Filomat 35:11 (2021), 3679–3687 https://doi.org/10.2298/FIL2111679P

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Module Decompositions by Images of Fully Invariant Submodules

Tugce Pekacar Calci^a, Burcu Ungor^a, Abdullah Harmanci^b

^aDepartment of Mathematics, Ankara University, Ankara, Turkey ^bDepartment of Mathematics, Hacettepe University, Ankara, Turkey

Abstract. Let *R* be a ring with identity, *M* be a right *R*-module and *F* be a fully invariant submodule of *M*. The concept of an *F*-inverse split module *M* has been investigated recently. In this paper, we approach to this concept with a different perspective, that is, we deal with a notion of an *F*-image split module *M*, and study various properties and obtain some characterizations of this kind of modules. By means of *F*-image split modules *M*, we focus on modules *M* in which fully invariant submodules *F* are dual Rickart direct summands. In this way, we contribute to the notion of a *T*-dual Rickart module *M* by considering $\overline{Z}^2(M)$ as the fully invariant submodule *F* of *M*. We also deal with a notion of relatively image splitness to investigate direct sums of image split modules. Some applications of image split modules to rings are given.

1. Introduction

Throughout this paper R denotes an associative ring with identity and modules are unitary right *R*-modules unless otherwise stated. For a module M, $S = \text{End}_R(M)$ is the ring of all right *R*-module endomorphisms of M and F stands for a fully invariant submodule of M (i.e., $f(F) \subseteq F$ for every $f \in S$). Maeda [8] and Hattori [5] studied Rickart rings (or principally projective rings), independently. A ring is called right Rickart if every principal right ideal is projective, equivalently, the right annihilator of any single element is generated by an idempotent as a right ideal. A left Rickart ring is defined similarly. Recently, the notion of Rickart rings was generalized to the module theoretic version and investigated in [1] and [6]. A module *M* is said to be *Rickart* if the right annihilator in *M* of any single element of *S* is generated by an idempotent of S, that is, for any $f \in S$, $r_M(f) = \text{Ker}f = eM$ for some $e^2 = e \in S$. In [2], a concept of T-Rickart modules was defined by considering the second singular (or Goldie torsion) submodule of a module, namely, a module *M* is called *T*-*Rickart* if $t_M(f) = \{m \in M \mid f(m) \in Z_2(M)\}$ is a direct summand of *M* for every $f \in S$. On the other hand, in [15], a module *M* is said to be *F*-inverse split if $f^{-1}(F)$ is a direct summand of *M* for every $f \in S$. There are some interesting connections between these classes of modules. For example, in [15], it is proved that *M* is *F*-inverse split if and only if *M* has a decomposition $M = F \oplus N$ where N is a Rickart module. Since the second singular submodule $Z_2(M)$ of M is fully invariant in M, being a T-Rickart module and being a $Z_2(M)$ -inverse split module are the same. Some applications of the notion of an F-inverse split module M are presented in [4], [14], [15] and [16] by considering certain fully invariant submodules aside from the second singular submodule.

Keywords. Dual Rickart module, image split module, fully invariant submodule, direct summand

Received: 12 August 2020; Revised: 06 April 2021; Accepted: 21 April 2021

Communicated by Dijana Mosić

²⁰²⁰ Mathematics Subject Classification. Primary 16D70; Secondary 16D10, 16D40, 16D80

Email addresses: tcalci@ankara.edu.tr (Tugce Pekacar Calci), bungor@science.ankara.edu.tr (Burcu Ungor), harmanci@hacettepe.edu.tr (Abdullah Harmanci)

As a dual version of Rickart property for modules, in [7], a module M is called *dual Rickart* if Im f is a direct summand of M for every endomorphism f of M. Motivated by the concepts of dual Rickart modules and T-Rickart modules, T-dual Rickart modules were introduced in [3], that is, a module M is called *T-dual Rickart* if $f(\overline{Z}^2(M))$ is a direct summand of M for every $f \in S$ where $\overline{Z}^2(M) = \overline{Z}(\overline{Z}(M))$ and $\overline{Z}(M) = \bigcap\{\text{Ker } f : f \in \text{Hom}_R(M, N) \text{ where } N \text{ is small in its injective hull} \text{ which was defined in [13]. With the inspiration of these works, it is of interest to present the notion of <math>F$ -image split modules in a sense of a dual version of F-inverse split modules. We say that a module M is F-image split if f(F) is a direct summand of M for every $f \in S$.

In the light of aforementioned concepts, it is a reasonable question that what kind of properties does *F* gain when a module *M* is splitted by the images of *F*? This question is one of the motivations to deal with the notion of an *F*-image split module *M*. We answer this question in Theorem 2.2, that is, *F* becomes a dual Rickart module in addition to be a direct summand of *M*. The concept of T-dual Rickart modules produces dual Rickart modules by employing the submodule $\overline{Z}^2(M)$ of *M*. By using the fully invariant submodule *F* of a module *M*, we produce much more dual Rickart modules for this general setting. Therefore, the concept of *F*-image splitness is more general than that of T-dual Rickart modules. These connections make the concept of an *F*-image split module *M* more attractive to study.

