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Abstract. We obtain sufficient conditions for commutative non-autonomous systems on certain metric
spaces (not necessarily compact) to be topologically stable. In particular, we prove that: (i) Every mean
equicontinuous, mean expansive system with strong average shadowing property is topologically stable.
(ii) Every equicontinuous, recurrently expansive system with eventual shadowing property is topologically
stable. (iii) Every equicontinuous, expansive system with shadowing property is topologically stable.

1. Introduction

In experiments, it is seldom possible to measure a physical quantity without any error. Therefore only
those properties that are unchanged under small perturbations are physically relevant. In topological
dynamics, a meaningful way to perturb a system is through a continuous map.

A homeomorphism (resp. continuous map) f on a metric space X is said to be topologically stable
if for each ε > 0, there exists a δ > 0 such that if h is another homeomorphism (resp. continuous map)
on X satisfying d( f (x), h(x)) < δ, for each x ∈ X, then there exists a continuous map k : X → X satisfying
f ◦ k = k ◦ h and d(k(x), x) < ε, for each x ∈ X.

This particular concept of stability is popularly known as topological stability which was originally
introduced for a diffeomorphism on compact smooth manifold [15]. By looking at the significance of the
concept, it is worth to identify those dynamical properties which imply topological stability. One of such
result in topological dynamics is “Walters stability theorem” which states that expansive homeomorphisms
with shadowing property on compact metric spaces are topologically stable [16].

The notion of expansivity expresses the worse case unpredictability of a system. Although such un-
predictable behaviour of symbolic flows was recognized earlier, the concept of expansivity for homeomor-
phisms on general metric spaces was introduced in the middle of the twentieth century [14]. The expansive
behaviour of continuous maps is popularly known as positive expansivity [4].

For a continuous map f on a metric space X and fixed x0 ∈ X, identifying those x ∈ X whose orbit
follow that of x0 for a long time and hence understanding the asymptotic behaviour of f n(x) relative to
f n(x0) can provide deep insight of the system. Anosov closing lemma provides us with such information
for a differentiable map on compact smooth manifold [1]. The notion of shadowing property originated
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from this lemma in differentiable dynamics has played a significant role in topological dynamics. The idea
behind the notion of shadowing is to guarantee the existence of an actual orbit with a particular behaviour
by giving evidence of the existence of a pseudo orbit with the same behaviour. For general qualitative
study on shadowing property, one may refer to [2].

In recent time, the study of non-autonomous systems has gained significant attention with the publi-
cation of [7]. Such systems occur as mathematical models of real-life problems affected by two or more
(possibly distinct) external forces in different time span. These systems appear in various branches like
informatics, quantum mechanics, biology etcetera. The earliest known example with connection to biology
arise while solving the famous “mathematical rabbit problem” which was appeared in the book “Liber
Abaci” written by Fibonacci in the year 1202. This problem can be written in the form of second order
difference equation [5] which is also known as Fibonacci sequence and in this representation every state
depends explicitly on the current time and therefore it can be seen from the context of non-autonomous
systems. Because of such occurrences of non-autonomous systems in practical problems, it is important to
know about stability of such systems.

In [13], authors have studied expansivity and shadowing property in the context of non-autonomous
systems and proved a version of “Walters stability theorem” in this setting. In this paper, we prove the
following results which provide sufficient conditions for non-autonomous systems to be topologically
stable.

Let F be a commutative non-autonomous system on a Mandelkern locally compact metric space. Then
the following statements hold:

(i) If F is mean equicontinuous, mean expansive and has strong average shadowing property, then F is
topologically stable.

(ii) If F is equicontinuous, recurrently expansive and has eventual shadowing property, then F is topo-
logically stable.

(iii) If F is equicontinuous, expansive and has shadowing property, then F is topologically stable.

The first part of the above result shows that the average shadowing property is not only useful in
the investigation of chaos [3] but also in the investigation of stability. Although several notions that
describes the chaotic behaviour of commutative non-autonomous systems have been studied in [10–12]
recently, the usefulness of average shadowing property in the investigation of chaos in such systems is still
to be understood. The second part shows the connection of topological stability with a weaker form of
shadowing property called eventual shadowing property which is useful when one is not interested in the
initial behaviour of the system. The final part improves the conclusion of [13, Theorem 4.1], but under a
stronger hypothesis.

Before proving these results we introduce the above mentioned notions and study their general proper-
ties.

2. Definitions and General Properties

Throughout this paper Z, N and N+ denote the set of all integers, non-negative integers and positive
integers, respectively. A pair (X, d) denotes a metric space with the metric d and if no confusion arises of
the concerned metric d, then we simply write X is a metric space. All maps between metric spaces are
assumed to be uniformly continuous. A map f between metric spaces is said to be uniform equivalence
if both f and f−1 are uniformly continuous. Let { fi : X → X}i∈N+ be a sequence of maps on X. The family
F = { fi}i∈N+ is said to be a non-autonomous system (NAS) on X generated by { fi}i∈N+ . Moreover, F is said to
be an autonomous system generated by a continuous map f on X if fi = f , for each i ∈N+ and in this case,
we simply write F = 〈 f 〉. The NAS F is said to be periodic if there exists m ∈ N+ such that if fmi+ j = f j, for
each pair i, j ∈ N+ and the smallest such m is called the period of F. The NAS F is said to be commutative
if fi ◦ f j = f j ◦ fi, for each pair i, j ∈N+. The NAS F is called surjective if fi is surjective, for each i ∈N+.
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The set of all NAS on X, NAS of period m on X and commutative NAS on X are denoted by N(X), Nm(X)
and NC(X), respectively.

