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Abstract. In this paper, we study selective versions of separability in (a)topological spaces with the help
of some strong and weak forms of open sets. For this we use the notions of semi-closure, pre-closure, α-
closure, β-closure and δ-closure and their respective density in (a)topological spaces. The interrelationships
between different types of selective versions of separability in (a)topological spaces have been given by
suitable counterexamples. Sufficient conditions are given for (a)topological spaces to be (a)Rt-separable
and (a)Mt-separable for each t ∈ {s, p, α, β, δ}. It is shown that under some condition (a)Mt-separability and
(a)Rt-separability are equivalent.

1. Introduction

At first we recall the two classical selection principles in topological spaces which have been systemat-
ically investigated in the last two decades, though their roots go back to 1920s and 1930s. LetA and B be
sets consisting of families of subsets of an infinite set X. Then:
S f in(A,B) denotes the selection principle:

For each sequence < An : n ∈N > of elements ofA, there is a sequence < Bn : n ∈N > of finite sets such
that for each n, Bn ⊆ An and ∪n∈NBn ∈ B (see [24, 26]).
S1(A,B) denotes the selection principle :

For each sequence < An : n ∈N > of elements ofA, there is a sequence < an : n ∈N > such that for each
n, an ∈ An and {an : n ∈N} ∈ B (see [24, 26]).

In recent years, selection principles in topological spaces have been studied much in the literature.
Several papers on selective version of separability have been published in the last few years. Further,
several weak variant of selection principles in topological spaces have appeared in the literature and
studied in detail by a number of authors. Also, there are some recent papers which deals with selection
principles in bitopological spaces [25, 26, 28, 31, 33, 35, 36]. In selection principles theory, authors study
mainly in two directions : (1). the closure operator is used in the definition of selection principles [2, 3, 7, 14–
16, 21–23, 34, 40] and (2). sequences of open covers are replaced by sequences of covers by some weak
form of open sets [27, 30, 38, 39]. In this paper, we study selective separability in first direction by using
semi-closure, pre-closure, α-closure, β-closure and δ-closure in (a)topological spaces which is more general
than bitopological spaces [20], (ω)topological spaces [9–11] and (ℵ0)topological spaces [8]. Let D denote the
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family of all dense subsets of a topological space X. Selection principles in the context of separability, that
is, S f in(D,D) and S1(D,D) in topological spaces have been introduced and studied in [42]. These principles
appeared in a natural way in a study of hyperspace topologies in [12, 17]. The selection properties
S f in(D,D1p) and S1(D,D1p) were introduced in [17], where D1p is the family of all groupable dense subsets
of a topological space X. Later on, these four selection properties have been studied by a several authors
[1, 4–6, 19, 37] in a systematic way. The selection properties S f in(D,D), S1(D,D), S f in(D,D1p) and S1(D,D1p)
are called M-separability, R-separability, GN-separability and H-separability (in a little bit modified form),
respectively (see [5]). Study of selection principles in bitopological spaces began with [28] and continued
in [29]. In the papers [28, 29, 32], variations of selective separability and tightness in bitopological function
space (C(X), τk, τp) were investigated and in [31], Lyakhovets et al. continue to study the selective properties
and the corresponding topological games in (C(X), τk, τp). In [33], S. Özçağ studied selective versions of
separability in bitopological spaces by using the notions of θ-closure and θ-density. In this paper, we
introduce and study the notion of selective version of separability in (a)topological spaces using the notion
of semi-closure, pre-closure, α-closure, β-closure and δ-closure and their respective density.

This paper is organized as follows: In Section 2, we introduce and study various weak forms of
open set in (a)topological spaces. We give counterexamples that show the interrelations between them.
In Section 3, we study δ-open sets in (a)topological spaces. In Section 4, we discuss various selection
properties by using notion of semi-closure, pre-closure, α-closure, β-closure and δ-closure and their re-
spective density in (a)topological spaces and provide interrelationships between them. In Section 5 and
6, we study Rt-separability, Mt-separability, Ht-separability and GNt-separability in (a)topological spaces
for each t ∈ {s, p, α, β, δ}. Sufficient conditions are given for (a)topological spaces to be (a)Rt-separable and
(a)Mt-separable for each t ∈ {s, p, α, β, δ}. It is shown that under some condition (a)Mt-separability and
(a)Rt-separability are equivalent.

Throughout the paper, (X, {τn}) denote an (a)topological space on which no separation axioms are
assumed unless explicitly stated. If there is no scope of confusion, we denote (a)topological space (X, {τn})
by X. For a subset A of an (a)topological space X, (τn)interior (resp. (τn)closure) of A denoted by τn-int(A)
(resp. τn-cl(A)). N denotes the set of natural numbers and k, l,m,n,m0,n0 ∈ N. For general notion of
topology, we follow [18]. For other basic notions regarding selection principles, one can see [24, 26, 41, 43].

2. Weak Forms of Open Sets in (a)Topological Spaces

Definition 2.1. ([13]) If < τn : n ∈N > is a sequence of topologies on a set X, then the pair (X, {τn}) is called
an (a)topological space (in short, (a)space).

Definition 2.2. A subset A of (X, {τn}) is said to be:

1. ([44]) (m,n)-semi-open ((m,n)-s-open) if A ⊆ τm-cl(τn-int(A)), or equivalently, if there exists a
τn-open set U such that U ⊆ A ⊆ τm-cl(U).

2. (m,n)-pre-open ((m,n)-p-open) if A ⊆ τn-int(τm-cl(A)), or equivalently, if there exists a τn-open set
U such that A ⊆ U ⊆ τm-cl(A).

3. (m,n)-α-open if A ⊆ τn-int(τm-cl(τn-int(A))), or equivalently, if there exists a τn-open set U such
that U ⊆ A ⊆ τn-int(τm-cl(U)).

4. (m,n)-β-open if A ⊆ τm-cl(τn-int(τm-cl(A))).

It is clear that every τn-open set of X is (m,n)-α-open and hence, (m,n)-pre-open, (m,n)-semi-open and
(m,n)-β-open for all m ∈N.

Evidently, we have

(m,n)-α-open ⇒ (m,n)-pre-open ⇒ (m,n)-β-open
⇑ ⇑

τn-open ⇒ (m,n)-α-open ⇒ (m,n)-semi-open
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Diagram 1

The collection of all (m,n)-semi-open (resp. (m,n)-pre-open, (m,n)-α-open and (m,n)-β-open) sets is
closed under arbitrary union. However, finite intersection of (m,n)-semi-open (resp. (m,n)-pre-open,
(m,n)-α-open and (m,n)-β-open) sets need not be (m,n)-semi-open (resp. (m,n)-pre-open, (m,n)-α-open
and (m,n)-β-open) (see Example 2.3). The complement of (m,n)-semi-open set, (m,n)-pre-open set, (m,n)-
α-open set and (m,n)-β-open set is (m,n)-semi-closed, (m,n)-pre-closed, (m,n)-α-closed and (m,n)-β-closed,
respectively. For each t ∈ {s, p, α, β}, the (m,n)-t-interior of A denoted by τ(m,n)-intt(A) is the union of all
(m,n)-t-open sets contained in A and the (m,n)-t-closure of A denoted by τ(m,n)-clt(A) is the intersection
of all (m,n)-t-closed sets containing A. By S(m,n)X, P(m,n)X, α(m,n)X and β(m,n)X, we denote the family of all
(m,n)-semi-open sets, (m,n)-pre-open sets, (m,n)-α-open sets and (m,n)-β-open sets, respectively.

