for solving Eqs. (2.4)
From Algorithm 2, it is clear that the estimates K j(m + 1) ( j ∈ Π[1, i − 1]) have been updated before

Ki(m + 1) is calculated. According to the information renovation idea [17,19,20,21,22], we can use the
estimates K1(m + 1), · · · ,Ki−1(m + 1) and Ki+1(m), · · · ,KN(m) to obtain Ki(m + 1), then develop the following
current-estimation-based SIO iteration algorithm for solving Eqs. (2.4):

Ki(m, 0) = Ki(m), Ki(m + 1) = Ki(m,mk), i ∈ Ω,

Ki(m, j + 1) = βipiiAT
i Ki(m, j)Ai + (ωi − βi)piiAT

i Ki(m)Ai + (1 − ωi)Ki(m)

+ ωiQ̂i(m + 1),m = 0, 1, 2, · · · , j = 0, 1, 2, · · · ,mk − 1,

(4.8)
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where

Q̂i(m + 1) = AT
i

 i−1∑
τ=1

piτKτ(m + 1) +

N∑
τ=i+1

piτKτ(m)

 Ai + Qi.

Lemma 4.1. Assume that Eqs. (2.4) have unique positive semidefinite or positive definite solutions for
Qi ≥ 0 (i ∈ Ω), and the matrices Ai (i ∈ Ω) are Schur stable. If 0 < βi ≤ ωi < 1 for i ∈ Ω, then the matrix
tuple K (m) = {K1(m),K2(m), · · · ,KN(m)} generated by Algorithm (4.8) with zero initial conditions is upper
bounded by the solutionK = {K1,K2, · · · ,KN} to Eqs. (2.4). Namely, for any integer m ≥ 0, we have

Ki(m) ≤ Ki, i ∈ Ω. (4.9)

Proof. Due to zero initial conditions, it is clear that Ki(0) ≤ Ki (i ∈ Ω). Now, we assume that

Ki(l) ≤ Ki, i ∈ Ω (4.10)

by the principle of the mathematical induction for m = l and l ≥ 0.
From (4.8), it follows that

Ki(l + 1) = (βipii)mk (Amk
i )TKi(l)A

mk
i + (ωi − βi)pii

mk−1∑
s=0

(βipii)s(As+1
i )TKi(l)As+1

i

+ωi

mk−1∑
s=0

(βipii)s(As+1
i )T

(
i−1∑
τ=1

piτKτ(l + 1) +
N∑

τ=i+1
piτKτ(l)

)
As+1

i

+(1 − ωi)
mk−1∑
s=0

(βipiiAT
i )sKi(l)As

i + ωi

mk−1∑
s=0

(βipiiAT
i )sQiAs

i , i ∈ Ω.

(4.11)

and

Ki = (βipii)mk (Amk
i )TKiA

mk
i + (ωi − βi)pii

mk−1∑
s=0

(βipii)s(As+1
i )TKiAs+1

i

+ωi

mk−1∑
s=0

(βipii)s(As+1
i )T

(
N∑

τ=1,τ,i
piτKτ

)
As+1

i + ωi

mk−1∑
s=0

(βipiiAT
i )sQiAs

i

+(1 − ωi)
mk−1∑
s=0

(βipiiAT
i )sKiAs

i , i ∈ Ω.

(4.12)

Subtracting (4.11) from (4.12), then

Ki − Ki(l + 1)

= (βipii)mk (Amk
i )T(Ki − Ki(l))A

mk
i + (1 − ωi)

mk−1∑
s=0

(βipiiAT
i )s(Ki − Ki(l))As

i

+ωi

mk−1∑
s=0

(βipii)s(As+1
i )T

(
i−1∑
τ=1

piτ(Kτ − Kτ(l + 1)) +
N∑

τ=i+1
piτ(Kτ − Kτ(l))

)
As+1

i

+(ωi − βi)pii

mk−1∑
s=0

(βipii)s(As+1
i )T(Ki − Ki(l))As+1

i , i ∈ Ω.

(4.13)

For i = 1, from (4.10) and (4.13), we have

K1 − K1(l + 1)

= (β1p11)mk (Amk
1 )T(K1 − K1(l))Amk

1 + (ω1 − β1)p11

mk−1∑
s=0

(β1p11)s(As+1
1 )T(K1 − K1(l))As+1

1

+ω1

mk−1∑
s=0

(β1p11)s(As+1
1 )T

(
N∑
τ=2

p1τ(Kτ − Kτ(l))
)

As+1
1 + (1 − ω1)

mk−1∑
s=0

(β1p11AT
1 )s(As

1)T(K1 − K1(l))As
1.