For F ∈ N(X) and n ∈ N, we define Fn = fn ◦ fn−1 ◦ ... f1 ◦ f0, where f0 denotes the identity map on
X. For 0 ≤ j ≤ k, we define F[ j,k] = fk ◦ fk−1 ◦ ... ◦ f j+1 ◦ f j. For k ∈ N+, the kth iterate of F is given by
Fk = {F[(i−1)k+1,ik]}i∈N+ .

Let (X, d) and (Y, p) be metric spaces. The product of F ∈ N(X) and G ∈ N(Y) is defined as F×G = { fi×1i :
X × Y→ X × Y}i∈N+ , where X × Y is equipped with the metric q((x1, y1), (x2, y2)) = max {d(x1, x2), p(y1, y2)}.

The NAS F ∈ N(X) is said to be equicontinuous if the family { fi}i∈N+ is equicontinuous. We now introduce
mean equicontinuity for non-autonomous systems.

Definition 2.1. The NAS F ∈ N(X) is said to be mean equicontinuous (ME) if for each ε > 0, there exists
a δ > 0 such that if a pair of sequences {xi}

∞

i=0 and {yi}
∞

i=0 of elements of X satisfies 1
n
∑n−1

i=0 d(xi, yi) < δ, then
1
n
∑n−1

i=0 d( f j(xi), f j(yi)) < ε, for each j ∈N+. A continuous map f on X is said to be mean continuous (MC) if
F = 〈 f 〉 is ME. A homeomorphism f on X is said to be mean equivalence (MEQ) if both f and f−1 are MC.

Example 2.2. (i) Every isometry is MEQ and every contraction map is MC.

(ii) The tent map f : [0, 1]→ [0, 1] given by f (x) = 2 min{x, 1 − x} is MC.

(iii) Let X =
∏

i∈Z Xi be equipped with the metric d(x, y) =
∑
∞

i=−∞
|xi−yi |

2|i| , where Xi = {0, 1}, for each i ∈ Z.
Let f : X → X be given by f (x) = y, where yi = xi+1, for each i ∈ Z. One can check that f is MEQ.
Further, for each pair x, y ∈ X, we have d( f (x), f (y)) ≤ 2d(x, y) and d( f−1(x), f−1(y)) ≤ 2d(x, y). Therefore
F = { f , f−1, f , f−1, f−1, f−1︸  ︷︷  ︸

2-times

, f , f︸︷︷︸
2-times

, f , f−1, f−1, f−1︸  ︷︷  ︸
2-times

, f , f︸︷︷︸
2-times

, f , f , f︸︷︷︸
3-times

, f−1, f−1, f−1︸        ︷︷        ︸
3-times

, f−1, f−1, f−1, f−1︸              ︷︷              ︸
4-times

, f , f , f , f︸   ︷︷   ︸
4-times

...}

is ME.

Proposition 2.3. Let F ∈ N(X) and G ∈ N(Y). Then the following statements hold:

(i) F and G are ME if and only if F × G is ME.
(ii) If F is ME, then Fk is ME for each k ∈N+.

Proof. For the proof of (i), use p, q ≤ max{p, q} ≤ p + q, for each pair p, q ≥ 0. Proof of (ii) follows from the
definition.

The NAS F ∈ N(X) is said to be expansive with expansivity constant c ∈ (0, 1) if for each pair of distinct
points x, y ∈ X, there is n ∈ N such that d(Fn(x),Fn(y)) > c [13]. If F = 〈 f 〉 is expansive, then f is said to be
positively expansive. Recall that if there exists a continuous injection f on a compact metric space X such
that F = 〈 f 〉 is expansive, then X is finite [4]. The following examples justify that this fact need not be true
for non-autonomous systems.

Example 2.4. Let X = { 1
m , 1 −

1
m : m ∈ N+

}. Define f : X→ X by f (0) = 0, f (1) = 1 and f (x) = x+ otherwise,
where x+ is the immediate right element to x. Then F = { f , f−1, f−2, f 2, f 3, f−3, f−4, f 4, ...} is expansive with
expansivity constant 0 < α < 1

6 .

Example 2.5. If f is given as in Example 2.2 (iii), then F = { f , f−1, f , f−1, f−1, f−1︸  ︷︷  ︸
2-times

, f , f︸︷︷︸
2-times

, f , f−1, f−1, f−1︸  ︷︷  ︸
2-times

, f , f︸︷︷︸
2-times

,

f , f , f︸︷︷︸
3-times

, f−1, f−1, f−1︸        ︷︷        ︸
3-times

, f−1, f−1, f−1, f−1︸              ︷︷              ︸
4-times

, ...} and also, G = { f , f−1, f−2, f 2, f 3, f−3, f−4, f 4, ...} are expansive with

expansivity constant 0 < α < 1
2 .

We also study the following notions both of which are stronger than expansivity.
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Definition 2.6. Let F ∈ N(X). Then:

(i) F is said to be recurrently expansive if there exists a constant c ∈ (0, 1) such that each pair of distinct
points x, y ∈ X satisfies lim sup

n→∞
d(Fn(x),Fn(y)) > c.