Example 2.3. Consider the (a)space (Z, {τn}) on Z, where τn = {∅, Z, 2Z, Z − 2Z} if n is odd and τn is
the cofinite topology if n is even. Consider the set A = 2Z ∪ {1} and B = Z − 2Z. Both A and B are (2, 1)-
α-open as τ1-int(τ2-cl(τ1-int(A))) = Z and τ1-int(τ2-cl(τ1-int(B))) = Z. But, τ2-cl(τ1-int(τ2-cl(A ∩ B))) = ∅
witness that A ∩ B is not (2, 1)-β-open. Thus, S(m,n)X, P(m,n)X, α(m,n)X and β(m,n)X are not closed under finite
intersection.

Proposition 2.4. Let X be an (a)space and A be a subset of X. Then A is :

1. (m,n)-semi-closed if and only if A ⊇ τm-int(τn-cl(A)).

2. (m,n)-pre-closed if and only if A ⊇ τn-cl(τm-int(A)).

3. (m,n)-α-closed if and only if A ⊇ τn-cl(τm-int(τn-cl(A))).

4. (m,n)-β-closed if and only if A ⊇ τm-int(τn-cl(τm-int(A))).

Proof. (1) Let A be a (m,n)-semi-closed set in X. Then X − A is (m,n)-semi-open, so X − A ⊆ τm-cl(τn-
int(X − A)). It follows that A ⊇ X − (τm-cl(τn-int(X − A))) = τm-int(X − τn-int(X − A)) = τm-int(τn-cl(A)).
Conversely, we have A ⊇ τm-int(τn-cl(A)) which implies that X − A ⊆ X − (τm-int(τn-cl(A))) = τm-cl(X − τn-
cl(A)) = τm-cl(τn-int(X − A)). So X − A is (m,n)-semi-open and therefore, A is (m,n)-semi-closed.

Proof of parts (2), (3) and (4) can be proved in a similar manner.

Proposition 2.5. Let X be an (a)space and A be a subset of X. Then :

1. τ(m,n)-ints(A) = A ∩ τm-cl(τn-int(A)).

2. τ(m,n)-intα(A) = A ∩ τn-int(τm-cl(τn-int(A))).

3. τ(m,n)-intp(A) ⊆ A ∩ τn-int(τm-cl(A)).

4. τ(m,n)-intβ(A) ⊆ A ∩ τm-cl(τn-int(τm-cl(A))).

5. τ(m,n)-cls(A) = A ∪ τm-int(τn-cl(A)).

6. τ(m,n)-clα(A) = A ∪ τn-cl(τm-int(τn-cl(A))).

7. τ(m,n)-clp(A) ⊇ A ∪ τn-cl(τm-int(A)).

8. τ(m,n)-clβ(A) ⊇ A ∪ τm-int(τn-cl(τm-int(A))).

Proof. We will prove relations (1), (2), (3) and (4) only as (5), (6), (7) and (8) are easy consequences of (1), (2),
(3) and (4), respectively.

(1) Let x ∈ τ(m,n)-ints(A). Then there exists a (m,n)-semi-open set U such that x ∈ U ⊆ A. So U ⊆ τm-cl(τn-
int(U)) ⊆ τm-cl(τn-int(A)). Therefore, x ∈ A∩τm-cl(τn-int(A)). Conversely, we have τn-int(A) ⊆ A∩τm-cl(τn-
int(A)) ⊆ τm-cl(τn-int(A)). So, U = τn-int(A) is a τn-open set such that U ⊆ A ∩ τm-cl(τn-int(A)) ⊆ τm-cl(U).
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Therefore, A∩ τm-cl(τn-int(A)) is (m,n)-semi-open set contained in A and thus, A∩ τm-cl(τn-int(A)) ⊆ τ(m,n)-
ints(A).

(2) Let x ∈ τ(m,n)-intα(A). Then there exists a (m,n)-α-open set U such that x ∈ U ⊆ A. So U ⊆ τn-
int(τm-cl(τn-int(U))) ⊆ τn-int(τm-cl(τn-int(A))). Therefore, x ∈ A ∩ τn-int(τm-cl(τn-int(A))). Conversely,
τn-int(A) ⊆ A ∩ τn-int(τm-cl(τn-int(A))) ⊆ τn-int(τm-cl(τn-int(A))). This implies that U = τn-int(A) is a τn-
open set such that U ⊆ A ∩ τn-int(τm-cl(τn-int(A))) ⊆ τn-int(τm-cl(U)). So A ∩ τn-int(τm-cl(τn-int(A))) is
(m,n)-α-open set contained in A. Thus, A ∩ τn-int(τm-cl(τn-int(A))) ⊆ τ(m,n)-intα(A).

(3) Let x ∈ τ(m,n)-intp(A). Then there exists a (m,n)-pre-open set U such that x ∈ U ⊆ A. So U ⊆ τn-int(τm-
cl(U)) ⊆ τn-int(τm-cl(A)). Therefore, x ∈ A ∩ τn-int(τm-cl(A)).

(4) Let x ∈ τ(m,n)-intβ(A). Then there exists a (m,n)-β-open set U such that x ∈ U ⊆ A. So U ⊆ τm-cl(τn-
int(τm-cl(U))) ⊆ τm-cl(τn-int(τm-cl(A))). Therefore, x ∈ A ∩ τm-cl(τn-int(τm-cl(A))).

Definition 2.6. A subset A of (X, {τn}) is said to be:

1. ([44]) (a)-semi-open if A is (m,n)-semi-open for all m , n.

2. (a)-pre-open if A is (m,n)-pre-open for all m , n.

3. (a)-α-open if A is (m,n)-α-open for all m , n.

4. (a)-β-open if A is (m,n)-β-open for all m , n.

5. (a)-open if A is τn-open for all n ∈N.

The collection of all (a)-open (resp. (a)-semi-open, (a)-pre-open, (a)-α-open and (a)-β-open) sets is closed
under arbitrary union. Indeed, the collection of (a)-open sets form a topology on X. The complement of
(a)-semi-open set, (a)-pre-open set, (a)-α-open set, (a)-β-open set and (a)-open set is (a)-semi-closed, (a)-
pre-closed, (a)-α-closed, (a)-β-closed and (a)-closed, respectively. By S(X), P(X), α(X), β(X) and O(X), we-
denote the family of all (a)-semi-open sets, (a)-pre-open sets, (a)-α-open sets, (a)-β-open sets and (a)-open
sets, respectively.

It is clear that every (a)-open set is (a)-α-open and hence, (a)-semi-open, (a)-pre-open and (a)-β-open.
Note that

(a)-α-open ⇒ (a)-pre-open ⇒ (a)-β-open
⇑ ⇑

(a)-open ⇒ (a)-α-open ⇒ (a)-semi-open

Diagram 2

Following examples show that no implication in the above diagram is reversible.

Example 2.7. Let F be a finite subset of Z having at least two elements. Consider the (a)space (Z, {τn}) on
Z, where τn = {∅, Z, F} if n is odd and τn is the cofinite topology if n is even. Let w ∈ F. Then A = Z − {w}
is (a)-pre-open and (a)-β-open but not (a)-semi-open and hence, not (a)-α-open.