Hence, K1(l + 1) ≤ K1 with 0 < β1 ≤ ω1 < 1.
Now, it is assumed that

Kγ(l + 1) ≤ Kγ, γ ∈ Π[1, t − 1] (4.14)
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with t ≥ 2. From (4.10), (4.13) and (4.14), it is clear that

Kt − Kt(l + 1)

= (βtptt)mk (Amk
t )T(Kt − Kt(l))A

mk
t + (ωt − βt)ptt

mk−1∑
s=0

(βtptt)s(As+1
t )T(Kt − Kt(l))As+1

t

+ωt

mk−1∑
s=0

(βtptt)s(As+1
t )T

(
t−1∑
τ=1

ptτ(Kτ − Kτ(l + 1)) +
N∑

τ=t+1
ptτ(Kτ − Kτ(l))

)
As+1

t

+(1 − ωt)
mk−1∑
s=0

(βtpttAT
t )s(Kt − Kt(l))As

t , t ∈ Ω.

(4.15)

with 0 < βt ≤ ωt < 1. Therefore, Kt(l + 1) ≤ Kt. By the induction principle, we have

Ki(l + 1) ≤ Ki, i ∈ Ω. (4.16)

By (4.10), (4.14) and (4.16), we obtain Ki(m) ≤ Ki(i ∈ Ω) for any integer m ≥ 0, then (4.9) holds by the
mathematical induction, and the proof is completed. �
Lemma 4.2. Assume that Eqs. (2.4) have unique positive semidefinite or positive definite solutions for
Qi ≥ 0(i ∈ Ω), and the matrices Ai(i ∈ Ω) are Schur stable. If 0 < βi ≤ ωi < 1 for i ∈ Ω, then the matrix
tupleK (m) = {K1(m),K2(m), · · · ,KN(m)} derived from Algorithm (4.8) with zero initial conditions is strictly
monotonically increasing. Namely, for any integer m ≥ 0, we have

Ki(m) ≤ Ki(m + 1), i ∈ Ω. (4.17)

Proof. From (4.11), it is clear that

Ki(1) = (βipii)mk (Amk
i )TKi(0)Amk

i + (ωi − βi)pii

mk−1∑
s=0

(βipii)s(As+1
i )TKi(0)As+1

i

+ωi

mk−1∑
s=0

(βipii)s(As+1
i )T

(
i−1∑
τ=1

piτKτ(1) +
N∑

τ=i+1
piτKτ(0)

)
As+1

i

+(1 − ωi)
mk−1∑
s=0

(βipiiAT
i )sKi(0)As

i + ωi

mk−1∑
s=0

(βipiiAT
i )sQiAs

i , i ∈ Ω.

(4.18)

Since Ki(0) = 0 (i ∈ Ω), then from (4.18) we have

Ki(1) = ωi

mk−1∑
s=0

(βipii)s(As+1
i )T

 i−1∑
τ=1

piτKτ(1)

 As+1
i + ωi

mk−1∑
s=0

(βipiiAT
i )sQiAs

i . (4.19)

For i = 1, from (4.19), it follows that

K1(1) = ω1

mk−1∑
s=0

(β1p11AT
1 )sQ1As

1 ≥ 0 (4.20)

with Q1 ≥ 0. Thus, 0 = K1(0) ≤ K1(1).
For i = 2, from (4.19) and (4.20), we obtain

K2(1) = ω2p21

mk−1∑
s=0

(β2p22)s(As+1
2 )TK1(1)As+1

2 + ω2

mk−1∑
s=0

(β2p22AT
2 )sQ2As

2

≥ ω2p21

mk−1∑
s=0

(β2p22)s(As+1
2 )TK1(0)As+1

2 + ω2

mk−1∑
s=0

(β2p22AT
2 )sQ2As

2

= ω2

mk−1∑
s=0

(β2p22AT
2 )sQ2As

2 ≥ 0

(4.21)

with Q2 ≥ 0, then 0 = K2(0) ≤ K2(1).
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According to (4.19), (4.20) and (4.21), then it turns out that

Kθ(1) ≥ ωθ
mk−1∑
s=0

(βθpθθAT
θ)sQθAs

θ ≥ 0, θ ∈ Π[3,N]

with Qθ ≥ 0. Then Ki(0) ≤ Ki(1) (i ∈ Ω) hold.
Now, we assume that

Ki(l) ≤ Ki(l + 1), i ∈ Ω. (4.22)