In Section 2, we give some properties and characterizations of *F*-image split modules. We get some results by considering the singular submodule as a fully invariant submodule. We also deal with an *F*-image split module concept for rings and we present some applications about these rings. In Section 3, we focus on when the direct sums of *F*-image split modules *M* satisfy the same property. In this direction, we study relatively *F*-image splitness. Lastly, in Section 4, we introduce strongly *F*-image split modules and observe a main characterization of these modules.

In what follows, Soc(*M*) and *Z*(*M*) stand for the socle and the singular submodule of a module *M*, also, *J*(*R*) denotes the Jacobson radical of a ring *R*, respectively. For a positive integer *n*, $M_n(R)$ denotes the ring of $n \times n$ matrices over a ring *R*.

2. F-image split modules

Throughout this paper, *F* denotes a fully invariant submodule of a module *M* under consideration. In this section we study the concept of an *F*-image split module *M* and get properties about this class of modules. We investigate useful characterizations for this notion. Also, we obtain some results about the ring cases of *F*-image split modules as an application to the ring theory.

Definition 2.1. A module *M* is called *F*-*image split* if f(F) is a direct summand of *M* for every $f \in S$.

It is clear that every semisimple module *M* is *F*-image split and so every module *M* over a semisimple ring is *F*-image split. Obviously, every module *M* is 0-image split. It can be obtained from the definition, a module *M* is dual Rickart if and only if it is *M*-image split.

We now give an efficient characterization for an *F*-image split module *M*. Thanks to this characterization we can get dual Rickart modules by means of fully invariant submodules.

Theorem 2.2. *The following are equivalent for a module M.*

- 1. *M* is an *F*-image split module.
- 2. F is a dual Rickart direct summand of M.

Proof. (2) \Rightarrow (1) Let $f \in S$. As F is a direct summand of M, there exists an idempotent $e \in S$ such that F = eM. Then, End_R(F) = eSe. Since F is dual Rickart, efe(F) is a direct summand of F. We claim that efe(F) = f(F). For any $x \in F$, efe(x) = ef(x) = f(x). Therefore, efe(F) = f(F). The rest is clear.

(1) ⇒ (2) Let *M* be *F*-image split. Then, for $1_M \in S$, $1_M(F) = F$ is a direct summand of *M*. Hence, F = eM for some $e^2 = e \in S$. To see that *F* is a dual Rickart module, let $f \in \text{End}_R(F) = eSe$. Thus, there exists $g \in S$ such that f = ege. Since *M* is *F*-image split, g(F) is a direct summand of *M*. As *F* is fully invariant, f(F) = ege(F) = g(F). So f(F) is a direct summand of *M*. By modularity condition, f(F) is a direct summand of *F* and so *F* is a dual Rickart module. \Box

Corollary 2.3. Let M be an F-image split module and N a fully invariant submodule which contains F. If every endomorphism of N can be extended to an endomorphism of M, then N is F-image split.

Corollary 2.4. Every indecomposable F-image split module M is either dual Rickart or F = 0.

The following corollary is a direct consequence of Corollary 2.4 if we consider the singular submodule as a fully invariant submodule.

Corollary 2.5. Every indecomposable Z(M)-image split module M is either nonsingular or singular dual Rickart.

Proof. Let M be an indecomposable Z(M)-image split module. By Corollary 2.4, Z(M) = 0, i.e., M is nonsingular or *M* is dual Rickart. In the latter case, Z(M) = M.

Example 2.6. Let $R = \begin{bmatrix} F & 0 \\ F & F \end{bmatrix}$ where *F* is a field. Then, $Z(R_R) = 0$. Thus, R_R is $Z(R_R)$ -image split.

We approach to Theorem 2.2 in terms of singular submodules.

Theorem 2.7. Let M be a module. Then, the following are equivalent.

- 1. M is Z(M)-image split.
- 2. $M = Z(M) \oplus N$ where Z(M) is dual Rickart and N is nonsingular.
- 3. Z(M) is a dual Rickart direct summand of M.

Proof. (1) \Rightarrow (2) By hypothesis and Theorem 2.2, *M* has a decomposition $M = Z(M) \oplus N$ where Z(M) is a dual Rickart module. Since Z(M) is an essential submodule of $Z_2(M)$ and $Z_2(M) = Z(M) \oplus (Z_2(M) \cap N)$, we have $Z(M) = Z_2(M)$. Hence, N is nonsingular since $N \cong M/Z_2(M)$. $(2) \Rightarrow (3)$ It is clear.

(3) \Rightarrow (1) *M* is *Z*(*M*)-image split by Theorem 2.2. \Box

In the next result we investigate that F-image split property for a module M is transferred to direct summands of *M*.

Proposition 2.8. If M is an F-image split module and N is a direct summand of M, then N is an $(F \cap N)$ -image split module.

Proof. Assume that $M = N \oplus K$ for some submodule K of M and M is F-image split. By [12], $F = (F \cap N) \oplus (F \cap K)$. Let $e: M \to N$ be the canonical homomorphism and $g \in \text{End}_R(N)$. Since M is an F-image split module, ge(F)is a direct summand of M. Also, $ge(F) = ge(F \cap N) + ge(F \cap K) = ge(F \cap N)$. As $g(F \cap N) = ge(F \cap N) = ge(F)$, $g(F \cap N)$ is a direct summand of *M*. Hence, $g(F \cap N)$ is a direct summand of *N*, as asserted. \Box

Corollary 2.9. If M is a Z(M)-image split module, then any direct summand N of M is Z(N)-image split.