Example 2.8. Consider the (a)space (R, {τn}) on R, where τn = {(a,∞) : a ∈ R} ∪ {∅} ∪ {R} is the right ray
topology if n is odd and τn is the cocountable topology if n is even. For each a ∈ R, τ1-cl({a}) = (−∞, a].
It is observe that τ1-cl((10,∞)) = R and τ2-cl((10,∞)) = R. So (10,∞) is (m,n)-pre-open for all m , n and
therefore, (a)-pre-open. But τ2-int((10,∞)) = ∅. So (10,∞) * τ1-cl(τ2-int(10,∞)). Therefore, (10,∞) is
not (1, 2)-semi-open and hence, not (a)-semi-open. Thus, (10,∞) is (a)-pre-open but not (a)-α-open and
(a)-β-open but not (a)-semi-open.
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Every (a)-pre-open set is (a)-β-open and every (a)-α-open set is (a)-semi-open but not vice-versa. To show
that converse need not be true, we recall the digital topology onZ. Digital topology τ onZ is generated by
{{2n − 1, 2n, 2n + 1} : n ∈ Z}.

τ-cl({m}) =

{m}, if m is even;
{m − 1,m,m + 1}, if m is odd.

and

τ-cl({2n − 1, 2n, 2n + 1}) = {2n − 2, 2n − 1, 2n, 2n + 1, 2n + 2}.

We consider the following example to show that not every (a)-β-open set is (a)-pre-open and not every
(a)-semi-open set is (a)-α-open.

Example 2.9. Consider the (a)space (Z, {τn}), where
τ1 is the digital topology on Z generated by {{2n − 1, 2n, 2n + 1} : n ∈ Z},
τ2 is the topology on Z generated by {{3n + 1, 3n + 2, 3n + 3, 3n + 4} : n ∈ Z},
τ3 is the topology on Z generated by {{4n + 1, 4n + 2, 4n + 3, 4n + 4, 4n + 5} : n ∈ Z},
τ4 is the topology on Z generated by {{5n + 1, 5n + 2, 5n + 3, 5n + 4, 5n + 5, 5n + 6} : n ∈ Z},
.
.
.
τk is the topology on Z generated by {{(k + 1)n + 1, (k + 1)n + 2, ..., (k + 1)n + (k + 2)} : n ∈ Z} for each k ∈N.

Consider the set G = {1, 2}. Then τn-int(G) = {1} for all n ∈N and τm-cl({1}) ⊇ {0, 1, 2} for all m , n.
So, G = {1, 2} ⊆ τm-cl(τn-int(G)) for all m , n. Thus, G is (a)-semi-open and hence, (a)-β-open.
Observe that τ3-int(τ1-cl(G)) = τ3-int({0, 1, 2}) = {1}. Thus, G is not a (1, 3)-pre-open set. Therefore, G is

not (a)-pre-open and hence, not (a)-α-open.
Conclusively, G is (a)-β-open but not (a)-pre-open and G is (a)-semi-open but not (a)-α-open in (Z, {τn}).

It is clear from Example 2.8 and Example 2.9 that there is no relation between (a)semi-open and (a)-pre-
open. Following example shows that there exists a set in some (a)space which is (a)-semi-open, (a)-pre-open,
(a)-α-open and (a)-β-open but not (a)-open.

Example 2.10. Consider the (a)space (R, {τn}) onR, where τn is the right ray topology if n is odd and τn is the
cocountable topology if n is even. Consider the set A = (−∞, 9)∪(10,∞)∪[(R−Q)∩(9, 10)] = R−(Q∩(9, 10)).
A is not (a)-open as A is not open in (R, τ1). We have τn-int(τm-cl(A)) = R for all m , n. Thus, A is (a)-pre-
open as well as (a)-β-open. Also, τm-cl(τn-int(A)) = R for all m , n. Thus, A is (a)-semi-open as well as
(a)-α-open. Hence, A is (a)-semi-open, (a)-pre-open, (a)-β-open and (a)-α-open but not (a)-open.

3. Strong Form of Open Sets in (a)Topological Spaces

Recall that in a topological space (X, τ), a point x ∈ X is said to be δ-cluster point [45] of a subset S ⊆ X
if for every τ-open set G containing x, τ-int(τ-cl(G)) ∩ S , ∅. Following Tyagi et. al. [44], we define δ-open
sets in (a)spaces as follows:

Definition 3.1. Let X be an (a)space and S be a subset of X. A point x ∈ X is said to be (m,n)-δ-cluster
point of S if for every τn-open set G containing x, τn-int(τm-cl(G)) ∩ S , ∅. The set of all (m,n)-δ-cluster
points of S is called the (m,n)-δ-closure of S and denoted by τ(m,n)-clδ(S). S is said to be (m,n)-δ-closed if
τ(m,n)-clδ(S) = S. The complement of (m,n)-δ-closed set is (m,n)-δ-open. In case, S is (m,n)-δ-open for all
m , n, S is (a)-δ-open.

Remark 3.2. The collection of all (m,n)-δ-open sets forms a topology.
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Theorem 3.3. Let A be a subset of an (a)space X. Then A is (m,n)-δ-open if and only if for each x ∈ A there exists a
τn-open set U such that x ∈ U ⊆ τn-int(τm-cl(U)) ⊆ A.

Proof. Let A ⊆ X be (m,n)-δ-open. Then τ(m,n)-clδ(X − A) = X − A. So for each x ∈ A there is a τn-open set U
containing x such that τn-int(τm-cl(U)) ∩ (X − A) = ∅. Therefore, for each x ∈ A there exists a τn-open set U
such that x ∈ U ⊆ τn-int(τm-cl(U)) ⊆ A. Conversely, let for each x ∈ A there exists a τn-open set U such that
x ∈ U ⊆ τn-int(τm-cl(U)) ⊆ A. Therefore, τn-int(τm-cl(U)) ∩ (X − A) = ∅. So τ(m,n)-clδ(X − A) = X − A. Thus,
A ⊆ X is (m,n)-delta-open.

Theorem 3.4. Let A be a subset of an (a)space X. A point x ∈ τ(m,n)-clδ(A) if and only if every (m,n)-δ-open set
containing x intersects A.

Proof. Let x ∈ τ(m,n)-clδ(A) and U be a (m,n)-δ-open set containing x. There exist a τn-open set V such that
x ∈ V ⊆ τn-int(τm-cl(V)) ⊆ U. Since x ∈ τ(m,n)-clδ(A), τn-int(τm-cl(V)) ∩ A , ∅. It follows that U ∩ A , ∅.
Conversely, let U be a τn-open set containing x. The set τn-int(τm-cl(U)) is a (m,n)-δ-open set. Indeed, for
each x ∈ τn-int(τm-cl(U)) there exists a τn-open set G such that x ∈ G ⊆ τn-int(τm-cl(U)). Since τn-int(τm-
cl(G)) ⊆ τn-int(τm-cl(U)), it follows that τn-int(τm-cl(U)) is (m,n)-δ-open. So τn-int(τm-cl(U)) ∩ A , ∅ and
therefore, x ∈ τ(m,n)-clδ(A).

Remark 3.5. Theorem 3.4 emphasize that the (m,n)-δ-closure of a set A is the intersection of all (m,n)-δ-
closed subsets of X containing A.

Proposition 3.6. Every (a)-δ-open set is (a)-open.

Proof. Let G be an (a)-δ-open set in X. By definition, G is (m,n)-δ-open for all m , n. Then τ(m,n)-
clδ(X − G) = X − G for all m , n. But τn-cl(A) ⊆ τ(m,n)-clδ(A) for every set A, so τn-cl(X − G) = X − G. Thus,
G is τn-open for all n ∈N.