From (4.11), then

Ki(l + 2) − Ki(l + 1)

= (βipii)mk (Amk
i )T(Ki(l + 1) − Ki(l))A

mk
i + (1 − ωi)

mk−1∑
s=0

(βipiiAT
i )s(Ki(l + 1) − Ki(l))As

i

+ωi

mk−1∑
s=0

(βipii)s(As+1
i )T

(
i−1∑
τ=1

piτ(Kτ(l + 2) − Kτ(l + 1)) +
N∑

τ=i+1
piτ(Kτ(l + 1) − Kτ(l))

)
As+1

i

+(ωi − βi)pii

mk−1∑
s=0

(βipii)s(As+1
i )T(Ki(l + 1) − Ki(l))As+1

i , i ∈ Ω. (4.23)

For i = 1, from (4.22) and (4.23), it follows that

K1(l + 2) − K1(l + 1)

= (β1p11)mk (Amk
1 )T(K1(l + 1) − K1(l))Amk

1 + (1 − ω1)
mk−1∑
s=0

(β1p11AT
1 )s(K1(l + 1) − K1(l))As

1

+ω1

mk−1∑
s=0

(β1p11)s(As+1
1 )T

(
N∑
τ=2

p1τ(Kτ(l + 1) − Kτ(l))
)

As+1
1

+(ω1 − β1)p11

mk−1∑
s=0

(β1p11)s(As+1
1 )T(K1(l + 1) − K1(l))As+1

1 , (4.24)

Therefore, K1(l + 1) ≤ K1(l + 2) with 0 < β1 ≤ ω1 < 1.
Now, it is assumed that

Kγ(l + 1) ≤ Kγ(l + 2), γ ∈ Π[1, t − 1] (4.25)

with t ≥ 2.
For i = t, from (4.24) and (4.25), then we have

Kt(l + 2) − Kt(l + 1)

= (βtptt)mk (Amk
t )T(Kt(l + 1) − Kt(l))A

mk
t + (1 − ωt)

mk−1∑
s=0

(βtpttAT
t )s(Kt(l + 1) − Kt(l))As

t

+ωt

mk−1∑
s=0

(βtptt)s(As+1
t )T

(
t−1∑
τ=1

ptτ(Kτ(l + 2) − Kτ(l + 1)) +
N∑

τ=t+1
ptτ(Kτ(l + 1) − Kτ(l))

)
As+1

t

+(ωt − βt)ptt

mk−1∑
s=0

(βtptt)s(As+1
t )T(Kt(l + 1) − Kt(l))As+1

t , t ∈ Ω.

with 0 < βt ≤ ωt < 1. By the principle of mathematical induction, then Ki(l + 1) ≤ Ki(l + 2)(i ∈ Ω). Thus, the
relation (4.18) hold for any integer m ≥ 0, and the proof is completed. �
Theorem 4.1. If Eqs. (2.4) have unique positive semidefinite or positive definite solutions for Qi ≥ 0 (i ∈ Ω),
and the matrices Ai (i ∈ Ω) are Schur stable, then the matrix tupleK (m) = {K1(m),K2(m), · · · ,KN(m)} obtained
from Algorithm (4.8) with zero initial conditions converges to the unique solution K = {K1,K2, · · · ,KN} to
Eqs. (2.4) for 0 < βi ≤ ωi < 1 (i ∈ Ω). Namely, lim

m→∞
Ki(m) = Ki, i ∈ Ω.

Proof. From Lemmas 4.1 and 4.2, the iteration sequence K (m) = {K1(m),K2(m), · · · ,KN(m)} generated by
Algorithm (4.8) is monotonically nondecreasing and upper bounded by the solutions to Eqs. (2.4), then

0 = Ki(0) ≤ Ki(1) ≤ Ki(2) ≤ · · · ≤ Ki(m) ≤ Ki(m + 1) ≤ · · · ≤ Ki, i ∈ Ω. (4.26)
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From [3], it is obvious that the matrix tupleK (m) = {K1(m),K2(m), · · · ,KN(m)} is convergent.
Let lim

m→∞
Ki(m) = Ki(∞) (i ∈ Ω) and substitute Ki(∞) into (4.11), then

Ki(∞) = (βipii)mk (Amk
i )TKi(∞)Amk

i + (ωi − βi)pii

mk−1∑
s=0

(βipii)s(As+1
i )TKi(∞)As+1

i

+ωi

mk−1∑
s=0

(βipii)s(As+1
i )T

(
i−1∑
τ=1

piτKτ(∞) +
N∑

τ=i+1
piτKτ(∞)

)
As+1

i

+(1 − ωi)
mk−1∑
s=0

(βipiiAT
i )sKi(∞)As

i + ωi

mk−1∑
s=0

(βipiiAT
i )sQiAs

i , i ∈ Ω.