(ii) F is said to be mean expansive if there exists a constant c ∈ (0, 1) such that each pair of distinct points
x, y ∈ X satisfies lim sup

n→∞

1
n
∑n−1

i=0 d(Fi(x),Fi(y)) > c.

Remark 2.7. Let F ∈ N(X). If F is mean expansive, then F is recurrently expansive.

Proposition 2.8. The NAS F = 〈 f 〉 is recurrently expansive if and only if f is a positively expansive injective map.

Proof. If F is recurrently expansive with expansivity constant c, then it is clear that f is positively expan-
sive with expansivity constant c. Further, if f (x) = f (y), then f n(x) = f n(y), for each n ∈ N+ implying
lim sup

n→∞
d( f n(x), f n(y)) = 0. Therefore we must have x = y.

Conversely, suppose that f is positively expansive injective map with expansivity constant c. If x , y in
X, then by the positive expansivity of f there exists an n1 ∈ N such that d( f n1 (x), f n1 (y)) > c. By injectivity
and positive expansivity of f , we can choose an n2 ∈N+ such that d( f n2+n1+1(x), f n2+n1+1(y)) > c. Continuing
in this way, we can choose a strictly increasing sequence {mi}

∞

i=1 such that d( f mi (x), f mi (y)) > c. Therefore we
have lim sup

n→∞
d( f n(x), f n(y)) > c. Since x and y are chosen arbitrarily, we get the result.

Proposition 2.9. Let F ∈ N(X) and G ∈ N(Y). Then F and G are recurrently expansive (resp. mean expansive) if
and only if F × G is recurrently expansive (resp. mean expansive).

Proof. Proof is similar to the proof of [13, Theorem 2.4].

Proposition 2.10. Let F ∈ N(X) be equicontinuous. Then F is recurrently expansive if and only if Fk is recurrently
expansive, for each k ∈N+.

Proof. Proof is similar to the proof of [13, Theorem 2.2].

Example 2.11. If f is given as in Example 2.2 (iii), then F = { f , f−1, f−2, f 2, f , f−1, f−2, x f 2, f 3, f−3, f−4,
f 4, f , f−1, f−2, f 2, f 3, f−3, f−4, f 4, f 5, f−5, f−6, f 6, f 7, f−7, f−8, f 8, ...} is recurrently expansive with expansiv-
ity constant 0 < α < 1

2 but F2 is not recurrently expansive. Thus Proposition 2.10 need not hold if NAS is
not equicontinuous.

Proposition 2.12. Let F ∈ N(X). If Fk is mean expansive for some k ∈N+, then F is mean expansive.

Proof. Let us fix k ∈ N+. Suppose that Fk is mean expansive with expansivity constant c. For each
distinct pair x, y ∈ X and n ∈ N+, we have that 1

n
∑n−1

i=0 d((Fk)i(x), (Fk)i(y)) ≤ k 1
nk
∑(n−1)k

i=0 d(Fi(x),Fi(y)) ≤
k 1

nk
∑nk−1

i=0 d(Fi(x),Fi(y)). From this we conclude that F is mean expansive with expansivity constant ck .

The following example justifies that the converse of the Proposition 2.12 need not be true. We further
give sufficient condition under which the converse holds.

Example 2.13. Let f : R → R be given by f (x) = 2x, for each x ∈ R. Then F = { f , f−1, f 2, f−2, f 3, f−3, ...} is
mean expansive but F2 is not mean expansive.

Proposition 2.14. Let F ∈ Nm(X) be ME. If F is mean expansive, then Fk is mean expansive for each k ∈N+.
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Proof. Suppose that F ∈ Nm(X) is mean expansive with expansivity constant c. Fix k ∈ N+ and choose
a d > 0 such that for each pair of sequences {xi}

∞

i=0 and {yi}
∞

i=0, lim sup
n→∞

1
n
∑n−1

i=0 d(xi, yi) < md implies that

lim sup
n→∞

1
n
∑n−1

i=0 d(F j(xi),F j(yi)) < c
mk , for all 0 ≤ j ≤ (mk − 1).

Choose a pair x, y ∈ X such that lim sup
n→∞

1
n
∑n−1

i=0 d((Fk)i(x), (Fk)i(y)) < d. Note that lim sup
n→∞

1
n
∑n−1

i=0 d(Fmki(x),

Fmki(y)) < md.
By ME, lim sup

n→∞

1
n
∑n−1

i=0 d((Fmki+ j)(x), (Fmki+ j)(y)) < c
mk , for all 0 ≤ j ≤ (mk − 1) and hence,

lim sup
n→∞

1
n

n−1∑
i=0

d(Fi(x),Fi(y)) ≤ lim sup
n→∞

1
n

nmk−1∑
i=0

d(Fi(x),Fi(y))

≤

mk−1∑
j=0

lim sup
n→∞

1
n

n−1∑
i=0

d(Fmki+ j(x),Fmki+ j(y)) < c.

By using mean expansivity of F, we get that x = y. Hence Fk is mean expansive with expansivity constant
d.

