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Abstract. Let R be a ring with identity, M be a right R-module and F be a fully invariant submodule of M.
The concept of an F-inverse split module M has been investigated recently. In this paper, we approach to
this concept with a different perspective, that is, we deal with a notion of an F-image split module M, and
study various properties and obtain some characterizations of this kind of modules. By means of F-image
split modules M, we focus on modules M in which fully invariant submodules F are dual Rickart direct

summands. In this way, we contribute to the notion of a T-dual Rickart module M by considering Z
2
(M) as

the fully invariant submodule F of M. We also deal with a notion of relatively image splitness to investigate
direct sums of image split modules. Some applications of image split modules to rings are given.

1. Introduction

Throughout this paper R denotes an associative ring with identity and modules are unitary right
R-modules unless otherwise stated. For a module M, S = EndR(M) is the ring of all right R-module
endomorphisms of M and F stands for a fully invariant submodule of M (i.e., f (F) ⊆ F for every f ∈ S).
Maeda [8] and Hattori [5] studied Rickart rings (or principally projective rings), independently. A ring is
called right Rickart if every principal right ideal is projective, equivalently, the right annihilator of any single
element is generated by an idempotent as a right ideal. A left Rickart ring is defined similarly. Recently,
the notion of Rickart rings was generalized to the module theoretic version and investigated in [1] and
[6]. A module M is said to be Rickart if the right annihilator in M of any single element of S is generated
by an idempotent of S, that is, for any f ∈ S, rM( f ) = Ker f = eM for some e2 = e ∈ S. In [2], a concept
of T-Rickart modules was defined by considering the second singular (or Goldie torsion) submodule of a
module, namely, a module M is called T-Rickart if tM( f ) = {m ∈ M | f (m) ∈ Z2(M)} is a direct summand of
M for every f ∈ S. On the other hand, in [15], a module M is said to be F-inverse split if f−1(F) is a direct
summand of M for every f ∈ S. There are some interesting connections between these classes of modules.
For example, in [15], it is proved that M is F-inverse split if and only if M has a decomposition M = F ⊕ N
where N is a Rickart module. Since the second singular submodule Z2(M) of M is fully invariant in M,
being a T-Rickart module and being a Z2(M)-inverse split module are the same. Some applications of the
notion of an F-inverse split module M are presented in [4], [14], [15] and [16] by considering certain fully
invariant submodules aside from the second singular submodule.
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As a dual version of Rickart property for modules, in [7], a module M is called dual Rickart if Im f
is a direct summand of M for every endomorphism f of M. Motivated by the concepts of dual Rickart
modules and T-Rickart modules, T-dual Rickart modules were introduced in [3], that is, a module M is
called T-dual Rickart if f (Z

2
(M)) is a direct summand of M for every f ∈ S where Z

2
(M) = Z(Z(M)) and

Z(M) = ∩{Ker f : f ∈ HomR(M,N) where N is small in its injective hull} which was defined in [13]. With
the inspiration of these works, it is of interest to present the notion of F-image split modules in a sense of a
dual version of F-inverse split modules. We say that a module M is F-image split if f (F) is a direct summand
of M for every f ∈ S.

In the light of aforementioned concepts, it is a reasonable question that what kind of properties does F
gain when a module M is splitted by the images of F? This question is one of the motivations to deal with
the notion of an F-image split module M. We answer this question in Theorem 2.2, that is, F becomes a dual
Rickart module in addition to be a direct summand of M. The concept of T-dual Rickart modules produces

dual Rickart modules by employing the submodule Z
2
(M) of M. By using the fully invariant submodule

F of a module M, we produce much more dual Rickart modules for this general setting. Therefore, the
concept of F-image splitness is more general than that of T-dual Rickart modules. These connections make
the concept of an F-image split module M more attractive to study.