We end up this section by an example showing that converse of Proposition 3.6 need not be true in
general.

Example 3.7. Consider the (a)space (Z, {τn}) onZ, where τn is the Digital topology if n is odd and τn = {G ⊆
Z : G = ∅ or 3 ∈ G} is the Point-included topology if n is even.

For any subset A ⊆ Z, we have τ2-cl(A) =

A, if 3 < A;
Z, if 3 ∈ A.

and τ2-int(A) =

∅, if 3 < A;
A, if 3 ∈ A.

The set G = {3, 4, 5} is (a)-open in (Z, {τn}). We show that G is not (a)-δ-open. Let U be any τ4-open set
containing 3. Then τ4-int(τ2-cl(U)) = Z. So τ4-int(τ2-cl(U)) ∩ (Z −G) , ∅ for all τ4-open set U containing 3.
Therefore, 3 ∈ τ(2,4)-clδ(Z − G) and τ(2,4)-clδ(Z − G) , Z − G which implies that Z − G is not (2, 4)-δ-closed.
Thus, G is not (2, 4)-δ-open and hence, G is not (a)-δ-open.

4. Various Selection Properties

In this section, we discuss various selection properties by using notions of semi-closure, pre-closure,
α-closure, β-closure and δ-closure and their respective density in (a)spaces and provide interrelationships
between them.

Definition 4.1. In an (a)space X, a subset A ⊆ X is said to be:

1. τn-dense in X if A is dense in (X, τn).

2. dense in X if A is dense in (X, τn) for all n ∈N.
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3. t-(m,n)-dense if τ(m,n)-clt(A) = X, where t ∈ {s, p, α, β, δ}.

4. t-(a)-dense if A is t-(m,n)-dense for all m , n, where t ∈ {s, p, α, β, δ}.

For each t ∈ {s, p, α, β, δ}, let Dt(m,n), Dt and D be the collection of all t-(m,n)-dense, t-(a)-dense and
dense subsets of (X, {τn}), respectively and D(n) be the collection of all dense subsets of (X, τn).

Proposition 4.2. In an (a)space (X, {τn}), the following holds.

1. Dβ
⊂ Ds

⊂ Dα

2. Dβ
⊂ Dp

⊂ Dα

3. Ds = Dα = D

4. D ⊂ Dδ

Proof. (1) Let S be any subset of X. Since every (m,n)-α-open set is (m,n)-semi-open and every (m,n)-semi-
open set is (m,n)-β-open for all m , n, so τ(m,n)-clβ(S) ⊂ τ(m,n)-cls(S) ⊂ τ(m,n)-clα(S) for all m , n. Therefore,
Dβ(m,n) ⊂ Ds(m,n) ⊂ Dα(m,n) holds for all m , n. Thus, Dβ

⊂ Ds
⊂ Dα.

(2) Let S be any subset of X. Since every (m,n)-α-open set is (m,n)-pre-open and every (m,n)-pre-open
set is (m,n)-β-open for all m , n, so τ(m,n)-clβ(S) ⊂ τ(m,n)-clp(S) ⊂ τ(m,n)-clα(S) for all m , n. Therefore,
Dβ(m,n) ⊂ Dp(m,n) ⊂ Dα(m,n) holds for all m , n. Thus, Dβ

⊂ Dp
⊂ Dα.

(3) By (1), Ds
⊂ Dα. It is enough to show that Dα

⊂ D ⊂ Ds. For any m , n, let A ∈ Dα(m,n). Then
X = τ(m,n)-clα(A) = A ∪ τn-cl(τm-int(τn-cl(A))). So, X = A ∪ τn-cl(τn-cl(A)) ⊂ τn-cl(A) and hence, A ∈ D(n).
Also, for any A ∈ D(n), τn-cl(A) = X which gives that X = A∪τm-int(τn-cl(A)) = τ(m,n)-cls(A). So A ∈ Ds(m,n).
Therefore, Dα(m,n) ⊂ D(n) ⊂ Ds(m,n) for all m , n. Hence, Dα

⊂ D ⊂ Ds.

(4) The proof follows by Proposition 3.6.

Remark 4.3. Following results hold for all naturals m, k and n.

1. Ds(m,n) = Ds(k,n).

2. Dα(m,n) = Dα(k,n).

3. Ds(m,n) = Dα(k,n).

Proof. Proof follows as Dα(m,n) = D(n) and Ds(m,n) = D(n) for all naturals m and n.

Example 4.4. Dβ is a proper subset of Dp.
Consider the (a)space (R, {τn}) on R, where τn is the cocountable topology if n is odd and τn =

{∅,R, {p}, {q}, {p, q}}: p, q ∈ R, if n is even. It is observe that the set of all (a)-pre-open sets, that is,
P(X) = {A ⊆ R : A is uncountable and p, q ∈ A}. Now, consider the set G = R − {q}. G is an (a)-β-
open set having empty intersection with {q}. So, {q} < Dβ. But {q} intersect with every (a)-pre-open set,
hence, {q} ∈ Dp

−Dβ.

Example 4.5. Dp is a proper subset of D.
In Example 2.7, let F = {2, 3}. Then the set of even integers, say A, is dense in (Z, {τn}) but Z − A is

(a)-pre-open in (Z, {τn}). Thus, A ∈ D −Dp.

Example 4.6. Dβ is a proper subset of Ds.
Consider the (a)space (R, {τn}) onR, where τn = {∅, R, R−Q} if n is odd and τn = {∅, R, (R−Q)∪ {1}} if

n is even. It is observe that the set of all (a)-semi-open sets, that is, S(X) = {A ⊆ R : (R−Q)∪ {1} ⊆ A}. Now,
consider the set G = R − {1}. G is an (a)-β-open set having empty intersection with {1}. So, {1} < Dβ. But {1}
intersect with every (a)-semi-open set, so {1} ∈ Ds. Hence, {1} ∈ Ds

−Dβ.
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Example 4.7. D is a proper subset of Dδ.
In Example 4.6, Q is not dense in (R, τ1) as τ1-cl(Q) = Q. So Q < D(1) and therefore, Q < D. But

Q ∈ Dδ(m,n) for all m , n. Thus, Q ∈ Dδ
−D.

Conclusively, we have the following relations:

1. Dβ ( Dp ( Dα = D ( Dδ.

2. Dβ ( Ds = Dα = D ( Dδ.

The following implications are immediate.

S f in(Dp,Dβ)→ S f in(Dβ,Dβ), S f in(Dp,Dβ)→ S f in(Dp,Dp), S f in(Dβ,Dβ)→ S f in(Dβ,Dp),
S f in(Dp,Dp)→ S f in(Dβ,Dp), S f in(Dp,Dβ)→ S f in(Dβ,Dp);

S f in(Dα,Dβ)→ S f in(Dβ,Dβ), S f in(Dα,Dβ)→ S f in(Dα,Dα), S f in(Dβ,Dβ)→ S f in(Dβ,Dα),
S f in(Dα,Dα)→ S f in(Dβ,Dα), S f in(Dα,Dβ)→ S f in(Dβ,Dα);

S f in(Dδ,Dβ)→ S f in(Dβ,Dβ), S f in(Dδ,Dβ)→ S f in(Dδ,Dδ), S f in(Dβ,Dβ)→ S f in(Dβ,Dδ),
S f in(Dδ,Dδ)→ S f in(Dβ,Dδ), S f in(Dδ,Dβ)→ S f in(Dβ,Dδ);