Proof. Let *M* be a *Z*(*M*)-image split module and *N* a direct summand of *M*. Then, *N* is $(N \cap Z(M))$ -image split by Proposition 2.8. Hence, *N* is Z(N)-image split since $N \cap Z(M) = Z(N)$.

Proposition 2.10. Let M be a quasi-projective module. Then, M is F-image split if and only if for every submodule *K* of *M* with $K \subseteq g(F)$ for each $0 \neq g \in End_R(M)$, *M*/*K* is *F*/*K*-image split.

Proof. Let *M* be *F*-image split and $f \in \text{End}_R(M/K)$. Since *M* is a quasi-projective module, there exists $q \in$ $End_{\mathcal{R}}(M)$ such that the following diagram commutes. The module M being F-image split implies that $M = q(F) \oplus L$ for some submodule L of M. Then, M/K = (q(F)/K) + ((L + K)/K) and this sum is direct since $(q(F)/K) \cap ((L+K)/K) = \{0+K\}$. Also, it can be shown that f(F/K) = q(F)/K. Hence, f(F/K) is a direct summand of M/K, and so M/K is F/K-image split.

The converse is obvious. \Box

Recall that M has the summand sum property (SSP) if the sum of two direct summands is a direct summand of M. Also, M has the strong summand sum property (SSSP) if the sum of any number of direct summands is again a direct summand of M.

Proposition 2.11. For an F-image split module M, the following statements hold.

- 1. Let K, L be direct summands of M and $K \subseteq F$. Then, K + L is a direct summand of M.
- 2. M has SSP for direct summands which are contained in F.

Proof. It is clear from the proof of [3, Proposition 3.14]. \Box

Theorem 2.12. *The following are equivalent for a module M.*

- 1. *M* is *F*-image split.
- 2. $\sum_{f \in I} f(F)$ is a direct summand of M for every finitely generated right ideal I of S. 3. $\sum_{f \in I} f(F)$ is a direct summand of M for every finite subset I of S.

Proof. (1) \Rightarrow (2) Let $I = \langle f_1, \dots, f_n \rangle$ be a finitely generated right ideal of *S*. Since *M* is *F*-image split, $f_i(F)$ is a direct summand of *M* for each $1 \le i \le n$. Hence, $\sum_{f \in I} f(F)$ is a direct summand of *M* by Proposition 2.11(2).

(2) \Rightarrow (1) For every $f \in S$, $\sum_{g \in I} g(F) = f(F)$ for which I = fS. Hence, the proof is clear.

(1) \Leftrightarrow (3) It is obvious.

Now we consider the concept of F-image splitness for rings. Note that I is an ideal of a ring R if and only if it is a fully invariant submodule of R_R .

Definition 2.13. Let *I* be an ideal of a ring *R*. Then, *R* is called *right I-image split* if for every $f \in \text{End}_R(R_R)$, f(I) is a direct summand of R_R , i.e., R is I-image split as a right R-module.

The left *I*-image splitness for a ring *R* can be defined similarly where *I* is an ideal of *R*. The right *I*-image split rings need not be left *I*-image split as the following example shows, therefore being an *I*-image split ring is not left-right symmetric.

Example 2.14. Let $R = \begin{bmatrix} F & F \\ 0 & F \end{bmatrix}$ where *F* is a field. Consider the ideal $I = \begin{bmatrix} F & F \\ 0 & 0 \end{bmatrix}$ of *R*. Then, $R = I \oplus J$ where $J = \begin{bmatrix} 0 & 0 \\ 0 & F \end{bmatrix}$ is a right ideal of *R* and *I* is dual Rickart. Hence, *R* is a right *I*-image split. Since *I* is essential in R as a left ideal, it is not a direct summand of R as a left ideal. Therefore, R is not left I-image split.

In the next theorem, we characterize a right *I*-image split ring *R*.

Theorem 2.15. Let R be a ring and I be an ideal of R. Then, the following are equivalent.

- 1. For every positive integer n, $M_n(R)$ is right $M_n(I)$ -image split.
- 2. *R* is right *I*-image split.
- 3. I is a direct summand of R as a right ideal and $End_R(I)$ is a von Neumann regular ring.
- 4. For every $e^2 = e \in R$, eRe is right eIe-image split.
- 5. For every finitely generated free R-module M, M is I-image split.

Proof. (1) \Rightarrow (2), (4) \Rightarrow (2) and (5) \Rightarrow (2) are clear.

(2) \Rightarrow (3) Let *R* be a right *I*-image split ring. By Theorem 2.2, *I* is a direct summand of *R* as a right ideal and it is also a dual Rickart module. Then, for every $f \in \text{End}_R(I)$, Im f is a direct summand of I. Since $I/\text{Ker} f \cong$ Im f and I is projective, Ker f is a direct summand of I. Thus, $End_R(I)$ is a von Neumann regular ring by [17, Corollary 3.2].