Let F ∈ N(X) and γ = {xn}
∞

n=0 be a sequence of elements of X. Then γ is said to be a δ-pseudo orbit of F if
d( fi+1(xi), xi+1) < δ, for each i ∈N. We say that γ is a δ-average-pseudo orbit of F if there exists Nδ ∈N+ such
that 1

n
∑n−1

i=0 d( fi+k+1(xi+k), xi+k+1) < δ, for each n ≥ Nδ and for each k ∈ N. We say that γ can be ε-shadowed
by a point z ∈ X if d(Fn(z), xn) < ε, for each n ∈ N, and that γ can be eventually ε-shadowed by a point
z ∈ X if d(z, x0) < ε and lim sup

n→∞
d(Fn(z), xn) < ε. We say that γ can be ε-shadowed in average by a point

z ∈ X if lim sup
n→∞

1
n
∑n−1

i=0 d(Fi(z), xi) < ε, and that γ can be strongly ε-shadowed in average if it is ε-shadowed

in average by a point z ∈ X such that d(z, x0) < ε.
The NAS F ∈ N(X) has shadowing property if for every ε > 0, there exists a δ > 0 such that every

δ-pseudo orbit of F can be ε-shadowed by a point of X [13].

Definition 2.15. Let F ∈ N(X). Then we say that:

(i) F has eventual shadowing property (ESP) if for every ε > 0, there exists a δ > 0 such that every
δ-pseudo orbit of F can be eventually ε-shadowed by a point of X.

(ii) F has strong average shadowing property (SASP) if for every ε > 0, there exists a δ > 0 such that every
δ-average pseudo orbit of F can be strongly ε-shadowed in average by a point of X.

Proposition 2.16. Let F ∈ N(X) be equicontinuous. Then F has ESP if and only if Fk has ESP, for each k ∈N+.

Proof. Proof is similar to the proof of [13, Theorem 3.3] and [13, Theorem 3.5].

Proposition 2.17. Let (X, d) and (Y, p) be metric spaces, and let F ∈ N(X) and G ∈ N(Y). Then F and G both have
SASP (resp. ESP) if and only if F × G has SASP (resp. ESP).

Proof. Suppose that F and G has SASP. Let ε > 0 and δ > 0 be given for ε
2 by SASP of F and G. Let

λ = {(xn, yn)}∞n=0 be a δ-average pseudo orbit of F×G. Since d( fn+1(xn), xn+1) ≤ q(( fn+1×1n+1)(xn, yn), (xn+1, yn+1))
and p(1n+1(yn), yn+1) ≤ q(( fn+1×1n+1)(xn, yn), (xn+1, yn+1)), we get that γ = {xn}

∞

n=0 and η = {yn}
∞

n=0 are δ-average
pseudo orbits of F and G respectively. Now, proof follows from the observation that ifγ and η can be strongly
ε
2 -shadowed in average respectively by x ∈ X and y ∈ Y, then λ can be strongly ε-shadowed in average by
(x, y) ∈ X × Y.

Conversely, suppose that F × G has SASP. Let ε > 0 and δ > 0 be given for ε
2 by SASP of F × G.

Let γ = {xn}
∞

n=0 be a δ-average pseudo orbit of F. Let η = {yn = Gn(y)}∞n=0, for some y ∈ Y. Clearly,
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λ = {(xn, yn)}∞n=0 is a δ-average pseudo orbit of F × G and hence, it can be strongly ε-shadowed in average
by a point (x, z) ∈ X × Y. Clearly, γ can be strongly ε-shadowed in average by x through F and hence, F has
SASP. Similarly, one can prove that G has SASP.

Using similar arguments as above, one can prove that F and G has ESP if and only if F × G has ESP

We say that F ∈ N(X) is transitive if for each pair of non-empty open sets U and V of X, there exists
n ∈N+ such that F[i,i+(n−1)](U) ∩ V , φ, for each i ∈N+.

For given x, y ∈ X, we write xRδy if there exists an n ∈N+ such that for each j ∈N+ there exists a finite
sequence x = x j

0, x
j
1, ..., x

j
n−1, x

j
n = y satisfying d( f j+i(x

j
i ), x

j
i+1) < δ, for all 0 ≤ i < n. We write xRδy if xRδy and

yRδx and we write xRy if xRδy, for each δ > 0. We say that F ∈ N(X) is chain transitive if xRy, for each
pair x, y ∈ X. Note that if F = 〈 f 〉, then this definition boils down to the following in case of autonomous
systems.

F = 〈 f 〉 is said to be chain transitive if for every δ > 0 and each pair x, y ∈ X, there exists a finite sequence
z0 = x, z1, z2, ..., zm = y of elements in X such that d( f (zi), zi+1) < δ, for all 0 ≤ i < m.

Theorem 2.18. Let F ∈ N(X) be an equicontinuous NAS. If F is transitive, then F is chain transitive.

Proof. For a given ε > 0, choose a δ > 0 by equicontinuity of F. By transitivity, choose n ∈ N+ such
that F[ j, j+(n−1)](B(x, δ)) ∩ B(y, δ) , φ, for each j ∈ N+. So, for each j ∈ N+, there exists z j

∈ B(x, δ) such
that the sequence x = x j

0, x
j
1 = f j(z j), x j

2 = ( f j+1 ◦ f j)(z j), ..., x j
n−1 = ( f j+(n−2) ◦ ... ◦ f j+1 ◦ f j)(z j), x j

n = y satisfies
d( f j+i(x

j
i ), x

j
i+1) < ε, for all 0 ≤ i ≤ (n − 1) and hence xRεy. Since j, x, y and ε are chosen arbitrarily, we

conclude that F is chain transitive.