In Section 2, we give some properties and characterizations of F-image split modules. We get some
results by considering the singular submodule as a fully invariant submodule. We also deal with an F-
image split module concept for rings and we present some applications about these rings. In Section 3, we
focus on when the direct sums of F-image split modules M satisfy the same property. In this direction, we
study relatively F-image splitness. Lastly, in Section 4, we introduce strongly F-image split modules and
observe a main characterization of these modules.

In what follows, Soc(M) and Z(M) stand for the socle and the singular submodule of a module M, also,
J(R) denotes the Jacobson radical of a ring R, respectively. For a positive integer n, Mn(R) denotes the ring
of n × n matrices over a ring R.

2. F-image split modules

Throughout this paper, F denotes a fully invariant submodule of a module M under consideration.
In this section we study the concept of an F-image split module M and get properties about this class of
modules. We investigate useful characterizations for this notion. Also, we obtain some results about the
ring cases of F-image split modules as an application to the ring theory.

Definition 2.1. A module M is called F-image split if f (F) is a direct summand of M for every f ∈ S.

It is clear that every semisimple module M is F-image split and so every module M over a semisimple ring
is F-image split. Obviously, every module M is 0-image split. It can be obtained from the definition, a
module M is dual Rickart if and only if it is M-image split.

We now give an efficient characterization for an F-image split module M. Thanks to this characterization
we can get dual Rickart modules by means of fully invariant submodules.

Theorem 2.2. The following are equivalent for a module M.
1. M is an F-image split module.
2. F is a dual Rickart direct summand of M.

Proof. (2)⇒ (1) Let f ∈ S. As F is a direct summand of M, there exists an idempotent e ∈ S such that F = eM.
Then, EndR(F) = eSe. Since F is dual Rickart, e f e(F) is a direct summand of F. We claim that e f e(F) = f (F).
For any x ∈ F, e f e(x) = e f (x) = f (x). Therefore, e f e(F) = f (F). The rest is clear.
(1)⇒ (2) Let M be F-image split. Then, for 1M ∈ S, 1M(F) = F is a direct summand of M. Hence, F = eM
for some e2 = e ∈ S. To see that F is a dual Rickart module, let f ∈ EndR(F) = eSe. Thus, there exists
1 ∈ S such that f = e1e. Since M is F-image split, 1(F) is a direct summand of M. As F is fully invariant,
f (F) = e1e(F) = 1(F). So f (F) is a direct summand of M. By modularity condition, f (F) is a direct summand
of F and so F is a dual Rickart module.
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Corollary 2.3. Let M be an F-image split module and N a fully invariant submodule which contains F. If every
endomorphism of N can be extended to an endomorphism of M, then N is F-image split.

Corollary 2.4. Every indecomposable F-image split module M is either dual Rickart or F = 0.

The following corollary is a direct consequence of Corollary 2.4 if we consider the singular submodule
as a fully invariant submodule.

Corollary 2.5. Every indecomposable Z(M)-image split module M is either nonsingular or singular dual Rickart.

Proof. Let M be an indecomposable Z(M)-image split module. By Corollary 2.4, Z(M) = 0, i.e., M is
nonsingular or M is dual Rickart. In the latter case, Z(M) = M.

Example 2.6. Let R =

[
F 0
F F

]
where F is a field. Then, Z(RR) = 0. Thus, RR is Z(RR)-image split.

We approach to Theorem 2.2 in terms of singular submodules.

Theorem 2.7. Let M be a module. Then, the following are equivalent.

1. M is Z(M)-image split.
2. M = Z(M) ⊕N where Z(M) is dual Rickart and N is nonsingular.
3. Z(M) is a dual Rickart direct summand of M.

Proof. (1) ⇒ (2) By hypothesis and Theorem 2.2, M has a decomposition M = Z(M) ⊕ N where Z(M) is a
dual Rickart module. Since Z(M) is an essential submodule of Z2(M) and Z2(M) = Z(M) ⊕ (Z2(M) ∩N), we
have Z(M) = Z2(M). Hence, N is nonsingular since N � M/Z2(M).
(2)⇒ (3) It is clear.
(3)⇒ (1) M is Z(M)-image split by Theorem 2.2.