 $(2) \Rightarrow (1)$ Let *n* be a positive integer. Since *I* is a direct summand of *R* as a right ideal, there exists a right ideal J of R such that $R = I \oplus J$. Hence, $M_n(J)$ is a right ideal of $M_n(R)$ such that $M_n(R) = M_n(I) \oplus M_n(J)$. Note that $\operatorname{End}_{M_n(R)}(M_n(I)) \cong M_n(\operatorname{End}_R(I))$ is a von Neumann regular ring because $\operatorname{End}_R(I)$ is a von Neumann regular ring as in the proof of (2) \Rightarrow (3). Thus, $M_n(R)$ is right $M_n(I)$ -image split by [7, Theorem 3.8].

(2) \Rightarrow (4) Let *R* be right *I*-image split and $e^2 = e \in R$. Then, *eR* is *eI*-image split. We claim that for every $f \in R$ $\operatorname{End}_{eRe}(eRe)$, f(eIe) is a direct summand of eRe as a right ideal. Since $\operatorname{End}_{eRe}(eRe) \cong eRe \cong \operatorname{End}_{R}(eR)$, f(eI) is a direct summand of *eR*. Hence, there exists a right ideal *J* of *eR* such that $eR = f(eI) \oplus J$. Thus, eRe = f(eIe) + Je. Since $f(ele) \cap Je \subseteq f(el) \cap J = 0$, $eRe = f(ele) \oplus Je$. Therefore, f(ele) is a direct summand of eRe as a right ideal. (3) \Rightarrow (5) Let *K* be a finitely generated free *R*-module. By (3), *I* is a direct summand of *R* as a right ideal, and so I is also a direct summand of K. Since $\operatorname{End}_{R}(I)$ is von Neumann regular, $\operatorname{Im} f$ is a direct summand of *I* for every $f \in \text{End}_R(I)$ by [17, Corollary 3.2]. Hence, *I* is dual Rickart. Thus, *K* is *I*-image split by Theorem 2.2. 🗆

Theorem 2.16. Let R be a ring and I be an ideal of R. Then, the following are equivalent.

- 1. ⊕ _{n=1}[∞] R_n is (⊕ _{n=1}[∞] I_n)-image split where R_n = R and I_n = I for all n.
 2. I is a direct summand of R as a right ideal and End_R(I) is a semisimple ring.

Proof. (1) \Rightarrow (2) Suppose that $\bigoplus_{n=1}^{\infty} R_n$ is $(\bigoplus_{n=1}^{\infty} I_n)$ -image split where $R_n = R$ and $I_n = I$ for all n. By Proposition 2.8, R is right *I*-image split. In particular, I is a direct summand of R as a right ideal. As in the proof of (2) $\Rightarrow (3) \text{ in Theorem 2.15, one can see that } \operatorname{End}_{R}(\bigoplus_{n=1}^{\infty} I_{n}) \text{ is a von Neumann regular ring. Let } K = \operatorname{End}_{R}(I). \text{ Note } that \operatorname{End}_{R}(\bigoplus_{n=1}^{\infty} I_{n}) \cong \operatorname{End}_{K}(\bigoplus_{n=1}^{\infty} K_{n}), \text{ where } K_{n} = K \text{ for all } n. \text{ By [17, Theorem 3.5], } K \text{ is a semisimple ring.}$ $(2) \Rightarrow (1) \text{ Suppose that } I \text{ is a direct summand of } R \text{ as a right ideal and } \operatorname{End}_{R}(I) \text{ is a semisimple ring.} \text{ Theorem 3.5], } K \text{ is a semisimple ring.} \text{ Theorem 3.6], } K \text{ is a semisimple ring.}$ $(2) \Rightarrow (1) \text{ Suppose that } I \text{ is a direct summand of } R \text{ as a right ideal and } \operatorname{End}_{R}(I) \text{ is a semisimple ring.} \text{ Theorem 3.6], } K \text{ is a semisimple ring.} \text{ Theorem 3.6], } K \text{ is a semisimple ring.} \text{ and } K \text{ as a right ideal and } \operatorname{End}_{R}(I) \text{ is a semisimple ring.} \text{ and } K \text{ as a right ideal and } \operatorname{End}_{R}(I) \text{ is a semisimple ring.} \text{ and } K \text{ as a right ideal and } \operatorname{End}_{R}(I) \text{ is a semisimple ring.} \text{ and } K \text{ as a right ideal and } \operatorname{End}_{R}(I) \text{ is a semisimple ring.} \text{ and } K \text{ as a right ideal and } \operatorname{End}_{R}(I) \text{ is a semisimple ring.} \text{ and } K \text{ as a right ideal and } \operatorname{End}_{R}(I) \text{ is a semisimple ring.} \text{ and } K \text{ as a right ideal and } \operatorname{End}_{R}(I) \text{ is a von Neumann} \text{ and } K \text{ as a right ideal and } \operatorname{End}_{R}(I) \text{ is a von Neumann} \text{ and } K \text{ as a semisimple ring, we have that } \operatorname{End}_{R}(\bigoplus_{n=1}^{\infty} I_{n}) \text{ is a von Neumann} \text{ and } K \text{ as a semisimple ring, we have that } \operatorname{End}_{R}(\bigoplus_{n=1}^{\infty} I_{n}) \text{ is a von Neumann} \text{ and } K \text{ as a semisimple ring, we have that } \operatorname{End}_{R}(\bigoplus_{n=1}^{\infty} I_{n}) \text{ is a von Neumann} \text{ and } K \text{ as a semisimple ring, we have that } \operatorname{End}_{R}(\bigoplus_{n=1}^{\infty} I_{n}) \text{ is a von Neumann} \text{ and } K \text{ as a semisimple ring, we have that } \operatorname{End}_{R}(\bigoplus_{n=1}^{\infty} I_{n}) \text{ and } K \text{ as a semisimple ring, } K \text{ and } K \text{ an$ regular ring. Hence, Im *f* is a direct summand of $\bigoplus_{n=1}^{\infty} I_n$ for every $f \in \operatorname{End}_R(\bigoplus_{n=1}^{\infty} I_n)$ by [17, Corollary 3,2]. Thus, $\bigoplus_{n=1}^{\infty} I_n$ is a dual Rickart module. Consequently, $\bigoplus_{n=1}^{\infty} R_n$ is $(\bigoplus_{n=1}^{\infty} I_n)$ -image split by Theorem 2.2.