Theorem 2.19. Let F ∈ N(X) be a surjective system with shadowing property. If F is chain transitive, then it is
transitive.

Proof. Choose a pair x, y ∈ X and an ε > 0. Let δ > 0 be given for ε by the shadowing property of F.
By chain transitivity of F, there exists n ∈ N+ such that for each j ∈ N+, there exists a finite sequence
x = x j

0, x
j
1, ..., x

j
n−1, x

j
n = y satisfying d( f j+i(x

j
i ), x

j
i+1) < δ, for all 0 ≤ i ≤ (n − 1). Extend this sequence

to a δ-pseudo orbit η = {z0, ..., z j−3, z j−2, z j−1 = x = x j
0, z j = x j

1, ..., z j+(n−2) = x j
n−1, z j+(n−1) = x j

n = y, z j+n =
f j+n(y), z j+(n+1) = f j+(n+1)(z j+n), ...} of F, where fi(zi−1) = zi, for all 1 ≤ i ≤ ( j− 1) and z j+(n+k) = f j+(n+k)(z j+(n+k−1)),
for each k ≥ 2. By the shadowing property of F, there exists w ∈ X such that d(Fn(w), zn) < ε, for each
n ∈ N+. Therefore F j−1(w) ∈ B(x, ε) and F[ j, j+(n−1)](F j−1(w)) ∈ B(y, ε). Hence (F[ j, j+(n−1)](B(x, ε)) ∩ B(x, δ)) , φ.
Since j, x, y and ε are chosen arbitrarily, we conclude that F is transitive.

In the following two results, we study relations among shadowing property, eventual shadowing
property, average shadowing property and strong average shadowing property in case of an autonomous
system. Unfortunately, we do not know much in case of a nonautonomous system.

Lemma 2.20. Let F = 〈 f 〉 be a chain transitive system on a compact metric space X. Then F has ESP if and only if F
has shadowing property.

Proof. As the converse implication follows from the definition, we only need to prove the forward implica-
tion. Suppose that F has ESP but does not have shadowing property. For given ε > 0 and each n ∈N+, we
can choose a finite 1

n -pseudo orbit αn of F which cannot be ε-shadowed. Let δ > 0 be given for this ε by ESP
and fix k ∈ N+ such that 1

k < δ. By chain transitivity of F, choose a finite 1
m -pseudo orbits γm of F such that

αmγmαm+1 forms a finite 1
m -pseudo orbits of F, for each m ≥ k. Clearly, αkγkαk+1γk+1αk+2... forms a δ-pseudo

orbit of F and hence it can be eventually ε-shadowed by a point of X. So, there exists p ∈ N+ such that for
each j ≥ p, α j can be ε-shadowed by a point of X, which is a contradiction.

Theorem 2.21. Let F = 〈 f 〉 be chain transitive with ESP on a compact metric space X. Then f has average shadowing
property if and only if f has SASP.

Proof. Since the converse implication follows from the definition, we only need to prove the forward
implication. By Theorem 2.20, f has shadowing property and hence by [8, Theorem 1], f has specification
property. Using similar arguments as given in the proof of [8, Lemma 12], we can prove that f has SASP.
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3. Sufficient Conditions For Topological Stability

For a metric space (X, d), define the bounded metric d1 by d1(x, y) = min{d(x, y), 1}, for each pair x, y ∈ X.
Let (C(X), η) be the metric space of set of all continuous self maps of X, where the metric η is defined
by η( f , 1) = supx∈X d1( f (x), 1(x)). We define the metric γ on N(X) by γ(F,G) = supi∈N η( fi, 1i), where
F = { fi}i∈N+ ,G = {1i}i∈N+ .

Definition 3.1. We say that F ∈ NC(X) is topologically stable if for every ε > 0, there exists δ > 0 such that
for any G ∈ NC(X) satisfying γ(F,G) < δ, there exists a continuous map h : X → X such that fi ◦ h = h ◦ 1i,
for each i ∈N and d(h(x), x) < ε, for all x ∈ X.

We say that F ∈ N(X) and G ∈ N(Y) are uniformly conjugate if there exists a uniform equivalence
h : Y→ X such that fi ◦ h = h ◦ 1i, for each i ∈N. The map h is called uniform conjugacy between X and Y.
A property of a NAS is called uniform dynamical property if it is preserved under uniform conjugacy.

Theorem 3.2. Let (X, d) and (Y, p) be two metric spaces and let F ∈ NC(X), H ∈ NC(Y). If F and H are uniformly
conjugate, then F is topologically stable if and only if H is topologically stable. In other words, topological stability of
a NAS is uniform dynamical property.