In the next result we investigate that F-image split property for a module M is transferred to direct
summands of M.

Proposition 2.8. If M is an F-image split module and N is a direct summand of M, then N is an (F∩N)-image split
module.

Proof. Assume that M = N⊕K for some submodule K of M and M is F-image split. By [12], F = (F∩N)⊕(F∩K).
Let e : M→ N be the canonical homomorphism and 1 ∈ EndR(N). Since M is an F-image split module, 1e(F)
is a direct summand of M. Also, 1e(F) = 1e(F ∩N) + 1e(F ∩ K) = 1e(F ∩N). As 1(F ∩N) = 1e(F ∩N) = 1e(F),
1(F ∩N) is a direct summand of M. Hence, 1(F ∩N) is a direct summand of N, as asserted.

Corollary 2.9. If M is a Z(M)-image split module, then any direct summand N of M is Z(N)-image split.

Proof. Let M be a Z(M)-image split module and N a direct summand of M. Then, N is (N ∩ Z(M))-image
split by Proposition 2.8. Hence, N is Z(N)-image split since N ∩ Z(M) = Z(N).

Proposition 2.10. Let M be a quasi-projective module. Then, M is F-image split if and only if for every submodule
K of M with K ⊆ 1(F) for each 0 , 1 ∈ EndR(M), M/K is F/K-image split.

Proof. Let M be F-image split and f ∈ EndR(M/K). Since M is a quasi-projective module, there exists 1 ∈
EndR(M) such that the following diagram commutes. The module M being F-image split implies that
M = 1(F) ⊕ L for some submodule L of M. Then, M/K = (1(F)/K) + ((L + K)/K) and this sum is direct since
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(1(F)/K) ∩ ((L + K)/K) = {0 + K}. Also, it can be shown that f (F/K) = 1(F)/K. Hence, f (F/K) is a direct
summand of M/K, and so M/K is F/K-image split.

M

M/K

M M/K 0
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The converse is obvious.

Recall that M has the summand sum property (SSP) if the sum of two direct summands is a direct summand
of M. Also, M has the strong summand sum property (SSSP) if the sum of any number of direct summands is
again a direct summand of M.

Proposition 2.11. For an F-image split module M, the following statements hold.

1. Let K, L be direct summands of M and K ⊆ F. Then, K + L is a direct summand of M.
2. M has SSP for direct summands which are contained in F.

Proof. It is clear from the proof of [3, Proposition 3.14].

Theorem 2.12. The following are equivalent for a module M.

1. M is F-image split.
2.
∑
f∈I

f (F) is a direct summand of M for every finitely generated right ideal I of S.

3.
∑
f∈I

f (F) is a direct summand of M for every finite subset I of S.

Proof. (1)⇒ (2) Let I =< f1, . . . , fn > be a finitely generated right ideal of S. Since M is F-image split, fi(F) is
a direct summand of M for each 1 ≤ i ≤ n. Hence,

∑
f∈I

f (F) is a direct summand of M by Proposition 2.11(2).

(2)⇒ (1) For every f ∈ S,
∑
1∈I
1(F) = f (F) for which I = f S. Hence, the proof is clear.

(1)⇔ (3) It is obvious.

Now we consider the concept of F-image splitness for rings. Note that I is an ideal of a ring R if and
only if it is a fully invariant submodule of RR.

Definition 2.13. Let I be an ideal of a ring R. Then, R is called right I-image split if for every f ∈ EndR(RR),
f (I) is a direct summand of RR, i.e., R is I-image split as a right R-module.

The left I-image splitness for a ring R can be defined similarly where I is an ideal of R. The right I-image
split rings need not be left I-image split as the following example shows, therefore being an I-image split
ring is not left-right symmetric.

