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On Ricci Solitons with a Semi-Symmetric Metric Connection
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Abstract. We find some properties of Ricci solitons with a semi-symmetric metric connection. When the
potential vector field is torse-forming, we obtain some characterizations. Applications to submanifolds are
also given.

1. Introduction

A linear connection on a Riemannian manifold (M, 1) is said to be a semi-symmetric connection [13], if its
torsion tensor T is of the form

T(X,Y) = $(Y)X − $(X)Y,

where $ is a 1-form defined by

$(X) = 1(X,P),

and P is a vector field on M.
If ∇̃ is the Levi-Civita connection of a Riemannian manifold (M, 1), then the semi-symmetric metric

connection (briefly SSMC)
◦

∇̃ is given by

◦

∇̃XY = ∇̃XY + $(Y)X − 1(X,Y)P, (1)

where X,Y,P are vector fields on M [23]. Let
◦

R̃ and R̃ denote the curvature tensor fields of
◦

∇̃ and ∇̃,
respectively. Then from (1), it is easy to see that

◦

R̃(X,Y)Z = R̃(X,Y)Z − α(Y,Z)X + α(X,Z)Y − 1(Y,Z)BX + 1(X,Z)BY, (2)

where

α(X,Y) = 1(BX,Y) = (∇̃X$)Y − $(X)$(Y) +
1
2
1(X,Y). (3)

2020 Mathematics Subject Classification. Primary 53B05; Secondary 35Q51, 53C25, 53C40
Keywords. Ricci soliton, semi-symmetric metric connection, torse-forming vector field, quasi-Einstein manifold, hyper-generalized

quasi-Einstein manifold
Received: 09 August 2020; Accepted: 25 February 2021
Communicated by Ljubica Velimirović
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Denote by
◦

R̃ic and R̃ic the Ricci tensor fields of the connections
◦

∇̃ and ∇̃, respectively. Then from (2), it can
be easily shown that

◦

R̃ic = R̃ic − (n − 2)α − trα1, (4)

(see [23]).
Let (M, 1) be a Riemannian manifold. As an intrinsic geometric flow Ricci flow

∂
∂t
1(t) = −2R̃ic(1(t))

was introduced in [14] by R. S. Hamilton, which is an evolution equation for Riemannian metrics. Ricci
solitons correspond to self-similar solutions of Ricci flow. A smooth vector field υ on a Riemannian manifold
(M, 1) is said to define a Ricci soliton [15], if there exists a real constant λ such that

1
2

£υ1 + R̃ic = λ1, (5)

where £υ denotes the Lie derivative operator in the direction of the vector field υ, Ric denotes the Ricci tensor
field of (M, 1). We denote it by (υ, λ). It can be easily seen that Ricci solitons are natural generalizations
of Einstein metrics, any Einstein metric gives a trivial Ricci soliton. A Ricci soliton (υ, λ) on a (semi)-
Riemannian manifold (M, 1) is said to be shrinking, steady or expanding according as λ is positive, zero or
negative, respectively [15].

In the recent years, the geometry of Ricci solitons has been studied by many geometers. See, for example,
[2], [4], [7], [9], [11], [19], [20], [21] and the references therein. Ricci solitons on submanifolds are also a very
popular subject. For these kinds of studies see, for example, [1], [5], [8], [10] and the references therein.

In the present paper, we find some properties of Ricci solitons on Riemannian manifolds endowed with
a SSMC when the potential vector field is torse-forming with respect to a SSMC. As recent studies on
torse-forming vector fields see [5], [9] and [16].

The paper is organized as follows. The first section is the Introduction. In Section 2, we consider
Riemannian manifolds with a SSMC. We find geometric properties of Ricci solitons on these kinds of
manifolds when the potential vector field is torse-forming. In Section 3, we obtain some applications to
submanifolds.