Proof. Suppose that F is topologically stable. Let j : Y → X be a uniform conjugacy between F and H i.e.
fi ◦ j = j ◦ hi, for each i ∈ N. We claim that H is also topologically stable. For a given ε ∈ (0, 1), choose a
β ∈ (0, 1) by the uniform continuity of j−1. For this β, choose an α ∈ (0, 1) by the topological stability of F.
For this α, choose a δ ∈ (0, 1) by the uniform continuity of j. Let G ∈ NC(Y) satisfies γY(H,G) < δ. Since
supi∈N η

Y(hi, 1i) < δ implies that ηY( j−1
◦ fi◦ j, 1i) < δ, for each i ∈N, we get that dY

1 ( j−1
◦ fi◦ j(y), 1i(y)) < δ, for

each i ∈N and for each y ∈ Y. By the uniform continuity of j, we get that dX
1 (( fi ◦ j)(y), ( j◦1i ◦ j−1)( j(y))) < α,

for each i ∈ N and for each y ∈ Y. Set G′ = {1′i = j ◦ 1i ◦ j−1
}i∈N+ . By topological stability of F, there exists a

continuous map k : X→ X such that fi ◦ k = k ◦ 1′i , for each i ∈N and d(k(x), x) < β, for each x ∈ X. If we set
k′ = j−1

◦ k ◦ j, then hi ◦ k′ = hi ◦ j−1
◦ k ◦ j = j−1

◦ fi ◦ k ◦ j = j−1
◦ k ◦ 1′i ◦ j = j−1

◦ k ◦ j ◦ 1i ◦ j−1
◦ j = k′ ◦ 1i,

for each i ∈ N. Also, by uniform continuity of j−1, we have p(k′(y), y) < ε, for each y ∈ Y, which completes
the proof of forward implication. Using similar arguments, one can prove that if H is topologically stable,
then F is topologically stable.

We say that a metric space is Mandelkern locally compact [9] if every bounded subset of the space is
contained in a compact subset of the space. Observe that, a metric space is Mandelkern locally compact if
and only if every closed ball of a finite radius is a compact subset of the space. From now onwards, we
assume that X is a Mandelkern locally compact metric space. Without loss of generality, we also assume
that 0 < ε, δ, α, β, c, c′ < 1.

Theorem 3.3. Let F ∈ NC(X) be an equicontinuous recurrently expansive NAS with expansivity constant c. If F
has ESP, then F is topologically stable. Moreover, for each ε ∈ (0, c3 ), there exists a δ > 0 such that if G ∈ NC(X)
satisfies γ(F,G) < δ, then there exists a unique continuous map h : X → X such that Fn ◦ h = h ◦ Gn, for each
n ∈ N and d(h(x), x) < ε, for each x ∈ X. In addition, if G is expansive with expansivity constant c′ ≥ 3ε, then the
conjugating map h is injective.

Lemma 3.4. Let F ∈ N(X) be recurrently expansive with expansivity constant c. If F has ESP, then for each ε ∈ (0, c3 )
there exists δ ∈ (0, c3 ) given for this ε by ESP of F such that each δ-pseudo orbit of F can be eventually ε-shadowed by
exactly one point.

Proof. Let {xn}n∈N be a δ-pseudo orbit of F and suppose that x, y ∈ X eventually ε-shadows a δ-pseudo orbit
{xn}n∈N of F. Since d(Fn(x),Fn(y)) ≤ d(Fn(x), xn) + d(xn,Fn(y)), for each n ∈N, we get that,

lim sup
n→∞

d(Fn(x),Fn(y)) ≤ lim sup
n→∞

(d(Fn(x), xn) + d(xn,Fn(y)))

≤ lim sup
n→∞

d(Fn(x), xn) + lim sup
n→∞

d(xn,Fn(y))

≤ 2ε < c.
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By recurrent expansivity of F, we get that x = y which completes the proof.

Lemma 3.5. Let F be recurrently expansive with expansivity constant c. For any x0 ∈ X and λ > 0, there exists an
N > 0 such that if x ∈ X satisfies d(Fn(x0),Fn(x)) ≤ c, for all 0 ≤ n ≤ N, then d(x0, x) < λ.

Proof. Fix x0 ∈ X and choose a sequence {xN}N∈N+ in X such that d(Fn(x0),Fn(xN)) ≤ c, for all 0 ≤ n ≤ N
and d(x0, xN) ≥ λ. Since B[x0, c] is a compact subset of X, we can assume that xN converges to x, for some
x ∈ X. By using continuity of each Fn, we get that d(Fn(x0),Fn(x)) ≤ c, for each n ∈ N and d(x0, x) ≥ λ, a
contradiction to the recurrent expansivity of F.

Proof of Theorem 3.3. For a given ε ∈ (0, c3 ), choose a β ∈ (0, ε) by the equicontinuity of F. Let δ ∈ (0, β)
be given for β by the ESP of F. Let G ∈ NC(X) be such that γ(F,G) < δ i.e. η( fi(x), 1i(x)) < δ, for each
i ∈ N and for each x ∈ X. Therefore {Gn(x)}n∈N forms a δ-pseudo orbit of F, for each x ∈ X. By Lemma 3.4,
define h : X → X such that h(x) is a unique eventually β-tracing point of the δ-pseudo orbit {Gn(x)}n∈N i.e.
lim sup

n→∞
d(Fn(h(x)),Gn(x)) < β, for each x ∈ X, where d(h(x), x) < ε, for each x ∈ X. Note that for each x ∈ X

and for each i ∈N, we have

lim sup
n→∞

d(Fn( fi(h(x))),Fn(h(1i(x)))) ≤ lim sup
n→∞

d( fi(Fn(h(x))), fi(Gn(x)))

+ lim sup
n→∞

d( fi(Gn(x)), 1i(Gn(x)))

+ lim sup
n→∞

d(Gn(1i(x)),Fn(h(1i(x))))

< 3ε < c.