Example 2.14. Let R =

[
F F
0 F

]
where F is a field. Consider the ideal I =

[
F F
0 0

]
of R. Then, R = I ⊕ J

where J =

[
0 0
0 F

]
is a right ideal of R and I is dual Rickart. Hence, R is a right I-image split. Since I is

essential in R as a left ideal, it is not a direct summand of R as a left ideal. Therefore, R is not left I-image
split.
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In the next theorem, we characterize a right I-image split ring R.

Theorem 2.15. Let R be a ring and I be an ideal of R. Then, the following are equivalent.

1. For every positive integer n, Mn(R) is right Mn(I)-image split.
2. R is right I-image split.
3. I is a direct summand of R as a right ideal and EndR(I) is a von Neumann regular ring.
4. For every e2 = e ∈ R, eRe is right eIe-image split.
5. For every finitely generated free R-module M, M is I-image split.

Proof. (1)⇒ (2), (4)⇒ (2) and (5)⇒ (2) are clear.
(2)⇒ (3) Let R be a right I-image split ring. By Theorem 2.2, I is a direct summand of R as a right ideal and
it is also a dual Rickart module. Then, for every f ∈ EndR(I), Im f is a direct summand of I. Since I/Ker f �
Im f and I is projective, Ker f is a direct summand of I. Thus, EndR(I) is a von Neumann regular ring by [17,
Corollary 3.2].
(2) ⇒ (1) Let n be a positive integer. Since I is a direct summand of R as a right ideal, there exists a right
ideal J of R such that R = I ⊕ J. Hence, Mn(J) is a right ideal of Mn(R) such that Mn(R) = Mn(I) ⊕Mn(J).
Note that EndMn(R)(Mn(I)) � Mn(EndR(I)) is a von Neumann regular ring because EndR(I) is a von Neumann
regular ring as in the proof of (2)⇒ (3). Thus, Mn(R) is right Mn(I)-image split by [7, Theorem 3.8].
(2)⇒ (4) Let R be right I-image split and e2 = e ∈ R. Then, eR is eI-image split. We claim that for every f ∈
EndeRe(eRe), f (eIe) is a direct summand of eRe as a right ideal. Since EndeRe(eRe) � eRe � EndR(eR), f (eI) is a
direct summand of eR. Hence, there exists a right ideal J of eR such that eR = f (eI)⊕ J. Thus, eRe = f (eIe)+ Je.
Since f (eIe)∩ Je ⊆ f (eI)∩ J = 0, eRe = f (eIe)⊕ Je. Therefore, f (eIe) is a direct summand of eRe as a right ideal.
(3) ⇒ (5) Let K be a finitely generated free R-module. By (3), I is a direct summand of R as a right ideal,
and so I is also a direct summand of K. Since EndR(I) is von Neumann regular, Im f is a direct summand of
I for every f ∈ EndR(I) by [17, Corollary 3.2]. Hence, I is dual Rickart. Thus, K is I-image split by Theorem
2.2.

Theorem 2.16. Let R be a ring and I be an ideal of R. Then, the following are equivalent.

1.
∞⊕

n=1
Rn is (

∞⊕
n=1

In)-image split where Rn = R and In = I for all n.

2. I is a direct summand of R as a right ideal and EndR(I) is a semisimple ring.

Proof. (1)⇒ (2) Suppose that
∞⊕

n=1
Rn is (

∞⊕
n=1

In)-image split where Rn = R and In = I for all n. By Proposition

2.8, R is right I-image split. In particular, I is a direct summand of R as a right ideal. As in the proof of (2)

⇒ (3) in Theorem 2.15, one can see that EndR(
∞⊕

n=1
In) is a von Neumann regular ring. Let K = EndR(I). Note

that EndR(
∞⊕

n=1
In) � EndK(

∞⊕
n=1

Kn), where Kn = K for all n. By [17, Theorem 3.5], K is a semisimple ring.