2. Ricci solitons on Riemannian manifolds with a SSMC

In this section, we consider Ricci solitons on Riemannian manifolds with a SSMC. Using (1), we have

(̃£υ1)(X,Y) = 1(
◦

∇̃Xυ,Y) + 1(X,
◦

∇̃Yυ) − 2$(υ)1(X,Y) + 1(X, υ)$(Y) + 1(Y, υ)$(X). (6)

Hence using equation (6), the soliton equation (5) with respect to a SSMC can be written as

1
2

(
1(
◦

∇̃Xυ,Y) + 1(X,
◦

∇̃Yυ)
)

+
1
2
(
1(X, υ)$(Y) + 1(Y, υ)$(X)

)
+ R̃ic(X,Y) = (λ + $(υ)) 1(X,Y). (7)

A vector field υ on a Riemannian manifold
(
M, 1

)
is called torse-forming [22], if

∇̃Xυ = cX + ϕ(X)υ,

where c is a smooth function, ϕ is a 1-form and ∇̃ is the Levi-Civita connection of 1.
In particular, if ϕ = 0, then υ is called a concircular vector field [12] and if c = 0, then υ is called a recurrent

vector field [19].
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Assume that P is a parallel unit vector field with respect to the Levi-Civita connection ∇̃. Using (1), we
have

◦

∇̃XP = X − $(X)P.

So we get:

Proposition 2.1. Let (M, 1) be a Riemannian manifold endowed with a SSMC. If P is a parallel unit vector field
with respect to the Levi-Civita connection ∇̃ then, P is a torse-forming vector field with respect to a SSMC of the form
◦

∇̃XP = X − $(X)P .

A non-flat Riemannian manifold (M, 1) (n ≥ 3) is called a hyper-generalized quasi-Einstein manifold [18], if
its Ricci tensor field is not identically zero and satisfies

R̃ic = a11 + a2A ⊗ A + a3 (A ⊗ B + B ⊗ A) + a4 (A ⊗D + D ⊗ A) ,

where a1, a2, a3 and a4 are functions on M and A,B and D are non-zero 1-forms. If a3 = a4 = 0, then M is
called a quasi-Einstein manifold [6]. If a2 = a3 = a4 = 0, then (M, 1) is an Einstein manifold [3]. The functions
a1, a2, a3 and a4 are called associated functions.

Now let (M, 1) be a Riemannian manifold endowed with a SSMC and υ a torse-forming potential vector
field with respect to a SSMC on M. Then from (1), we have

◦

∇̃Xυ = cX + ϕ(X)υ.

So by (7), we can write

R̃ic(X,Y) = (λ − c + $(υ)) 1(X,Y) −
1
2
{
1(X, υ)ϕ(Y) + 1(Y, υ)ϕ(X)

}
−

1
2
{
1(X, υ)$(Y) + 1(Y, υ)$(X)

}
.

Hence we can state the following Theorem:

Theorem 2.2. Let (M, 1) be a Riemannian manifold admitting a SSMC and υ a torse-forming potential vector field
with respect a SSMC on M. Then (M, 1) is a Ricci soliton (υ, λ) if and only if there exists a constant λ such that

R̃ic(X,Y) = (λ − c + $(υ)) 1(X,Y) −
1
2
{
1(X, υ)$(Y) + 1(Y, υ)$(X)

}
−

1
2
{
1(X, υ)ϕ(Y) + 1(Y, υ)ϕ(X)

}
. (8)

If υ is a concircular vector field with respect a SSMC, then we can state the following corollary:

Corollary 2.3. Let (M, 1) be a Riemannian manifold admitting a SSMC and υ a concircular potential vector field
with respect to a SSMC on M. Assume that $ is the 1 dual of υ. Then (M, 1) is a Ricci soliton (υ, λ) if and only if M
is a quasi-Einstein manifold with associated functions λ − c + ‖υ‖2 ,−1.

Now assume that a 1-form η is the 1-dual of υ. Then from (8), we have

R̃ic(X,Y) = (λ − c + $(υ)) 1(X,Y) −
1
2
{
η(X)$(Y) + η(Y)$(X)

}
−

1
2
{
η(X)ϕ(Y) + η(Y)ϕ(X)

}
.