S f in(Dα,Dp)→ S f in(Dp,Dp), S f in(Dα,Dp)→ S f in(Dα,Dα), S f in(Dp,Dp)→ S f in(Dp,Dα),
S f in(Dα,Dα)→ S f in(Dp,Dα), S f in(Dα,Dp)→ S f in(Dp,Dα);

S f in(Dδ,Dp)→ S f in(Dp,Dp), S f in(Dδ,Dp)→ S f in(Dδ,Dδ), S f in(Dp,Dp)→ S f in(Dp,Dδ),
S f in(Dδ,Dδ)→ S f in(Dp,Dδ), S f in(Dδ,Dp)→ S f in(Dp,Dδ);

S f in(Dδ,Dα)→ S f in(Dα,Dα), S f in(Dδ,Dα)→ S f in(Dδ,Dδ), S f in(Dα,Dα)→ S f in(Dα,Dδ),
S f in(Dδ,Dδ)→ S f in(Dα,Dδ), S f in(Dδ,Dα)→ S f in(Dα,Dδ);

S f in(Ds,Dβ)→ S f in(Dβ,Dβ), S f in(Ds,Dβ)→ S f in(Ds,Ds), S f in(Dβ,Dβ)→ S f in(Dβ,Ds),
S f in(Ds,Ds)→ S f in(Dβ,Ds), S f in(Ds,Dβ)→ S f in(Dβ,Ds);

From above implications we have following implications too.

S f in(Dδ,Dp)→ S f in(Dp,Dα), S f in(Dδ,Dp)→ S f in(Dβ,Dp),
S f in(Dδ,Dp)→ S f in(Dβ,Dδ), S f in(Dδ,Dp)→ S f in(Dα,Dδ);

S f in(Dα,Dp)→ S f in(Dp,Dδ), S f in(Dα,Dp)→ S f in(Dβ,Dp),
S f in(Dα,Dp)→ S f in(Dβ,Dα), S f in(Dα,Dp)→ S f in(Dα,Dδ);

S f in(Dp,Dβ)→ S f in(Dp,Dα), S f in(Dp,Dβ)→ S f in(Dp,Dδ),
S f in(Dp,Dβ)→ S f in(Dβ,Dδ), S f in(Dp,Dβ)→ S f in(Dβ,Dα);
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S f in(Dδ,Dβ)→ S f in(Dβ,Dα), S f in(Dδ,Dβ)→ S f in(Dβ,Dp),
S f in(Dδ,Dβ)→ S f in(Dp,Dδ), S f in(Dδ,Dβ)→ S f in(Dα,Dδ);

S f in(Dα,Dβ)→ S f in(Dβ,Dδ), S f in(Dα,Dβ)→ S f in(Dβ,Dp),
S f in(Dα,Dβ)→ S f in(Dp,Dα), S f in(Dα,Dβ)→ S f in(Dα,Dδ);

S f in(Dδ,Dα)→ S f in(Dp,Dα), S f in(Dδ,Dα)→ S f in(Dβ,Dα),
S f in(Dδ,Dα)→ S f in(Dp,Dδ), S f in(Dδ,Dα)→ S f in(Dβ,Dδ);

S f in(Ds,Dβ)→ S f in(Dβ,Dδ), S f in(Ds,Dβ)→ S f in(Dβ,Dα), S f in(Ds,Dβ)→ S f in(Dβ,Dp).

5. R-Separability and M-Separability in (a)Topological Spaces

In this section, we study various selective separability properties using weak and strong forms of open
sets. We begin with some definitions we will do with.

Definition 5.1. An (a)space (X, {τn}) is said to be separable if there exists a countable subset of X which is
dense in X.

Definition 5.2. An (a)space (X, {τn}) is said to be:

1. (a)R-separable if S1(D(n),D(n)) holds for all n.

2. (a)Rt-separable if S1(Dt(m,n),Dt(m,n)) holds for all m , n, where t ∈ {s, p, α, β, δ}.

3. (a)M-separable if S f in(D(n),D(n)) holds for all n.

4. (a)Mt-separable if S f in(Dt(m,n),Dt(m,n)) for all m , n, where t ∈ {s, p, α, β, δ}.

It is obvious that (a)R-separability implies (a)M-separability and (a)Rt-separability implies (a)Mt-separability.
Also, if X is (a)R-separable (or separable), then each (X, τn) is separable. Following theorem is an analogous
result of this.

Theorem 5.3. If X is (a)Rt-separable, t ∈ {s, p, α, β}, then (X, τn) is separable for all n.

Proof. Let X be an (a)Rt-separable space. Then S1(Dt(m,n),Dt(m,n)) holds for all m , n. For every sequence
< Ak : k ∈ N > of elements of Dt(m,n), there is a sequence < ak : k ∈ N > such that for each k, ak ∈ Ak and
{ak : k ∈ N} ∈ Dt(m,n). So A = {ak : ak ∈ Ak, k ∈ N} is a countable subset of X such that A ∈ Dt(m,n). But
Dt(m,n) ⊂ D(n) for all m,n ∈N. Therefore, (X, τn) is separable for all n ∈N.

Recall that a family B of non empty open subsets of a topological space (X, τ) is said to be π-base of X if
for each non empty open subset, say G ⊆ X, there exists a U ∈ B such that U ⊆ G.

Theorem 5.4. If (X, τn) has a countable π-base for all n ∈N, then X is (a)Rp-separable.

Proof. For each n ∈ N, let {Qn
k : k ∈ N} be a countable π-base of (X, τn). For any m , n, let < Fk : k ∈ N > be

a sequence of p-(m,n)-dense subsets of X. So τ(m,n)-clp(Fk) = X. Therefore, Fk intersects with every (m,n)-
pre-open set for all k ∈N. Since every τn-open set is (m,n)-pre-open for all m ∈N, so Qn

k is (m,n)-pre-open
for all k ∈ N. Let xk ∈ Qn

k ∩ Fk for each k ∈ N. We claim that {xk : k ∈ N} is p-(m,n)-dense in X. Let W be a
(m,n)-pre-open set. Then τn-int(W) is τn-open so there exists some l ∈ N such that Qn

l ⊆ τn-int(W). Then
xl ∈W. Therefore, every (m,n)-pre-open subset of X intersects with {xk : k ∈N}. Thus, {xk : k ∈N} ∈ Dp(m,n)
and S1(Dp(m,n),Dp(m,n)) holds for all m , n. Hence, X is (a)Rp-separable.
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In a similar way the following theorem can be proved.

Theorem 5.5. If (X, τn) has countable π-base for all n ∈N, then X is (a)Rt-separable for all t ∈ {s, α, β}.

Theorem 5.6. If (X, τn) has countable π-base for some n ∈N, then X satisfies S1(D(n),Dδ(m,n)) for all m , n.

Proof. Let {Qk : k ∈N} be a countable π-base of (X, τn). Let < Fk : k ∈N > be a sequence of elements of D(n).
Then Qk ∩ Fk , ∅ for each k ∈ N. Let xk ∈ Qk ∩ Fk for each k ∈ N. The set {xk : k ∈ N} ∈ Dδ(m,n) for all
m , n. Indeed, for any (m,n)-δ-open set W, there exists some l ∈N such that Ql ⊆W as every (m,n)-δ-open
set is τn-open. Then xl ∈ W which gives that every (m,n)-δ-open set of X intersects with {xk : k ∈ N}. Thus,
{xk : k ∈N} ∈ Dδ(m,n) for all m , n.