(4.27)

From Algorithm (4.8), it is clear that (4.27) is equivalent to

Ki(∞) = AT
i

 N∑
j=1

pi jK j(∞)

 Ai + Qi, i ∈ Ω. (4.28)

Therefore, K (∞) = {K1(∞),K2(∞), · · · ,KN(∞)} is the solution to Eqs. (2.4). Since Eqs. (2.4) have unique
solutions by the assumptions, soK (∞) = {K1(∞),K2(∞), · · · ,KN(∞)} is the unique solutions to Eqs.(2.4) and
Ki(∞) = Ki (i ∈ Ω). Thus, the proof is completed. �
Remark 2. Theorem 4.1 shows that Algorithm (4.8) is convergent under zero initial conditions with
ωi < 1(i ∈ Ω). In fact, from the proof of Lemmas 1 and 2, it is clear that these results may holds for the case
1 < ωi < $, where $ is a positive real scalar close to 1, which is illustrated by Example 2 in Section 5.

From Theorem 4.1, it follows that Algorithm (4.8) is only efficient for zero initial conditions though it
has the monotonically nondecreasing property. Next, we give a convergence result of Algorithm (4.8) for
any initial conditions.
Theorem 4.2 Assume that Eqs. (2.4) have unique solutions K = {K1,K2, · · · ,KN}. The matrix tuple K (m) =
{K1(m),K2(m), · · · ,KN(m)} derived from Algorithm (4.8) converges to K = {K1,K2, · · · ,KN} with any initial
conditions if and only ifH is invertible and ρ(H−1

F ) < 1, whereH is a lower triangular matrix with

Hii = I,Hiτ = −ωipiτ

mk−1∑
s=0

(βipii)s(As+1
i ⊗ As+1

i )T, τ < i, i ∈ Ω

and F is an upper triangular matrix with

Fii = (βipii)mk (Amk
i ⊗ Amk

i )T + (ωi − βi)pii

mk−1∑
s=0

(βipii)s(As+1
i ⊗ As+1

i )T

+ (1 − ωi)
mk−1∑
s=0

(βipii)s(As
i ⊗ As

i )
T,

Fiτ = ωipiτ

mk−1∑
s=0

(βipii)s(As+1
i ⊗ As+1

i )T, τ > i, i ∈ Ω.

Proof. By (4.11) and the properties of Kronecker products [11], we have

vec(Ki(m + 1))

= (βipii)mk (Amk
i ⊗ Amk

i )Tvec(Ki(l)) + (ωi − βi)pii

mk−1∑
s=0

(βipii)s(As+1
i ⊗ As+1

i )Tvec(Ki(l))

+ωi

mk−1∑
s=0

(βipii)s(As+1
i ⊗ As+1

i )T

(
i−1∑
τ=1

piτvec(Kτ(l + 1)) +
N∑

τ=i+1
piτvec(Kτ(l))

)
+(1 − ωi)

mk−1∑
s=0

(βipii)s(As
i ⊗ As

i )
Tvec(Ki(l)) + ωi

mk−1∑
s=0

(βipii)s(As
i ⊗ As

i )
Tvec(Qi),

i ∈ Ω. (4.29)
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Let
φ(m) =

(
vec(K1(m))T vec(K2(m))T

· · ·vec(KN(m))T
)T
,

δ =
(
vec(Q1)T vec(Q2)T

· · ·vec(QN)T
)T
,

and Ψ be a diagonal matrix with Ψ(ii) = ωi

mk−1∑
s=0

(βipii)s(As
i ⊗ As

i )
T (i ∈ Ω).

Then from (4.29) we have
Hφ(m + 1) = Fφ(m) + Ψδ. (4.30)

SinceH is an invertible matrix, then from (4.30) it follows that

φ(m + 1) = H−1
Fφ(m) +H−1Ψδ. (4.31).