We close this section by giving some applications about *I*-image split rings *R*.

Proposition 2.17. If R is a right $Z(R_R)$ -image split ring, then it is right nonsingular.

Proof. Let *R* be a right $Z(R_R)$ -image split ring and $x \in Z(R_R)$. Assume that $x \neq 0$ and we reach a contradiction. By definition, $xZ(R_R)$ is a direct summand of *R*. It entails that $xZ(R_R)$ has an idempotent *e*. Hence there exists $t \in Z(R_R)$ such that e = xt. Since $x, t \in Z(R_R)$, we have $e \in Z(R_R)$. This is the required contradiction since $r_R(e) = (1 - e)R$ is not essential in *R*. It follows $Z(R_R) = 0$. Therefore, *R* is right nonsingular.

Recall that in [10], a right module *M* is called *mininjective* if for every simple right ideal *K* of *R*, each homomorphism $K \to M$ extends to a homomorphism $R \to M$. The next result shows that every module over Soc(·)-image split ring is mininjective.

Proposition 2.18. If R is a right $Soc(R_R)$ -image split ring, then every right R-module is miniplective.

Proof. Let *R* be a right $Soc(R_R)$ -image split ring. Then, $R = Soc(R_R) \oplus K$ for some right ideal *K* of *R*. Hence, $J(R) = Rad(Soc(R_R)) \oplus Rad(K)$. This yields J(R) = Rad(K) since $Rad(Soc(R_R)) = 0$. Thus, $Soc(R_R) \cap J(R) = 0$ and so every right *R*-module is minipictive by [11, Theorem 2.36]. \Box

3. Direct sums of F-image split modules

A direct sum of F_i -image split modules M_i where $i \in I$ for some index set I need not satisfy image splitness as shown in [3, Example 4.1]. In this section, we investigate under which conditions direct sums of F_i -image split modules M_i have the same property.

Proposition 3.1. Let $\{M_i\}_{i \in I}$ be a class of *R*-modules for an arbitrary index set I. If for every $i \in I$, M_i is a fully invariant submodule of $\bigoplus_{i \in I} M_i$, then M_i is F_i -image split for every $i \in I$ if and only if $\bigoplus_{i \in I} M_i$ is $\bigoplus_{i \in I} F_i$ -image split.

Proof. Let $\bigoplus_{i \in I} M_i$ be $\bigoplus_{i \in I} F_i$ -image split. Then, by Proposition 2.8, M_i is F_i -image split for every $i \in I$. For the necessity, let $M = \bigoplus_{i \in I} M_i$, $F = \bigoplus_{i \in I} F_i$ and $f = (f_{ij}) \in S$ where $f_{ij} \in \text{Hom}_R(M_j, M_i)$. Since for every $i \in I$, M_i is a fully invariant submodule of $\bigoplus_{i \in I} M_i$, $\text{Hom}_R(M_j, M_i) = 0$ for every $i, j \in I$ with $i \neq j$. By hypothesis, $f_{ii}(F_i)$ is a direct summand of M_i for each $i \in I$. On the other hand, we have $f(F) = \bigoplus_{i \in I} f_{ii}(F_i)$. Hence, f(F) is a direct summand of M, as asserted. \Box

Recall that a module is said to be *abelian* if every idempotent element of its endomorphism ring is central. By the fact that a module *M* is abelian if and only if every direct summand of *M* is fully invariant in *M*, the following result is an immediate consequence of Proposition 3.1.

Corollary 3.2. Let $\{M_i\}_{i \in I}$ be a class of *R*-modules for an arbitrary index set I and $\bigoplus_{i \in I} M_i$ be an abelian module. Then, M_i is F_i -image split for all $i \in I$ if and only if $\bigoplus_{i \in I} M_i$ is $\bigoplus_{i \in I} F_i$ -image split.

In the following, we introduce relatively *F*-image splitness in order to a more comprehensively study on direct sums of F_i -image split modules M_i where $i \in I$ for some index set I.

Definition 3.3. A module *M* is called *F*-image split module relative to *N* (or shortly, *N*-*F*-image split) if for each $f \in \text{Hom}_R(M, N)$, f(F) is a direct summand of *N*.