Corollary 5.7. If (X, τn) has countable π-base for all n ∈ N, then X satisfies S1(Dt(m,n),Dδ(m,n)) for all m , n
and for all t ∈ {s, p, α, β}.

Proof. For each t ∈ {s, p, α, β}, Dt(m,n) ⊂ D(n) for all m , n, so proof follows by Theorem 5.6.

Definition 5.8. Let X be an (a)space. Then:

1. X has countable (m,n)-t-fan tightness (m , n) if for each x ∈ X and each sequence < Ak : k ∈ N >
of subsets of X such that x ∈ τ(m,n)-clt(Ak) for each k, there are finite sets Fk ⊆ Ak such that
x ∈ τ(m,n)-clt(∪k∈N Fk).

2. X has countable (m,n)-t-strong fan tightness (m , n) if for each x ∈ X and each sequence < Ak : k ∈
N > of subsets of X such that x ∈ τ(m,n)-clt(Ak) for each k, there are points xk ∈ Ak such that
x ∈ τ(m,n)-clt({xk : k ∈N}).

Theorem 5.9. Let X be a separable space. If X has countable (m,n)-t-fan tightness for all m , n, then X is
(a)Mt-separable, where t ∈ {s, p, α, β}.

Proof. Let A = {ak : k ∈ N} be a countable set which is dense in each (X, τn) and let < Ak : k ∈ N > be a
sequence of elements of Dt(m,n) for some m0 , n0, t ∈ {s, p, α, β}. Consider a partitionN = M1 ∪M2 ∪ . . . of
N into pairwise disjoint and infinite sets. Since τ(m0,n0)-clt(Ak) = X, for each n ∈N, an ∈ ∩k∈Mnτ(m0,n0)-clt(Ak).
By countable (m0,n0)-t-fan tightness of X, there exists a sequence < Fk : k ∈ Mn > such that for each k ∈ Mn,
Fk ⊆ Ak and an ∈ τ(m0,n0)-clt(∪{Fk : k ∈ Mn}). We claim that ∪{Fk : k ∈N} is t-(m0,n0)-dense subset of X. Let G
be a (m0,n0)-t-open subset of X and V = τn0 -int(G). Since A is dense in (X, τn0 ), al ∈ V and hence, al ∈ G for
some l ∈ N but al ∈ τ(m0,n0)-clt(∪{Fk : k ∈ Ml}). Thus, G ∩ {∪Fk : k ∈ Ml} , ∅. Therefore, G ∩ {∪Fk : k ∈ N} , ∅
and hence, X = τ(m0,n0)-clt(∪{Fk : k ∈N}.

Theorem 5.10. Let X be a separable space. If X has countable (m,n)-t-strong fan tightness, then X is (a)Rt-separable,
where t ∈ {s, p, α, β}.

Proof. Let A = {ak : k ∈N} be countable dense in each (X, τn) and let< Ak : k ∈N > be a sequence of elements
of Dt(m0,n0) for some m0 , n0, t ∈ {s, p, α, β}. Consider a partition N = M1 ∪M2 ∪ . . . of N into pairwise
disjoint and infinite sets. Since τ(m0,n0)-clt(Ak) = X, for each n ∈ N, an ∈ ∩k∈Mnτ(m0,n0)-clt(Ak). By countable
(m0,n0)-t-strong fan tightness of X, there exists a sequence < xk : k ∈Mn > such that for each k ∈Mn, xk ∈ Ak
and an ∈ τ(m0,n0)-clt({xk : k ∈ Mn}). The set {xk : k ∈ N} is t-(m0,n0)-dense subset of X. Indeed, let G be a
(m0,n0)-t-open subset of X. Let V = τn0 -int(G). Since A is dense in (X, τn0 ), al ∈ V and hence, al ∈ G for some
l ∈ N but al ∈ τ(m0,n0)-clt({xk : k ∈ Ml}). Thus, G ∩ {xk : k ∈ Ml} , ∅. Therefore, G ∩ {xk : k ∈ N} , ∅ and hence,
X = τ(m0,n0)-clt({xk : k ∈N}).

Theorem 5.11. Let X be a separable space. If X has countable (m,n)-δ-strong fan tightness for all m , n, then X is
(a)Rδ-separable.
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Proof. Let< Ak : k ∈N > be a sequence of elements of Dδ(m0,n0) for some m0 , n0. So τ(m0,n0)-clδ(Ak) = X. Let
A = {an : n ∈N} be a countable set which is dense in each (X, τn). Consider a partitionN = M1 ∪M2 ∪ . . . of
N into pairwise disjoint and infinite sets. Since τ(m0,n0)-clδ(Ak) = X, for each n ∈N, an ∈ ∩k∈Mnτ(m0,n0)-clδ(Ak).
By countable (m0,n0)-δ-strong fan tightness of X, there exists a sequence < xk : k ∈ Mn > such that for each
k ∈Mn, xk ∈ Ak and an ∈ τ(m0,n0)-clδ({xk : k ∈Mn}). The set {xk : k ∈N} is δ-(m0,n0)-dense in X. Indeed, for any
(m0,n0)-δ-open subset G, al ∈ G for some l ∈ N as δ-(m0,n0)-open set is τn0 -open and A is dense in (X, τn0 ).
But al ∈ τ(m0,n0)-clδ({xk : k ∈ Ml}). Thus, G ∩ {xk : k ∈ Ml} , ∅. Therefore, G ∩ {xk : k ∈ N} , ∅ and hence,
X = τ(m0,n0)-clδ({xk : k ∈N}.

Theorem 5.12. Let X be a separable space. If X has countable (m,n)-δ-fan tightness for all m , n, then X is
(a)Mδ-separable.

Proof. Let< Fk : k ∈N > be a sequence of elements of Dδ(m0,n0) for some m0 , n0. So τ(m0,n0)-clδ(Fk) = X. Let
A = {an : n ∈N} be a countable set which is dense in each (X, τn). Consider a partitionN = M1 ∪M2 ∪ . . . of
N into pairwise disjoint and infinite sets. Since τ(m0,n0)-clδ(Fk) = X, for each n ∈ N, an ∈ ∩k∈Mnτ(m0,n0)-clδ(Fk).
By countable (m0,n0)-δ-strong fan tightness of X, there exists a sequence < Ak : k ∈ Mn > such that for each
k ∈ Mn, Ak ⊆ Fk and an ∈ τ(m0,n0)-clδ(∪k∈Mn Ak). The set ∪k∈NAk is δ-(m0,n0)-dense in X. Indeed, for any
(m0,n0)-δ-open subset G, al ∈ G for some l ∈ N as δ-(m0,n0)-open set is τn0 -open and A is dense in (X, τn0 ).
But al ∈ τ(m0,n0)-clδ((∪k∈Ml Ak)). Thus, G ∩ (∪k∈Ml Ak) , ∅. Therefore, X = τ(m0,n0)-clδ(∪k∈N Ak) and hence,
∪k∈N Ak ∈ Dδ(m0,n0). So X is (a)Mδ-separable.

It is shown that separable Fréchet-Urysohn spaces are M-separable [4]. Now we are going to prove the
t-version of this result in (a)spaces for each t ∈ {s, p, α, β, δ}. For this we define the notion of convergence,
Fréchet-Urysohn and Hausdorffness in (a)spaces. A sequence < xn > in (a)space X is said to be t(m,n)-
converge to some x ∈ X if for every (m,n)-t-open set containing x, say U, there exists natural number k such
that xn ∈ U for all n ≥ k. If for each A ⊆ X and each x ∈ τ(m,n)-clt(A) there is a sequence < xn : n ∈ N >
in A which t(m,n)-converge to x, we call X (m,n)-t-Fréchet-Urysohn. We say X to be (m,n)-t-Hausdorff or
(m,n)-t-T2 space if for every pair of distinct points x and y of X, there exist two disjoint (m,n)-t-open sets
containing x and y, respectively.