From (4.31), we obtain the following recursive relation

φ(m + 1) = (H−1
F )m+1φ(0) +

m∑
i=0

(H−1
F )i
H
−1Ψδ. (4.32)

Since ρ(H−1
F ) < 1, then

lim
m→∞

φ(m + 1) = lim
m→∞

(
(H−1

F )m+1φ(0) +
m∑

i=0
(H−1

F )i
H
−1Ψδ

)
= (I −H−1

F )−1
H
−1Ψδ = (H −F )−1Ψδ.

Let φ =
(
vec(K1)T vec(K2)T

· · ·vec(KN)T
)T

, then from (4.12) we have

Hφ = Fφ + Ψδ, (4.33)

and the exact solutions to Eqs. (2.4) are
φ = (H −F )−1Ψδ.

Then
lim

m→∞
φ(m + 1) = φ

and the proof is completed. �
Remark 3. If ωi = 1 (i ∈ Ω), then Algorithms 2 and (4.8) are just the IO and current-estimation-based IO
(CIO) iteration algorithms in [17], respectively.
Remark 4. When Algorithms 2 and (4.8) are used to solve the CLMEs (2.4), N discrete Lyapunov matrix
equations need to be solved in each iteration step, so for the choices of the parameters ωi, βi and mk in each
Lyapunov matrix equation, the similar conclusions can be obtained as those in Section 3.3.

5. Numerical results

In this section, we present two numerical examples to illustrate the convergence performances of the SIO
iteration algorithms for solving Eqs. (2.4) and (3.1), respectively. The numerical experiments are performed
in Matlab R2010 on an Intel dual core processor (2.30 GHz, 8 GB RAM). Three iteration parameters are
used to test the proposed algorithms, which are iteration step (denoted as IT), computing time in seconds
(denoted as CPU), and residual (denoted as RES), where RES is defined by√√√√√√ N∑

i=1

∥∥∥∥∥∥∥∥Ki(m) − AT
i

 N∑
j=1

pi jK j(m)

 Ai −Qi

∥∥∥∥∥∥∥∥
2

F

.
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Example 1 [16,17,27]. Consider the following discrete Lyapunov matrix equation X − AXAT = C with

A =



0 ν
−ν 0 ν

−ν 0 ·

· · ·

· · ν
−ν 0


and C = I. The eigenvalues of A are λ j = 2i|ν| cos π j

n+1 , j = 1, · · · ,n. It is obvious that ρ(A) approaches to 1
with large n if τ is close to 0.5. For this case, the Smith method performs very poorly.

In this example, we compare the SIO iteration algorithm with the IO iteration algorithm and Smith
method for n = 800 in Tables 1, where we choose β = 0.8, sk = lk = 2 in the IO and SIO iteration algorithms,
and ω = 1.25 in the SIO iteration algorithm, respectively. From these numerical experiments, it follows
that these iteration algorithms need more iteration numbers and CPU time with the values of ν increasing.
Moreover, the SIO iteration algorithm is more effective than the IO iteration algorithm and Smith method in
both the number of iteration steps and CPU time, especially for larger τ, such as the case ν = 0.499. Figure 1
depicts the curves of the iteration numbers of the SIO iteration algorithm (Algorithm 1) for different n, ν, ω
with β = 0.65, lk = 2, respectively. Figure 2 illustrates the iteration numbers of the SIO iteration algorithm
(Algorithm 1) for different n, β, ω with ν = 0.46, lk = 2, respectively. Figs. 1, 2 show that the SIO iteration
algorithm has better convergence performances with ω > 1, which is consistent with the analysis in Section
3.3. In addition, the SIO iteration algorithm is more efficient with larger ω for larger ν, and the optimal
parameter ω is not sensitive to the changes of n.

Table 1: Numerical results of the different iteration algorithms with n = 800

The Smith method The IO iteration algorithm The SIO iteration algorithm
ν IT CPU RES IT CPU RES IT CPU RES

0.45 35 12.279 1.07 × 10−9 18 5.1590 1.16 × 10−9 14 4.7579 3.72 × 10−9

0.47 54 15.972 1.12 × 10−9 28 7.1237 1.02 × 10−9 21 5.8637 1.23 × 10−9

0.495 222 60.315 1.23 × 10−9 110 29.182 1.19 × 10−9 87 24.065 1.22 × 10−9

0.499 688 177.35 1.24 × 10−9 322 88.526 1.24 × 10−9 257 72.669 1.24 × 10−9

Example 2 [8,9]. Consider the couple Lyapunov matrix equations in the form of Eqs. (2.4) with system
matrices