(2) ⇒ (1) Suppose that I is a direct summand of R as a right ideal and EndR(I) is a semisimple ring. Then,
∞⊕

n=1
In is a direct summand of

∞⊕
n=1

Rn where In = I and Rn = R for all n. Let K = EndR(I). Since EndR(
∞⊕

n=1
In) �

EndK(
∞⊕

n=1
Kn) where Kn = K for all n, and K is a semisimple ring, we have that EndR(

∞⊕
n=1

In) is a von Neumann

regular ring. Hence, Im f is a direct summand of
∞⊕

n=1
In for every f ∈ EndR(

∞⊕
n=1

In) by [17, Corollary 3,2].

Thus,
∞⊕

n=1
In is a dual Rickart module. Consequently,

∞⊕
n=1

Rn is (
∞⊕

n=1
In)-image split by Theorem 2.2.

We close this section by giving some applications about I-image split rings R.
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Proposition 2.17. If R is a right Z(RR)-image split ring, then it is right nonsingular.

Proof. Let R be a right Z(RR)-image split ring and x ∈ Z(RR). Assume that x , 0 and we reach a contradiction.
By definition, xZ(RR) is a direct summand of R. It entails that xZ(RR) has an idempotent e. Hence there
exists t ∈ Z(RR) such that e = xt. Since x, t ∈ Z(RR), we have e ∈ Z(RR). This is the required contradiction
since rR(e) = (1 − e)R is not essential in R. It follows Z(RR) = 0. Therefore, R is right nonsingular.

Recall that in [10], a right module M is called mininjective if for every simple right ideal K of R, each
homomorphism K → M extends to a homomorphism R → M. The next result shows that every module
over Soc(·)-image split ring is mininjective.

Proposition 2.18. If R is a right Soc(RR)-image split ring, then every right R-module is mininjective.

Proof. Let R be a right Soc(RR)-image split ring. Then, R = Soc(RR) ⊕ K for some right ideal K of R. Hence,
J(R) = Rad(Soc(RR)) ⊕ Rad(K). This yields J(R) = Rad(K) since Rad(Soc(RR)) = 0. Thus, Soc(RR) ∩ J(R) = 0
and so every right R-module is mininjective by [11, Theorem 2.36].

3. Direct sums of F-image split modules

A direct sum of Fi-image split modules Mi where i ∈ I for some index set I need not satisfy image
splitness as shown in [3, Example 4.1]. In this section, we investigate under which conditions direct sums
of Fi-image split modules Mi have the same property.

Proposition 3.1. Let {Mi}i∈I be a class of R-modules for an arbitrary index set I. If for every i ∈ I, Mi is a fully
invariant submodule of

⊕
i∈I

Mi, then Mi is Fi-image split for every i ∈ I if and only if
⊕
i∈I

Mi is
⊕
i∈I

Fi-image split.

Proof. Let
⊕
i∈I

Mi be
⊕
i∈I

Fi-image split. Then, by Proposition 2.8, Mi is Fi-image split for every i ∈ I. For the

necessity, let M =
⊕
i∈I

Mi, F =
⊕
i∈I

Fi and f = ( fi j) ∈ S where fi j ∈HomR(M j,Mi). Since for every i ∈ I, Mi is a

fully invariant submodule of
⊕
i∈I

Mi, HomR(M j,Mi) = 0 for every i, j ∈ I with i , j. By hypothesis, fii(Fi) is

a direct summand of Mi for each i ∈ I. On the other hand, we have f (F) =
⊕
i∈I

fii(Fi). Hence, f (F) is a direct

summand of M, as asserted.

Recall that a module is said to be abelian if every idempotent element of its endomorphism ring is central.
By the fact that a module M is abelian if and only if every direct summand of M is fully invariant in M, the
following result is an immediate consequence of Proposition 3.1.