By the recurrent expansivity of F, we get that( fi ◦ h)(x) = (h ◦ 1i)(x), for each i ∈ N. Hence Fn ◦ h = h ◦ Gn,
for each n ∈N.

Now, we show that h is a continuous map. Let x0 ∈ X and λ > 0. By Lemma 3.5, there exists an N > 0
such that if y ∈ X satisfies d(Fn(h(x0)),Fn(h(y))) ≤ c, for each n ≤ N, then d(h(x0), h(y)) < λ. Choose an α > 0
such that if y ∈ X satisfies d(x0, y) < α, then d(Gn(x0),Gn(y)) < c

3 , for each n ≤ N. Therefore if y ∈ X satisfies
d(x0, y) < α, then for each n ≤ N, we have,

d(Fn(h(x0)),Fn(h(y))) = d(h(Gn(x0)), h(Gn(y)))
≤ d(h(Gn(x0)),Gn(x0)) + d(Gn(x0),Gn(y)) + d(Gn(y), h(Gn(y)))
< ε + c

3 + ε < c.

Thus, we get that d(h(x0), h(y)) < λ. Since λ is chosen arbitrarily, we get that h is continuous at x0. Since
x0 is chosen arbitrarily, we get that h is a continuous map.

Assume that there exists another continuous map h′ : X → X such that Fn ◦ h′ = h′ ◦ Fn, for each n ∈ N
and d(h′(x), x) < ε, for each x ∈ X. Therefore for each n ∈N and for each x ∈ X, we have

d(Fn(h(x)),Fn(h′(x))) ≤ d(Fn(h(x)),Gn(x)) + d(Gn(x),Fn(h′(x))) = d(h(Gn(x)),Gn(x))
+ d(Gn(x), h′(Gn(x))) < 2ε < c.

Hence by recurrent expansivity of F, we get that h(x) = h′(x), for each x ∈ X.
Now, assume that h(x) = h(y). Note that for each n ∈N, we have,

d(Gn(x),Gn(y)) ≤ d(Gn(x), h(Gn(x))) + d(h(Gn(x)), h(Gn(y))) + d(h(Gn(y)),Gn(y))
< ε + 0 + ε = 2ε < c′.

Therefore by the expansivity of G, we get that x = y.

Theorem 3.6. Let F ∈ NC(X) be an equicontinuous expansive system with expansivity constant c. If F has shadowing
property, then F is topologically stable. Moreover, for each ε ∈ (0, c3 ), there exists a δ > 0 such that if G ∈ NC(X)
satisfies γ(F,G) < δ, then there exists a unique continuous map h : X→ X such that Fn ◦ h = h ◦Gn, for each n ∈N
and d(h(x), x) < ε, for each x ∈ X. In addition, if G is expansive with expansivity constant c′ ≥ 3ε, then h is injective.
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Proof. Proof is similar to the proof of Theorem 3.3

Theorem 3.7. Let F ∈ NC(X) be mean equicontinuous and mean expansive with expansivity constant c. If F has
SASP, then F is topologically stable. Moreover, for each ε ∈ (0, c3 ), there exists a δ > 0 such that if G ∈ NC(X) satisfies
γ(F,G) < δ, then there exists a unique continuous map h : X → X satisfying Fn ◦ h = h ◦ Gn, for each n ∈ N and
d(h(x), x) < ε, for each x ∈ X. In addition, if G is expansive with expansivity constant c′ ≥ 3ε, then h is injective.

Lemma 3.8. Let F be mean expansive with expansivity constant c. Suppose that F has SASP and for a given
ε ∈ (0, c3 ), choose a δ > 0 by SASP of F. Then each δ-average pseudo orbit of F can be strongly ε-shadowed in average
uniquely.

Proof. Let {xn}n∈N be a δ-average pseudo orbit of F and let it can be strongly ε-shadowed in average by
x, y ∈ X. Then d(Fn(x),Fn(y)) ≤ d(Fn(x), xn) + d(xn,Fn(y)), for each n ∈N, which implies that,

lim sup
n→∞

1
n

n−1∑
i=0

d(Fi(x),Fi(y)) ≤ lim sup
n→∞

1
n

n−1∑
i=0

(d(Fi(x), xi) + d(xi,Fi(y)))

≤ lim sup
n→∞

1
n

n−1∑
i=0

d(Fi(x), xi) + lim sup
n→∞

1
n

n−1∑
i=0

d(xi,Fi(y))

< 2ε < c.

By mean expansivity of F, we get that x = y which completes the proof.

Lemma 3.9. Let F be mean expansive with expansivity constant c. For any x0 ∈ X and λ > 0, there exists an N > 0
such that if x ∈ X satisfies 1

n
∑n−1

i=0 d(Fi(x0),Fi(x)) ≤ c, for each n ≤ N, then d(x0, x) < λ.

Proof. Fix an x0 ∈ X and choose a sequence {xN}N∈N+ in X such that 1
n
∑n−1

i=0 d(Fi(x0), Fi(xN)) ≤ c, for each
n ≤ N and d(x0, xN) ≥ λ. Since B[x0, c] is a compact subset of X, we can assume that xN converges to x ∈ X.
For each n ∈ N and for a given ε > 0, there exists an N′ ≥ n such that d(Fi(x),Fi(xN)) < ε, for all 0 ≤ i ≤ n
and for each N ≥ N′. For such an N′, 1

n
∑n−1

i=0 d(Fi(x),Fi(xN′ )) < ε and hence,

1
n

n−1∑
i=0

d(Fi(x0),Fi(x)) ≤
1
n

n−1∑
i=0

d(Fi(x0),Fi(xN′ )) +
1
n

n−1∑
i=0

d(Fi(xN′ ),Fi(x)) ≤ c + ε.