Definition 5.13. An (a)space X is said to be (m,n)-t-dense in itself if no singelton subset of X is (m,n)-t-open,
where t ∈ {s, p, α, β, δ}.

Theorem 5.14. Let X be a separable space such that X is (m,n)-t-dense in itself for all m , n. If X is (m,n)-t-
Fréchet-Urysohn and (m,n)-t-Hausdorff space for all m , n, then X is (a)Mt-separable, where t ∈ {s, p, α, β}.

Proof. Let A = {an : n ∈ N} be a countable set which is dense in each (X, τn). For t ∈ {s, p, α, β}, let
< Ak : k ∈N > be a sequence of elements of Dt(m0,n0) for some m0 , n0. Since X is (m0,n0)-t-dense in itself,
X − {a} is not (m0,n0)-t-closed. So for every a ∈ A, a ∈ τ(m0,n0)-clt(X − {a}) = X. Since X is (m0,n0)-t-Fréchet-
Urysohn, there exists a sequence < xn > in X− {a} such that < xn > is t(m0,n0)-converges to a. Further, for each
n, xn ∈ τ(m0,n0)-clt(Ak) for all k ∈ N. So there exist a sequence yn = < yn,m > in An which t(m0,n0)-converge
to xn. We claim that a ∈ τ(m0,n0)-clt(∪n∈N yn). Indeed, for any (m0,n0)-t-open-set U containing a, there exist
l ∈ N such that xn ∈ U for all n ≥ l. In particular, xl ∈ U and sequence < yl,m : m ∈ N > t(m0,n0)-converge to
xl. So yl,m ∈ U for all m ≥ k1 for some k1. Thus, U ∩ (∪n∈N yn) , ∅ and hence, a ∈ τ(m0,n0)-clt(∪n∈N yn). There
exists a sequence z = (zm) in ∪n∈N yn which t(m0,n0)-converges to a. Now sequence z and yn t(m0,n0)-converges
to different points, so yn ∩ z = Fn ⊆ An is finite as X is (m0,n0)-t-Hausdorff. Since a ∈ τ(m0,n0)-clt({zm : m ∈N})
and z = ∪Fn, so we have a ∈ τ(m0,n0)-clt(∪Fn). This implies that X has countable (m0,n0)-t-fan tightness at
each point a ∈ A. So X has countable (m,n)-t-fan tightness at each point a ∈ A for all m , n. By Theorem
5.9, X is (a)Mt-separable.

Theorem 5.15. Let (X, {τn}) be a separable space such that (X, τn) is dense in itself for all n ∈ N. If X is (m,n)-δ-
Fréchet-Urysohn and (m,n)-δ-T2 space for all m , n, then X is (a)Mδ-separable.
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Proof. Since (X, τn) is dense in itself for all n ∈ N, so X is (m,n)-δ-dense in itself for all m , n as every
(m,n)-δ-open set is τn-open. So proof can be easily done on similar lines of Theorem 5.14.

In [19], it is shown that every Pytkeev M-separable space is R-separable. We are going to prove the
t-version of this result in (a)spaces. An (a)space X is (m,n)-t-Pytkeev if for each A ⊆ X and each x ∈ (τ(m,n)-
clt(A)) − A there are infinite sets Bk ⊆ A, k ∈N such that every (m,n)-t-open set containing x contains some
Bk, where t ∈ {s, p, α, β, δ}.

Theorem 5.16. Let X be a separable space such that X is (m,n)-t-Pytkeev for all m , n, t ∈ {s, p, α, β, δ}. If X is
(a)Mt-separable, then X is (a)Rt-separable.

Proof. Let < Ak : k ∈ N > be a sequence of elements of Dt(m0,n0) for some m0 , n0, t ∈ {s, p, α, β}. Let
A = {an : n ∈ N} be a countable set which is dense in each (X, τn). Fix a partition N = M1 ∪ M2 ∪ . . .
of N into pairwise disjoint infinite sets and consider the sequence < Am : m ∈ Mn >. Since X is (a)Mt-
separable, there exists finite subsets Fm ⊆ Am, m ∈ Mn such that ∪m∈Mn Fm = Yn is (m0,n0)-t-dense in X. Let
K1 = {n ∈ N : an ∈ Yn} and K2 = N − K1. For each n ∈ K2, an ∈ (τ(m0,n0)-clt(Yn)) − Yn. Since X is (m0,n0)-t-
Pytkeev so there exists infinite sets Bn,k ⊆ Yn, k ∈N such that for each (m0,n0)-t-open set Uan containing an,
Uan contains some Bn,k. Clearly, each Bn,k intersects infinitely with finitely many sets, say Fm1 , Fm2 , . . . ,Fmk .
Choose xn,mk ∈ Bn,k ∩ Fmk ⊆ Amk . We define the sequence < zn > by zn = an if n ∈ K1, zn = xn,mk if n ∈ K2.
Sequence < zn > is (m0,n0)-t-dense in X, so X is (a)Rt-separable.

Let {(Xα, {τnα}n∈N) : α ∈ ∧} be a family of (a)spaces. Let X be the cartesian product of Xα, that is,
X =

∏
α∈∧Xα. We define an (a)topology structure (X, {τn}) on X by taking τn as the product topology on X

generated by the projections (τn, τnα) continuous for every α ∈ ∧. The pair (X, {τn}) is called the product
(a)space.

Theorem 5.17. Let (X1, {τn}) and (X2, {γn}) be two (a)spaces and t ∈ {s, p, α, β}. If X1 satisfies S1(D(n),Dt(m,n))
for all m , n and (X2, γn) has a countable π-base for all n ∈ N. Then the product (a)space (X, {σn}) satisfies
S1(D(n),Dt(m,n)) for all m , n, where X = X1 × X2, σn is the product topology on X generated by the continuous
projections (σn, τn) and (σn, γn) for all n.

Proof. Let m0 , n0 and let < Fk : k ∈ N > be a sequence of σn0 -dense subsets of X. Let {Pk : k ∈ N} be a
countable π-base for (X2, γn0 ). Let N = M1 ∪M2 ∪ ... ∪Mn ∪ ... be a partition of N into pairwise disjoint
subsets. Fix some n ∈N and consider Mn. Since X1 ×Pk ∈ σn0 , (X1 ×Pk)∩ Fk , ∅. Let Lk = (X1 ×Pk)∩ Fk ⊆ X
and consider Ak = {x1 ∈ X1 : (x1, x2) ∈ Lk}. It is clear that Ak is dense in (X1, τn0 ) for each k ∈Mn. Indeed, for
any A ∈ τn0 , (A× Pk)∩ Fk , ∅. Let (y1, y2) ∈ (A× Pk)∩ Fk. Therefore, (y1, y2) ∈ Lk which implies that y1 ∈ Ak.
Hence, Ak is dense in (X1, τn0 ). Since X1 satisfies S1(D(n0),Dt(m0,n0)) and < Ak > : k ∈ Mn} be a sequence of
τn0 -dense subsets of X1, so there exist x1k ∈ Ak for all k ∈ N such that {x1k : k ∈ N} is t-(m0,n0)-dense in X1.
We claim that the set F = {(x1k, x2k) ∈ Lk} is t-(m0,n0)-dense in X. Let G be a (m0,n0)-t-open subset of X. Then
W = σn0 -int(G) is a σn0 -open subset of X. Let W = U × V, U ∈ τn0 and V ∈ γn0 . Since every τn0 -open set is
(m0,n0)-t-open, so U ∩ {x1k : k ∈N} , ∅which implies that (U ×V) ∩ F , ∅. So F is t-(m0,n0)-dense in X and
hence, X satisfies S1(D(n0),Dt(m0,n0)).