Theorem 3.4. Let M and N be R-modules. Then, M is an F-image split module relative to N if and only if for every direct summand L of M and every submodule K of N, L is $(L \cap F)$ -image split relative to K.

3684

Proof. Let *L* be a direct summand of *M*, *K* a submodule of *N* and $f \in \text{Hom}_{R}(L, K)$. Then, L = eM for some $e^2 = e \in S$ and $fe \in \text{Hom}_R(M, N)$. Since M is N-F-image split, fe(F) is a direct summand of N. As $fe(F) \subseteq K$, fe(F) is a direct summand of K. We claim that $fe(F) = f(L \cap F)$. To see that let $x \in f(L \cap F)$. Then, there exists $y \in L \cap F$ such that f(y) = x. Since $y \in L = eM$, $x = f(y) = fe(y) \in fe(F)$. Hence, $f(L \cap F) \subseteq fe(F)$. It is clear that $fe(F) \subseteq f(L \cap F)$. Thus, $f(L \cap F)$ is a direct summand of *K*, as asserted. The converse is clear. \Box

The next result is obtained as an immediate consequence of Theorem 3.4 if we take into account of the fully invariant submodule $\overline{Z}^{2}(M)$ of a module *M*.

Corollary 3.5. [3, Corollary 3.13] Let M be an R-module. Then, the following are equivalent.

- 1. *M* is *T*-dual Rickart.
- 2. For any submodule N of M, each direct summand L of M is T-dual Rickart relative to N.
- 3. If *L* and *N* are direct summands of *M*, then for any $\varphi \in Hom_R(L, N)$, $\varphi(\overline{Z}^2(L))$ is a direct summand of *N*.

Proposition 3.6. Let $\{M_i\}_{i \in I}$ be a class of *R*-modules for an index set *I* and *N* an *R*-module with a fully invariant submodule F of $\bigoplus M_i$. Then, the following hold.

- 1. Let N have SSP and I be finite. Then, $\bigoplus_{i \in I} M_i$ is N-F-image split if and only if M_i is N-(F $\cap M_i$)-image split for all $i \in I$.
- 2. Let N have SSSP and I be arbitrary. Then,

 - (a) $\bigoplus_{i \in I} M_i$ is N-F-image split if and only if M_i is N-($F \cap M_i$)-image split for all $i \in I$. (b) $\prod_{i \in I} M_i$ is N-F-image split if and only if M_i is N-($F \cap M_i$)-image split for all $i \in I$.

Proof. (1) Let $\bigoplus_{i \in I} M_i$ is *N*-*F*-image split, then M_i is *N*-($F \cap M_i$)-image split for all $i \in I$ by Theorem 3.4. To see the converse statement let $f : \bigoplus_{i \in I} M_i \to N$ and $\iota_i : M_i \to \bigoplus_{i \in I} M_i$ be a inclusion. Then, $f_i = f\iota_i \in \text{Hom}(M_i, N)$. It can be seen that $f(F) = \sum_{i \in I} f_i(F \cap M_i)$. By hypothesis, $f_i(F \cap M_i)$ is a direct summand of N for all $i \in I$. Since N has SSP, $\sum_{i \in I} f_i(F \cap M_i)$ is a direct summand of N. Hence, f(F) is a direct summand of N as asserted. The proof of (2) is similar to that $f(f) = \sum_{i \in I} f_i(f) = \sum_{i \in I} f$ The proof of (2) is similar to that of (1). \Box

Corollary 3.7. Let $\{M_i\}_{i \in I}$ be *R*-modules where $I = \{1, 2, ..., n\}$ and *F* a fully invariant submodule of $\bigoplus M_i$. Then, for each $j \in I$, $\bigoplus_{i \in I} M_i$ is M_j -*F*-image split if and only if M_i is M_j -($F \cap M_i$)-image split for all $i \in I$.

Proof. If for each $j \in I$, $\bigoplus_{i \in I} M_i$ is M_j -F-image split, then M_i is M_j - $(F \cap M_i)$ -image split for all $i \in I$ by Theorem

3.4. To see the converse statement, let M_i be M_j -($F \cap M_i$)-image split for all $i \in I$. Then, M_j is $F \cap M_j$ -image split. Hence, M_i has SSP for direct summands which are contained in $F \cap M_i$ by Proposition 2.11. Thus, the rest can be proved similar to the proof of Proposition 3.6(1). \Box

Theorem 3.8. Let $\{M_i\}_{i \in I}$ be a class of *R*-modules, *N* an *R*-module where $I = \{1, 2, ..., n\}$ and assume that M_i is M_j -projective for all $i \ge j \in I$. Then, an *R*-module *N* is $\bigoplus_{i \in I} M_i$ -*F*-image split if and only if *N* is M_j -*F*-image split for

all $j \in I$.