Corollary 3.2. Let {Mi}i∈I be a class of R-modules for an arbitrary index set I and
⊕
i∈I

Mi be an abelian module.

Then, Mi is Fi-image split for all i ∈ I if and only if
⊕
i∈I

Mi is
⊕
i∈I

Fi-image split.

In the following, we introduce relatively F-image splitness in order to a more comprehensively study
on direct sums of Fi-image split modules Mi where i ∈ I for some index set I.

Definition 3.3. A module M is called F-image split module relative to N (or shortly, N-F-image split) if for each
f ∈ HomR(M,N), f (F) is a direct summand of N.

Theorem 3.4. Let M and N be R-modules. Then, M is an F-image split module relative to N if and only if for every
direct summand L of M and every submodule K of N, L is (L ∩ F)-image split relative to K.
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Proof. Let L be a direct summand of M, K a submodule of N and f ∈ HomR(L,K). Then, L = eM for some
e2 = e ∈ S and f e ∈ HomR(M,N). Since M is N-F-image split, f e(F) is a direct summand of N. As f e(F) ⊆ K,
f e(F) is a direct summand of K. We claim that f e(F) = f (L∩F). To see that let x ∈ f (L∩F). Then, there exists
y ∈ L ∩ F such that f (y) = x. Since y ∈ L = eM, x = f (y) = f e(y) ∈ f e(F). Hence, f (L ∩ F) ⊆ f e(F). It is clear
that f e(F) ⊆ f (L ∩ F). Thus, f (L ∩ F) is a direct summand of K, as asserted. The converse is clear.

The next result is obtained as an immediate consequence of Theorem 3.4 if we take into account of the

fully invariant submodule Z
2
(M) of a module M.

Corollary 3.5. [3, Corollary 3.13] Let M be an R-module. Then, the following are equivalent.

1. M is T-dual Rickart.
2. For any submodule N of M, each direct summand L of M is T-dual Rickart relative to N.

3. If L and N are direct summands of M, then for any ϕ ∈ HomR(L,N), ϕ(Z
2
(L)) is a direct summand of N.

Proposition 3.6. Let {Mi}i∈I be a class of R-modules for an index set I and N an R-module with a fully invariant
submodule F of

⊕
i∈I

Mi. Then, the following hold.

1. Let N have SSP and I be finite. Then,
⊕
i∈I

Mi is N-F-image split if and only if Mi is N-(F∩Mi)-image split for

all i ∈ I.
2. Let N have SSSP and I be arbitrary. Then,

(a)
⊕
i∈I

Mi is N-F-image split if and only if Mi is N-(F ∩Mi)-image split for all i ∈ I.

(b)
∏
i∈I

Mi is N-F-image split if and only if Mi is N-(F ∩Mi)-image split for all i ∈ I.

Proof. (1) Let
⊕
i∈I

Mi is N-F-image split, then Mi is N-(F∩Mi)-image split for all i ∈ I by Theorem 3.4. To see

the converse statement let f :
⊕
i∈I

Mi → N and ιi : Mi →
⊕
i∈I

Mi be a inclusion. Then, fi = f ιi ∈ Hom(Mi,N).

It can be seen that f (F) =
∑
i∈I

fi(F∩Mi). By hypothesis, fi(F∩Mi) is a direct summand of N for all i ∈ I. Since

N has SSP,
∑
i∈I

fi(F ∩Mi) is a direct summand of N. Hence, f (F) is a direct summand of N as asserted.

The proof of (2) is similar to that of (1).

Corollary 3.7. Let {Mi}i∈I be R-modules where I = {1, 2, . . . ,n} and F a fully invariant submodule of
⊕
i∈I

Mi. Then,

for each j ∈ I,
⊕
i∈I

Mi is M j-F-image split if and only if Mi is M j-(F ∩Mi)-image split for all i ∈ I.