Then we can state the following theorem:

Theorem 2.4. Let (M, 1) be a Riemannian manifold admitting a SSMC and υ a torse-forming potential vector field
with respect to a SSMC on M. Assume that a 1-form η is the 1 dual of υ. Then (M, 1) is a Ricci soliton (υ, λ) if and
only if M is a hyper-generalized quasi-Einstein manifold with associated functions λ − c + $(υ), 0,− 1

2 and − 1
2 .
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Using (4), the equation (8) can be written as

◦

R̃ic(X,Y) = (λ − c + $(υ) − trα) 1(X,Y) − (n − 2)α(X,Y)

−
1
2
{
1(X, υ)$(Y) + 1(Y, υ)$(X)

}
−

1
2
{
1(X, υ)ϕ(Y) + 1(Y, υ)ϕ(X)

}
.

So we can state the following corollary:

Corollary 2.5. Let (M, 1) be a Riemannian manifold admitting a SSMC and υ a torse-forming potential vector field
with respect to a SSMC on M. Then (M, 1) is a Ricci soliton (υ, λ) if and only if

◦

R̃ic(X,Y) = (λ − c + $(υ) − trα) 1(X,Y) − (n − 2)α(X,Y)

−
1
2
{
1(X, υ)$(Y) + 1(Y, υ)$(X)

}
−

1
2
{
1(X, υ)ϕ(Y) + 1(Y, υ)ϕ(X)

}
. (9)

Now assume that P is a parallel unit vector field with respect to the Levi-Civita connection, i.e., ∇̃P = 0
and ‖P‖ = 1. Then

(∇̃X$)Y = ∇̃X$(Y) − $(∇̃XY) = 0.

So from (3), α(X,Y) = −$(X)$(Y) + 1
21(X,Y) and trα = n

2 − 1. Thus by (9), we have

◦

R̃ic(X,Y) = (λ − c + $(υ) − n + 2)1(X,Y) + (n − 2)$(X)$(Y)

−
1
2
{
1(X, υ)$(Y) + 1(Y, υ)$(X)

}
−

1
2
{
1(X, υ)ϕ(Y) + 1(Y, υ)ϕ(X)

}
.

Hence we can state the following theorem:

Theorem 2.6. Let (M, 1) be a Riemannian manifold admitting a SSMC, P a parallel unit vector field with respect to
the Levi-Civita connection ∇̃ and υ a torse-forming potential vector field with respect a SSMC on M. Assume that a
1-form η is the 1-dual of υ. Then (M, 1) is a Ricci soliton (υ, λ) if and only if M is a hyper-generalized quasi-Einstein
manifold with respect to a SSMC with corresponding functions λ − c + $(υ) − n + 2, n − 2, − 1

2 ,−
1
2 .

3. Submanifolds

Let
(
M̃, 1̃

)
be an (n + d)-dimensional Riemannian manifold endowed with a SSMC

◦

∇̃ and the Levi-Civita

connection ∇̃. Let M be an n-dimensional submanifold of
(
M̃, 1̃

)
. On the submanifold M, let us denote the

induced connection by
◦

∇ and the induced Levi-Civita connection by ∇.

The Gauss formulas and Weingarten formulas with respect to ∇̃ and
◦

∇̃ can be written as:

∇̃XY = ∇XY + σ(X,Y),

◦

∇̃XY =
◦

∇XY +
◦

σ(X,Y), X,Y ∈ χ(M),

and

∇̃XN = −ANX + ∇⊥XN,
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◦

∇̃XN = −
◦

ANX + ∇⊥XN,

respectively, where X,Y ∈ χ(M), σ is the second fundamental form, N is a unit normal vector field and AN is

the shape operator of M in
(
M̃, 1̃

)
and

◦

σ is a normal valued (0, 2)-tensor field and
◦

A is a (1, 1)-tensor field on
M [17]. Denote by the tangential and normal parts of P by PT and P⊥, respectively. Then from the formula
(7) in [17], we have

◦

σ(X,Y) = σ(X,Y) − 1(X,Y)P⊥ (10)

and
◦

ANX = ANX − $(N)X. (11)

It is known from [17] that the induced connection
◦

∇ on a submanifold of a Riemannian manifold endowed
with a SSMC is also a SSMC.