Proof. The sufficiency is clear by Theorem 3.4. Let N be an M_i -F-image split for all $j \in I$. We use induction on *n*. Let n = 2, *f* be a homomorphism from *N* to $M_1 \oplus M_2$ and $\pi_i : M_1 \oplus M_2 \to M_i$ be a natural projection where i = 1, 2. Since N is M_2 -F-image split, $\pi_2 f(F)$ is a direct summand of M_2 . Hence, $M_1 \oplus \pi_2 f(F)$ is a direct summand of $M_1 \oplus M_2$. To see $M_1 + f(F) = M_1 \oplus \pi_2 f(F)$, let $z + y \in M_1 + f(F)$. Then, $y = \pi_1 y + \pi_2 y$. Hence, $z + y = z + \pi_1 y + \pi_2 y \in M_1 + \pi_2 f(F)$. For the reverse inclusion, let $x + y \in M_1 \oplus \pi_2 f(F)$. Then, there exists $z \in F$ such that $y = \pi_2 f(z)$. Hence, $x + y = x + \pi_2 f(z) + \pi_1 f(z) - \pi_1 f(z) = x - \pi_1 f(z) + f(z) \in M_1 + f(F)$, as asserted. By hypothesis, M_2 is M_1 -projective and so $\pi_2 f(F)$ is M_1 -projective. Then, there exists a submodule K of f(F) such that $M_1 + f(F) = M_1 \oplus K$ by [9, Lemma 4.47]. Hence, $f(F) = K \oplus (M_1 \cap f(F))$. Thus, $\pi_1 f(F) = M_1 \cap f(F)$ since $K \cap M_1 = 0$. Hence, $f(F) = K \oplus \pi_1 f(F)$ which is a direct summand of $K \oplus M_1$. Since $K \oplus M_1 = M_1 \oplus \pi_2 f(F)$, f(F) is a direct summand of $M_1 \oplus M_2$. Thus, N is $(M_1 \oplus M_2)$ -F-image split. Consequently, we complete the rest of the proof by induction on n. \Box

Corollary 3.9. Let $\{M_i\}_{i \in I}$ be a class of *R*-modules where $I = \{1, 2, ..., n\}$ and assume that M_i is M_j -projective for all $i \ge j \in I$. Then, $\bigoplus_{i \in I} M_i$ is *F*-image split if and only if M_i is M_j -($F \cap M_i$)-image split for all $i, j \in I$.

Proof. The sufficiency is clear by Theorem 3.4. For the necessity, let M_i be M_j - $(F \cap M_i)$ -image split for all $i, j \in I$. Then, $\bigoplus_{i \in I} M_i$ is M_j -F-image split by Corollary 3.7. Hence, $\bigoplus_{i \in I} M_i$ is F-image split by Theorem 3.8. \Box

4. Strongly F-image split modules

In this section, we deal with a module *M* for which f(F) is not only a direct summand but also a fully invariant submodule for every $f \in S$.

Definition 4.1. An *R*-module *M* is called *strongly F*-*image split* if for every $f \in S$, f(F) is a fully invariant direct summand of *M*.

It is obvious that *M* being a strongly *F*-image split module implies that it is *F*-image split. We now investigate when the converse holds.

Theorem 4.2. The following are equivalent for a module M.

- 1. M is strongly F-image split.
- 2. *M* is *F*-image split and each direct summand of *M* which is contained in *F* is fully invariant.
- 3. *F* is a dual Rickart and abelian direct summand of *M*.

Proof. (1) ⇒ (2) Let *N* be a direct summand of *M* with $N \subseteq F$. Then, there exists $e^2 = e \in S$ such that N = eM. It can be shown that e(F) = N. By hypothesis, e(F) is fully invariant in *M*. Thus, *N* is fully invariant in *M*. (2) ⇒ (3) By Theorem 2.2 and (2), *F* is a dual Rickart direct summand of *M*. To see that *F* is an abelian module, let *L* be a direct summand of *F*. Then, *L* is a direct summand of *M*. Hence, *L* is a fully invariant submodule of *M* by hypothesis. We show that *L* is fully invariant in *F*. We have F = eM for some $e^2 = e \in S$, and so $End_R(F) = eSe$. Let $f \in End_R(F)$. Then, there exists $g \in End_R(M)$ such that f = ege. Hence, $f(L) = ege(L) \subseteq L$ since *L* is fully invariant in *M*. Thus, we have every direct summand of *F* is fully invariant in *F*. So, *F* is abelian.

(3) ⇒ (1) Let $f \in S$. By Theorem 2.2, M is F-image split. Hence, f(F) is a direct summand of M. We need to show that f(F) is fully invariant in M. We have F = eM for some $e^2 = e \in S$, and so $End_R(F) = eSe$. Thus, efe(F) is a fully invariant direct summand of F by hypothesis. Since F is fully invariant in M, efe(F) = f(F). Therefore, f(F) is a fully invariant submodule of M because F and f(F) is fully invariant in M and F, respectively. So, M is strongly F-image split, as claimed. \Box

The following example shows that an *F*-image split module *M* need not be strongly *F*-image split in general.

Example 4.3. Let *n* be a positive integer with $n \ge 2$ and *M* a vector space over a field *K* of dimension *n*. Then, *M* is semisimple and so it is dual Rickart. Hence, *M* is *M*-image split. But it is not abelian. Thus, *M* is not strongly *M*-image split.

We end the paper by observing some basic results concerning direct summands and direct sums of strongly *F*-image split modules.

Proposition 4.4. Let M be a strongly F-image split module. Then, every direct summand N of M is strongly $(N \cap F)$ -image split.