Since n and ε are chosen arbitrarily, we get that lim sup
n→∞

1
n
∑n−1

i=0 d(Fi(x0),Fi(x)) ≤ c and d(x0, x) ≥ λ which is a

contradiction to the mean expansivity of F.

Proof of Theorem 3.7 Let β ∈ (0, ε) be given for ε ∈ (0, c3 ) by mean equicontinuity of F. For β, choose a
δ ∈ (0, β) such that each δ-average pseudo orbit of F can be strongly β-shadowed in average by a point of
X. Let G ∈ NC(X) be such that γ(F,G) < δ i.e. η( fi(x), 1i(x)) < δ, for each x ∈ X and for each i ∈ N. Thus,
the sequence {Gn(x)}n∈N forms a δ-average pseudo orbit of F, for each x ∈ X. Define the map h : X → X
such that h(x) is a unique strongly β-tracing point in average of the δ-average pseudo orbit {Gn(x)}n∈N i.e.
lim sup

n→∞

1
n
∑n−1

i=0 d(Fi(h(x)),Gi(x)) < β, for each x ∈ X and d(h(x), x) < β, for each x ∈ X. Note that for each x ∈ X

and for each m ∈N, we have,
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lim sup
n→∞

1
n

n−1∑
i=0

d(Fi( fm(h(x))),Fi(h(1m(x)))) ≤ lim sup
n→∞

1
n

n−1∑
i=0

d( fm(Fi(h(x))), fm(Gi(x)))

+ lim sup
n→∞

1
n

n−1∑
i=0

d( fm(Gi(x)), 1m(Gi(x)))

+ lim sup
n→∞

1
n

n−1∑
i=0

d(Gi(1m(x)),Fi(h(1m(x))))

< 3ε < c.

By mean expansivity of F, we get that fm ◦ h = h ◦ 1m, for each m ∈N and hence we have Fn ◦ h = h ◦Gn,
for each n ∈N.

We claim that h is continuous. Let x0 ∈ X and λ > 0. By Lemma 3.9, there exists an N > 0 such that if
y ∈ X satisfies 1

n
∑n−1

i=0 d(Fi(x0),Fi(y)) ≤ c, for each n ≤ N, then d(x0, y) < λ. Choose an α > 0 such that if y ∈ X
satisfies d(x0, y) < α, then d(Gn(x0),Gn(y)) < c

3 , for each n ≤ N. Therefore if y ∈ X satisfies d(x0, y) < α, then
for each n ≤ N, we have,

1
n
∑n−1

i=0 d(Fi(h(x0)),Fi(h(y))) = 1
n
∑n−1

i=0 d(h(Gi(x0)), h(Gi(y)))
≤

1
n
∑n−1

i=0 d(h(Gi(x0)),Gi(x0)) + 1
n
∑n−1

i=0 d(Gi(x0),Gi(y)) + 1
n
∑n−1

i=0 d(Gi(y), h(Gi(y)))
< c.

Therefore d(h(x0), h(y)) < λ. Since λ is chosen arbitrarily, we get that h is continuous at x0. Since x0 is
chosen arbitrarily, we get that h is a continuous map.

Assume that there exists another continuous map h′ : X→ X satisfying Fn ◦ h′ = h′ ◦Gn, for each n ∈N
and d(h′(x), x) < ε, for each x ∈ X. Therefore for each n ∈N+ and for each x ∈ X, we have,

1
n

n−1∑
i=0

d(Fi(h(x)),Fi(h′(x))) ≤
1
n

n−1∑
i=0

d(Fi(h(x)),Gi(x)) +
1
n

n−1∑
i=0

d(Gi(x),Gi(h′(x)))

=
1
n

n−1∑
i=0

d(h(Gi(x)),Gi(x)) +
1
n

n−1∑
i=0

d(Gi(x), h′(Gi(x)))

< 2ε < c.

Hence by mean expansivity of F, we get that h(x) = h′(x), for each x ∈ X.
Assume that h(x) = h(y). Now, for each n ∈ N, we have d(Gn(x),Gn(y)) ≤ d(Gn(x), h(Gn(x))) +

d(h(Gn(x)), h(Gn(y))) + d(h(Gn(y)),Gn(y)) < c′. Therefore by the expansivity of G we get that x = y.

Corollary 3.10. Every commutative equicontinuous mean expansive NAS with ESP on a Mandelkern locally compact
metric space is topologically stable.

Example 3.11. Let X = R be given with the usual metric and choose an m > 1. Define 1m : X → X by
1m(x) = mx, for each x ∈ X. Consider Fm = { fi}i∈N+ such that for each i ∈ N+, exactly one of the triplet
f3i+1, f3i+2, f3i+3 is 1m and the other two are identity maps on X. Note that Fm need not be a periodic
system. Also, Fm is equicontinuous, mean equicontinuous, recurrently expansive and mean expansive.
Since F3

m = 〈1m〉, by Proposition 2.16, we get that Fm has ESP. From Corollary 3.10, we get that Fm is
topologically stable.
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