Corollary 5.18. Let (X1, {τn}) and (X2, {γn}) be two (a)spaces and t ∈ {s, p, α, β}. If X1 satisfies S1(D(n),Dt(m,n))
for all m , n and (X2, γn) has a countable π-base for all n ∈ N. Then the product (a)space (X, {σn}) satisfies
S1(D(n),Dδ(m,n)) for all m , n, X = X1 × X2, σn is the product topology on X generated by the continuous
projections (σn, τn) and (σn, γn) for all n ∈N.

6. H-Separability and GN-Separability in (a)Topological Spaces

In a topological space X, a countable dense subset A ⊆ X is said to be groupable if it can be partitioned
as A = ∪k∈NAk, each Ak non empty finite set and every non empty open set in X intersects all but finitely
many k. We denote the collection of all dense sets (resp. groupable sets) in X by D′

(resp. D′

1p). In an



S. Luthra et al. / Filomat 35:11 (2021), 3745–3758 3757

(a)space (X, {τn}), a countable dense subset A ⊆ X is said to be (m,n)-t-groupable if it can be partitioned as
A = ∪k∈NAk, each Ak is non empty finite set and every non empty (m,n)-t-open set in X intersects all but
finitely many k. We denote the collection of all (m,n)-t-groupable sets in (a)space (X, {τn}) by Dt

1p(m,n).

Definition 6.1. ([5]) A topological space (X, τ) is said to be:

1. H-separable if for each sequence < Ak : k ∈ N > of elements of D′

, one can pick finite Fk ⊆ Ak so
that for every non empty open set G ⊆ X, the intersection G ∩ Fk is non empty for all but finitely
many k.

2. GN-separable if S1(D′

,D′

1p) holds.

We define t-version of H-separability and GN-separability in (a)spaces for each t ∈ {s, p, α, β, δ}.

Definition 6.2. An (a)space (X, {τn}) is said to be:

1. (a)GNt-separable if S1(Dt(m,n),Dt
1p(m,n)) holds for all m , n, where t ∈ {s, p, α, β, δ}.

2. (a)Ht-separable if for every m , n and for each sequence < Ak : k ∈ N > of elements of Dt(m,n),
one can pick finite Fk ⊆ Ak so that for every (m,n)-t-open set, say G ⊆ X, the intersection G ∩ Fk is
non empty for all but finitely many k, t ∈ {s, p, α, β, δ}.

It is clear that

(a)GNt-separability ⇒ (a)Rt-separability ⇒ (a)Mt-separability
⇑

(a)Ht-separability

Lemma 6.3. Let A and B be subsets of an (a)space (X, {τn}) with A ⊂ B. If B is countable and A ∈ Dt
1p(m,n), then

B ∈ Dt
1p(m,n), where t ∈ {s, p, α, β, δ}.

Proof. Since A ⊂ B with B countable and A ∈ Dt
1p(m,n), B is a countable dense subset of X. Let A = ∪k∈NAk be

a partition of A, where each Ak is non empty finite set and every non empty (m,n)-t-open set in X intersects
all but finitely many k. Without loss of generality we can assume that all A′ks are pairwise disjoint. If B − A
is a non empty finite set, then B = (∪k∈NAk) ∪ (B − A) witness that B ∈ Dt

1p(m,n). If B − A is a countably
infinite set, let B−A = {bk : k ∈N}. Then {Bk : Bk = Ak ∪ {bk}, k ∈N} is a partition of non empty finite subsets
of X such that every non empty (m,n)-t-open set in X intersects all but finitely many k. Thus, B ∈ Dt

1p.

Theorem 6.4. An (a)space X is (a)GNt-separable if and only if X is (a)Rt-separable and each (m,n)-t-dense subset
of X contains an (m,n)-t-groupable set for all m , n, t ∈ {s, p, α, β, δ}.

Proof. It is obvious that (a)GNt-separability implies (a)Rt-separability. Let A be a (m,n)-t-dense subset of X.
Consider the constant sequence< A >, that is, Sequence< Ak : Ak = A : k ∈N >. Since X is (a)GNt-separable,
there exists ak ∈ Ak such that {ak : k ∈N} is (m,n)-t-groupable. Thus, A contains an (m,n)-t-groupable set.

Conversely, Let < Ak : k ∈ N > be a sequence of (m,n)-t-dense subsets of X. By (a)Rt-separability of X,
for each k ∈ N there exists ak ∈ Ak such that {ak : k ∈ N} is (m,n)-t-dense in X. By hypothesis, there exists a
(m,n)-t-groupable set, say B, such that B ⊆ {ak : k ∈N}. By Lemma 6.3, {ak : k ∈N} ∈ Dt

1p(m,n) and hence, X
is (a)GNt-separable.



S. Luthra et al. / Filomat 35:11 (2021), 3745–3758 3758

References

[1] L. Babinkostova, On some question about selective separability, Math. Log. Quart. 55 (2009) 539–541.
[2] L. Babinkostova, B.A. Pansera, M. Scheepers, Weak covering properties and infinite games, Topology Appl. 159 (2012) 3644–3657.
[3] L. Babinkostova, B.A. Pansera, M. Scheepers, Weak covering properties and selection principles, Topology Appl. 160 (2013)

2251–2271.
[4] D. Barman, A. Dow, Selective separability and SS+, Topology Appl. 37 (2011) 181–204.
[5] A. Bella, M. Bonanzinga, M. Matveev, Variation of selective separability, Topology Appl. 156 (2009) 1241–1252.
[6] A. Bella, M. Bonanzinga, M. Matveev, V. Tkachuk, Selective separability: general facts and behavior in countable spaces, Topol.

Proc. 32 (2008) 15–30.
[7] M. Bonanzinga, F. Cammaroto, B.A. Pansera, B. Tsaban, Diagonalizations of dense families, Topology Appl. 165 (2014) 12–25.
[8] M.K. Bose, A. Mukharjee, On countable families of topologies on a set, Novi Sad J. Math. 40 (2010) 7–16.
[9] M.K. Bose, R. Tiwari, (ω)topological connectedness and hyperconnectedness, Note Mat. 31 (2011) 93–101.

[10] M.K. Bose, R. Tiwari, On increasing sequences of topologies on a set, Riv. Mat. Univ. Parma. 7 (2007) 173–183.
[11] M.K. Bose, R. Tiwari, On (ω)topological spaces, Riv. Mat. Univ. Parma. 9 (2008) 125–132.
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[16] G. Di Maio, Lj.D.R. Kočinac, A note on quasi-Menger and similar spaces, Topology Appl. 179 (2015) 148–155.
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[26] Lj.D.R. Kočinac, Some covering properties in topological and uniform spaces, Proc. Steklov Inst. Math. 252 (2006) 122–137.
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[32] A.V. Osipov, S. Özçağ, Variations of selective separability and tightness in function spaces with set-open topologies, Topology

Appl. 217 (2017) 38–50.
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