Proof. If for each j ∈ I,
⊕
i∈I

Mi is M j-F-image split, then Mi is M j-(F∩Mi)-image split for all i ∈ I by Theorem

3.4. To see the converse statement, let Mi be M j-(F ∩Mi)-image split for all i ∈ I. Then, M j is F ∩M j-image
split. Hence, M j has SSP for direct summands which are contained in F∩M j by Proposition 2.11. Thus, the
rest can be proved similar to the proof of Proposition 3.6(1).

Theorem 3.8. Let {Mi}i∈I be a class of R-modules, N an R-module where I = {1, 2, . . . ,n} and assume that Mi is
M j-projective for all i ≥ j ∈ I. Then, an R-module N is

⊕
i∈I

Mi-F-image split if and only if N is M j-F-image split for

all j ∈ I.

Proof. The sufficiency is clear by Theorem 3.4. Let N be an M j-F-image split for all j ∈ I. We use induction
on n. Let n = 2, f be a homomorphism from N to M1 ⊕M2 and πi : M1 ⊕M2 → Mi be a natural projection
where i = 1, 2. Since N is M2-F-image split, π2 f (F) is a direct summand of M2. Hence, M1⊕π2 f (F) is a direct
summand of M1 ⊕M2. To see M1 + f (F) = M1 ⊕ π2 f (F), let z + y ∈ M1 + f (F). Then, y = π1y + π2y. Hence,
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z+ y = z+π1y+π2y ∈M1 +π2 f (F). For the reverse inclusion, let x+ y ∈M1⊕π2 f (F). Then, there exists z ∈ F
such that y = π2 f (z). Hence, x + y = x +π2 f (z) +π1 f (z)−π1 f (z) = x−π1 f (z) + f (z) ∈M1 + f (F), as asserted.
By hypothesis, M2 is M1-projective and so π2 f (F) is M1-projective. Then, there exists a submodule K of f (F)
such that M1 + f (F) = M1 ⊕ K by [9, Lemma 4.47]. Hence, f (F) = K ⊕ (M1 ∩ f (F)). Thus, π1 f (F) = M1 ∩ f (F)
since K∩M1 = 0. Hence, f (F) = K⊕π1 f (F) which is a direct summand of K⊕M1. Since K⊕M1 = M1⊕π2 f (F),
f (F) is a direct summand of M1 ⊕M2. Thus, N is (M1 ⊕M2)-F-image split. Consequently, we complete the
rest of the proof by induction on n.

Corollary 3.9. Let {Mi}i∈I be a class of R-modules where I = {1, 2, . . . ,n} and assume that Mi is M j-projective for
all i ≥ j ∈ I. Then,

⊕
i∈I

Mi is F-image split if and only if Mi is M j-(F ∩Mi)-image split for all i, j ∈ I.

Proof. The sufficiency is clear by Theorem 3.4. For the necessity, let Mi be M j-(F ∩Mi)-image split for all
i, j ∈ I. Then,

⊕
i∈I

Mi is M j-F-image split by Corollary 3.7. Hence,
⊕
i∈I

Mi is F-image split by Theorem 3.8.

4. Strongly F-image split modules

In this section, we deal with a module M for which f (F) is not only a direct summand but also a fully
invariant submodule for every f ∈ S.

Definition 4.1. An R-module M is called strongly F-image split if for every f ∈ S, f (F) is a fully invariant
direct summand of M.

It is obvious that M being a strongly F-image split module implies that it is F-image split. We now
investigate when the converse holds.

Theorem 4.2. The following are equivalent for a module M.

1. M is strongly F-image split.
2. M is F-image split and each direct summand of M which is contained in F is fully invariant.
3. F is a dual Rickart and abelian direct summand of M.