A1 =


0.0667 0.0665 0.0844 −0.2257
0.1383 −0.1309 0.0797 0.1162
0.0658 0.0298 0.0645 −0.1018
−0.2283 0.2438 −0.1990 0.2997

,

A2 =


0.1885 −0.3930 −0.0894 −0.1919
−0.4230 0.3598 −0.1224 −0.1548
0.0350 −0.1950 −0.1967 −0.1017
−0.2648 −0.0240 −0.0542 0.0484

,

A3 =


0.2746 0.0634 0.3414 −0.0692
0.0769 0.4167 0.0283 −0.1207
−0.1607 0.0344 −0.2227 0.1617
0.1175 −0.2969 0.4149 0.3314


and transition rate matrix

P =

 0.1 0.3 0.6
0.5 0.25 0.25
0 0.3 0.7

.
In this example, the positive definite matrices Qi = I4 (i = 1, 2, 3) are chosen as identity matrices. The

number of the subsystems is N = 3, and the dimension of the system is n = 4.
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Figure 1: Convergence curves of Algorithm 1 for different n, ν and ω.
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Figure 2: Convergence curves of Algorithm 1 for different n, β and ω.
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First, we compare Algorithm 2 with the IO iteration algorithm [17], and Algorithm (4.8) with the
CIO iteration algorithm [17], respectively. Let mk = 2, β1 = β2 = β3 = 0.6 in these algorithms , and
ω1 = ω2 = ω3 = 1.05 in Algorithms 2 and (4.8), respectively. These algorithms all start with the zero initial
conditions. The numerical results are reported in Figs. 3 and 4, which show that Algorithms 2 and (4.8)
converges faster than the IO and CIO iteration algorithms, respectively.
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Figure 3: Convergence curves of the IO iteration algorithm and Algorithm 2.
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Figure 4: Convergence curves of the CIO iteration algorithm and Algorithms (4.8).

Next, we will investigate the convergence performances of the proposed algorithms for different pa-
rameters. Figs. 5 depict the convergence curves of Algorithms 2, (4.8) with different ωi, βi (i ∈ Ω), where
ω1 = ω2 = ω3 ∈ [0.6, 1.4], mk = 2 and β1 = β2 = β3 = 0.4, 0.6, 0.7, 0.9. From the numerical results in Fig. 5,
it is obvious that Algorithms 2 and (4.8) converges to the exact solutions of Eqs. (2.4) for a given stopping
criterion with different parameters ωi, βi (i ∈ Ω), respectively. Furthermore, Algorithms 2 and (4.8) perform
better with ωi ∈ (1, 1.1) (i ∈ Ω), and the optimal parameters ωi can be found close to 1, just as the analyses
in Section 3.3 and Remark 4.
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Figure 5: Convergence curves of Algorithms 2 and (4.8) with different parameters.

Finally, we compare the convergence performance of Algorithms (4.8) with the existing iteration algo-
rithms (2.6)-(2.9) under the following initial conditions:

K1(0) =


1 2 0.5 0.3
0 0 1.2 2.5
3 0.2 0.8 −0.6
2 −3 0 0.8

,

K2(0) =


−1 0.5 0.7 0.3
1 0 0.9 −0.6
2 3.2 −0.8 −1
0 2.1 −1 0.75

,

K3(0) =


0.8 −0.5 1.6 −3.1

0.15 2.3 −0.7 0.8
−2.2 0.2 2.8 1.5
0.3 −2.1 1.5 −0.5

.
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Figure 6: Convergence curves of different algorithms.

The numerical results are reported in Figure 6, where we chooseω1 = ω2 = ω3 = 1.05, β1 = β2 = β2 = 0.85
and mk = 2 in Algorithm (4.8). Here, we notice that Algorithm (4.8) needs less iteration number than
Algorithms (2.6)-(2.8). Although Algorithm (2.9) performs better than Algorithm (4.8) with respect to the
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iteration number, it is an implicit iteration algorithm, which needs to solve N standard discrete Lyapunov
matrix equations in each iteration step by the usage of the function ”dlyap” , and has an enormous cost for
large Eqs. (2.4). Since Algorithms 2, (4.8) are explicit iteration algorithms, so they are more efficient than
the implicit iteration algorithm (2.9) for solving large Eqs. (2.4).

6. Conclusions

In this paper, an SIO iteration algorithm is presented for solving the Sylvester matrix equation and
CLMEs (2.4), respectively. Numerical experiments show the stability and robustness of the proposed
algorithms. Since these algorithms are parameter-dependent, then how to find the optimal parameters will
be further investigated in our future work.
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