Proof. Let $K \subseteq N \cap F$ be a direct summand of N. Since N is a direct summand of M, $M = N \oplus T$ for some submodule *T* of *M*. By Proposition 2.8, *T* is $(T \cap F)$ -image split. Then, there exists a submodule *T'* of *T* such that $T = (T \cap F) \oplus T'$. Hence, $M = K \oplus K' \oplus (T \cap F) \oplus T'$ for some submodule K' of N. Also, $K \oplus (T \cap F)$ is contained in F since $K \subseteq N \cap F$. Thus, $K \oplus (T \cap F)$ is fully invariant in M by hypothesis and Theorem 4.2. To see *K* is fully invariant in *N*, let $f \in \text{End}_R(N)$. Then, $(f \oplus 1_T)(K \oplus (T \cap F)) \subseteq K \oplus (T \cap F)$. Hence, $f(K) \subseteq K$, as asserted. \Box

Theorem 4.5. Let $\{M_i\}_{i \in I}$ be a class of *R*-modules for an arbitrary index set *I* and $M = \bigoplus_{i \in I} M_i$. Then, *M* is strongly *F-image split if and only if for each* $i \in I$, M_i *is strongly* $(F \cap M_i)$ *-image split and* $Hom_R(F \cap M_i, F \cap M_j) = 0$ *for* every $i, j \in I$ with $i \neq j$.

Proof. Let M be a strongly F-image split module. Then, for every $i \in I$, M_i is strongly $(F \cap M_i)$ -image split by Proposition 4.4. Since F is fully invariant in M, $F = \bigoplus (F \cap M_i)$. Also, F is a dual Rickart and

i∈I

abelian module by hypothesis and Theorem 4.2. Hence, for every $i \in I$, $F \cap M_i$ is fully invariant in F. Thus, $\text{Hom}_{R}(F \cap M_{i}, F \cap M_{j}) = 0$ for every $i, j \in I$ with $i \neq j$. To see the converse statement, let $f = [f_{ij}] \in I$ End_{*R*}($\bigoplus_{i \in I} M_i$) where $f_{ij} \in \text{Hom}_R(M_j, M_i)$. Then, $f(F) = \bigoplus_{i \in I} f_{ii}(F \cap M_i)$ by hypothesis, and so f(F) is a direct summand of *M*. Since for each $i \in I$, $f_{ii}(F \cap M_i)$ is fully invariant in M_i , f(F) is fully invariant in *M*. \Box

Acknowledgement: The authors would like to thank the referee for his/her careful reading. The first author thanks the Scientific and Technological Research Council of Turkey (TUBITAK) for the financial support.

References

- [1] N. Agayev, S. Halicioglu, A. Harmanci, On Rickart modules, Bull. Iranian Math. Soc. 38(2) (2012), 433-445.
- [2] S. Ebrahimi Atani, M. Khoramdel, S. Dolati Pish Hesari, T-Rickart modules, Colloq. Math. 128(1) (2012), 87–100.
- [3] S. Ebrahimi Atani, M. Khoramdel, S. Dolati Pish Hesari, T-dual Rickart modules, Bull. Iranian Math. Soc. 42(3) (2016), 627–642.
- [4] A. Harmanci, B. Ungor, Module decompositions via Rickart modules, Algebra Discrete Math. 26(1) (2018), 47–64.
- [5] A. Hattori, A foundation of torsion theory for modules over general rings, Nagoya Math. J. 17 (1960), 147–158.
- [6] G. Lee, S. T. Rizvi, C. S. Roman, Rickart modules, Comm. Algebra 38(11) (2010), 4005–4027.
- [7] G. Lee, S. T. Rizvi, C. S. Roman, Dual Rickart modules, Comm. Algebra 39(11) (2011), 4036–4058.
- [8] S. Maeda, On a ring whose principal right ideals generated by idempotents form a lattice, J. Sci. Hiroshima Univ. Ser. A 24 (1960), 509-525.
- S. H. Mohamed, B. J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Notes Series, 147, Cambridge [9] University Press, Cambridge, 1990.
- [10] W. K. Nicholson, M. F. Yousif, Mininjective rings, J. Algebra 187 (1997), 548-578.
- [11] W. K. Nicholson, M. F. Yousif, Quasi-Frobenius Rings, Cambridge Tracts in Mathematics, 158, Cambridge University Press, Cambridge, 2003.
- [12] A. C. Ozcan, A. Harmanci, P. F. Smith, Duo modules, Glasg. Math. J. 48(3) (2006), 533-545.
- [13] Y. Talebi, N. Vanaja, The torsion theory cogenerated by M-small modules, Comm. Algebra 30(3) (2002), 1449–1460.
- [14] B. Ungor, A. Harmanci, Rickart modules determined by preradicals $\overline{Z}(\cdot)$ and $\delta(\cdot)$, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), Tomul LXII 2(3) (2016), 807–822.
- [15] B. Ungor, S. Halicioglu, A. Harmanci, Modules in which inverse images of some submodules are direct summands, Comm. Algebra 44(4) (2016), 1496-1513.
- [16] B. Ungor, S. Halicioglu, A. Harmanci, Rickart modules relative to singular submodule and dual Goldie torsion theory, J. Algebra Appl. 15(8) (2016), 1650142, 14 pp.
- [17] R. Ware, Endomorphism rings of projective modules, Trans. Amer. Math. Soc. 155 (1971), 233–256.