Proof. (1)⇒ (2) Let N be a direct summand of M with N ⊆ F. Then, there exists e2 = e ∈ S such that N = eM.
It can be shown that e(F) = N. By hypothesis, e(F) is fully invariant in M. Thus, N is fully invariant in M.
(2)⇒ (3) By Theorem 2.2 and (2), F is a dual Rickart direct summand of M. To see that F is an abelian module,
let L be a direct summand of F. Then, L is a direct summand of M. Hence, L is a fully invariant submodule
of M by hypothesis. We show that L is fully invariant in F. We have F = eM for some e2 = e ∈ S, and so
EndR(F) = eSe. Let f ∈ EndR(F). Then, there exists 1 ∈ EndR(M) such that f = e1e. Hence, f (L) = e1e(L) ⊆ L
since L is fully invariant in M. Thus, we have every direct summand of F is fully invariant in F. So, F is
abelian.
(3)⇒ (1) Let f ∈ S. By Theorem 2.2, M is F-image split. Hence, f (F) is a direct summand of M. We need to
show that f (F) is fully invariant in M. We have F = eM for some e2 = e ∈ S, and so EndR(F) = eSe. Thus,
e f e(F) is a fully invariant direct summand of F by hypothesis. Since F is fully invariant in M, e f e(F) = f (F).
Therefore, f (F) is a fully invariant submodule of M because F and f (F) is fully invariant in M and F,
respectively. So, M is strongly F-image split, as claimed.

The following example shows that an F-image split module M need not be strongly F-image split in
general.

Example 4.3. Let n be a positive integer with n ≥ 2 and M a vector space over a field K of dimension n.
Then, M is semisimple and so it is dual Rickart. Hence, M is M-image split. But it is not abelian. Thus, M
is not strongly M-image split.
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We end the paper by observing some basic results concerning direct summands and direct sums of
strongly F-image split modules.

Proposition 4.4. Let M be a strongly F-image split module. Then, every direct summand N of M is strongly
(N ∩ F)-image split.

Proof. Let K ⊆ N ∩ F be a direct summand of N. Since N is a direct summand of M, M = N ⊕ T for some
submodule T of M. By Proposition 2.8, T is (T∩ F)-image split. Then, there exists a submodule T′ of T such
that T = (T ∩ F) ⊕ T′. Hence, M = K ⊕ K′ ⊕ (T ∩ F) ⊕ T′ for some submodule K′ of N. Also, K ⊕ (T ∩ F) is
contained in F since K ⊆ N ∩ F. Thus, K ⊕ (T ∩ F) is fully invariant in M by hypothesis and Theorem 4.2. To
see K is fully invariant in N, let f ∈ EndR(N). Then, ( f ⊕ 1T)(K ⊕ (T ∩ F)) ⊆ K ⊕ (T ∩ F). Hence, f (K) ⊆ K, as
asserted.

Theorem 4.5. Let {Mi}i∈I be a class of R-modules for an arbitrary index set I and M =
⊕
i∈I

Mi. Then, M is strongly

F-image split if and only if for each i ∈ I, Mi is strongly (F ∩Mi)-image split and HomR(F ∩Mi,F ∩M j) = 0 for
every i, j ∈ I with i , j.

Proof. Let M be a strongly F-image split module. Then, for every i ∈ I, Mi is strongly (F ∩ Mi)-image
split by Proposition 4.4. Since F is fully invariant in M, F =

⊕
i∈I

(F ∩Mi). Also, F is a dual Rickart and

abelian module by hypothesis and Theorem 4.2. Hence, for every i ∈ I, F ∩ Mi is fully invariant in F.
Thus, HomR(F ∩Mi,F ∩M j) = 0 for every i, j ∈ I with i , j. To see the converse statement, let f = [ fi j] ∈
EndR(

⊕
i∈I

Mi) where fi j ∈ HomR(M j,Mi). Then, f (F) =
⊕
i∈I

fii(F ∩Mi) by hypothesis, and so f (F) is a direct

summand of M. Since for each i ∈ I, fii(F ∩Mi) is fully invariant in Mi, f (F) is fully invariant in M.
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