Now assume that (M̃, 1̃) is a Riemannian manifold admitting a SSMC and υ is a torse-forming vector
field with respect to a SSMC on M̃. Let

(
M, 1

)
be a submanifold of (M̃, 1̃). Denote by υT and υ⊥, the tangential

and normal parts of υ, respectively. Then using (1), we have

◦

∇̃Xυ =
◦

∇̃X

(
υT + υ⊥

)
=
◦

∇̃Xυ
T +

◦

∇̃Xυ
⊥

= ∇̃Xυ
T + $(υT)X − 1(X, υT)PT

− 1(X, υT)P⊥ + ∇̃Xυ
⊥ + $(υ⊥)X

= cX + ϕ(X)υT + ϕ(X)υ⊥.

So by using of Gauss and Weingarten formulas and by the equality of the tangential and normal parts, we
find

∇Xυ
T = (c − $(υ)) X + 1(X, υT)PT + Aυ⊥X + ϕ(X)υT (12)

and

σ
(
X, υT

)
+ ∇⊥Xυ

⊥
− 1(X, υT)P⊥ = ϕ(X)υ⊥.

Then in view of (12), we get

(£υT1)(X,Y) = 1(∇Xυ
T,Y) + 1(X,∇Yυ

T)

= 2 (c − $(υ)) 1(X,Y) + 1(X, υT)$(Y) + 1(Y, υT)$(X) + 21̃(σ(X,Y), υ⊥) + ϕ(X)1(Y, υT) + ϕ(Y)1(X, υT).

Hence equation (5) gives us

Ric(X,Y) = (λ − c + $(υ)) 1(X,Y) − 1̃(σ(X,Y), υ⊥)

−
1
2

{
1(X, υT)$(Y) + 1(Y, υT)$(X)

}
−

1
2

{
ϕ(X)1(Y, υT) + ϕ(Y)1(X, υT)

}
.

So we can state the following theorem:

Theorem 3.1. Let M be an n-dimensional submanifold isometrically immersed into a Riemannian manifold
(
M̃, 1̃

)
endowed with a SSMC and υ a torse-forming vector field with respect to a SSMC on M̃. Then (M, 1) is a Ricci soliton
(υT, λ) if and only if the Ricci tensor field Ric of M satisfies:

Ric(X,Y) = (λ − c + $(υ)) 1(X,Y) − 1̃(σ(X,Y), υ⊥)

−
1
2

{
1(X, υT)$(Y) + 1(Y, υT)$(X)

}
−

1
2

{
ϕ(X)1(Y, υT) + ϕ(Y)1(X, υT)

}
(13)

for every X,Y ∈ χ(M).
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If M is υ⊥-umbilical, then Aυ⊥ = kI, where k is a function on M and I is the identity map [8]. So we have
1̃(σ(X,Y), υ⊥) = 1(Aυ⊥X,Y) = k1(X,Y). Then from (13), we have

Ric(X,Y) = (λ − c + $(υ) − k) 1(X,Y)

−
1
2

{
1(X, υT)$(Y) + 1(Y, υT)$(X)

}
−

1
2

{
ϕ(X)1(Y, υT) + ϕ(Y)1(X, υT)

}
.

So we can state the following theorem:

Theorem 3.2. Let M be an n-dimensional υ⊥-umbilical submanifold isometrically immersed into a Riemannian
manifold

(
M̃, 1̃

)
endowed with a SSMC and υ a torse-forming vector field with respect to a SSMC on M̃. Assume

that a 1-form η is the 1 dual of υT. Then (M, 1) is a Ricci soliton (υT, λ) if and only if it is a hyper-generalized
quasi-Einstein manifold with associated functions (λ − c + $(υ) − k) , 0,− 1

2 and − 1
2 .

Since the induced connection
◦

∇ on a submanifold of a Riemannian manifold endowed with a SSMC is
also a SSMC, from (4), (10) and (13), we also have

◦

Ric(X,Y) =
(
λ − c + $(υT) − trα

)
1(X,Y) − (n − 2)α(X,Y)

−1̃(
◦

σ(X,Y), υ⊥) −
1
2

{
1(X, υT)$(Y) + 1(Y, υT)$(X)

}
−

1
2

{
ϕ(X)1(Y, υT) + ϕ(Y)1(X, υT)

}
,

where
◦

Ric denotes the Ricci tensor field of the induced SSMC.
So we can state the following corollary:

Corollary 3.3. Let M be an n-dimensional submanifold isometrically immersed into a Riemannian manifold
(
M̃, 1̃

)
endowed with a SSMC and υ a torse-forming vector field with respect to a SSMC on M̃. Then (M, 1) is a Ricci soliton

(υT, λ) with respect to the SSMC if and only if the Ricci tensor field
◦

Ric of the induced SSMC of M satisfies:
◦

Ric(X,Y) =
(
λ − c + $(υT) − trα

)
1(X,Y) − (n − 2)α(X,Y)

−1̃(
◦

σ(X,Y), υ⊥) −
1
2

{
1(X, υT)$(Y) + 1(Y, υT)$(X)

}
−

1
2

{
ϕ(X)1(Y, υT) + ϕ(Y)1(X, υT)

}
for every X,Y ∈ χ(M).

If P is a parallel unit vector field with respect to the Levi-Civita connection ∇̃, then we have
◦

Ric(X,Y) =
(
λ − c + $(υT) − n + 2

)
1(X,Y) + (n − 2)$(X)$(Y)

−1̃(
◦

σ(X,Y), υ⊥) −
1
2

{
1(X, υT)$(Y) + 1(Y, υT)$(X)

}
−

1
2

{
ϕ(X)1(Y, υT) + ϕ(Y)1(X, υT)

}
. (14)

If M is υ⊥-umbilical, then by (11), we have
◦

Aυ⊥X =
(
k − $(υ⊥)

)
X,

which gives us(
k − $(υ⊥)

)
1 (X,Y) = 1

(
◦

Aυ⊥X,Y
)

= 1̃(
◦

σ(X,Y), υ⊥).

Hence from (14), we find
◦

Ric(X,Y) = (λ − c − k + $(υ) − n + 2) 1(X,Y) + (n − 2)$(X)$(Y)

−
1
2

{
ϕ(X)1(Y, υT) + ϕ(Y)1(X, υT)

}
−

1
2

{
1(X, υT)$(Y) + 1(Y, υT)$(X)

}
.

So we can state the following theorem:



C. Özgür / Filomat 35:11 (2021), 3635–3641 3641

Theorem 3.4. Let M be a υ⊥-umbilical submanifold isometrically immersed into a Riemannian manifold
(
M̃, 1̃

)
endowed with a SSMC and υ a torse-forming vector field with respect to a SSMC on M̃. Assume that a 1-form η is
the 1 dual of υT and P is a parallel unit vector field with respect to the Levi-Civita connection ∇̃. Then (M, 1) is a Ricci
soliton (υT, λ) if and only if it is a hypergeneralized quasi-Einstein manifold with respect to a SSMC with associate
functions λ − c − k + $(υ) − n + 2,n − 2, 1

2 and − 1
2 .
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Iaşi. Mat. (N.S.) 61 (2015) 437–444.

[2] C. L. Bejan, M. Crasmareanu, Ricci solitons in manifolds with quasi-constant curvature, Publ. Math. Debrecen 78 (2011) 235–243.
[3] A. L. Besse, Einstein manifolds. Classics in Mathematics. Springer-Verlag, Berlin, 2008.
[4] A. M. Blaga, Solutions of some types of soliton equations in R3, Filomat 33 (2019) 1159–1162.
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