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Available at: http://www.pmf.ni.ac.rs/filomat
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Abstract. Karapinar introduced the notion of interpolative Ćirić-Reich-Rus type contractions in the setting
of complete metric space. Taking his approach forward, H. Aydi, initiated the concept of w-admissibility
and proved some fixed point results on the same. This approach has been applied to partial-metric space
as well.

But the question is, can the above result be applied in quasi-partial b-metric space as well ? Our paper
deals with the above raised question. The paper discusses how w-admissibility can be used to obtain fixed
point results for Ćirić-Reich-Rus type contractions in quasi-partial b-metric space. Few examples are given
to justify the result.

1. Introduction and Preliminaries

In 1906, M. Fréchet[1] introduced the term metric space which is considered to be one of the cornerstones
in the field of mathematics. Due to its importance and application potential, this notion has been extended
and improved by many authors[2],[3],[4],[5]. Later on S.G. Matthews[6] studied partial-metric space and
obtained fixed point theorem on it. Then the concept of quasi-partial metric was introduced by Karapinar[7].
Shukla[8] came up with the notion of partial b-metric space as a generalization of partial-metric and b-
metric space. Gupta and Gautam[9] generalized quasi-partial metric space and introduced the concept of
quasi-partial b-metric space.

The notion of w-orbital admissible maps was introduced by Popescu[10] as a refinement of the concept of
α-admissible maps of Samet et al. [11]. Karapinar[12] defined the generalized Kannan-type contraction by
adopting the interpolative approach and proved that such an interpolative Kannan-type contraction owns
a fixed point in complete metric space. Karapinar[13] also gave the notion of interpolative Ćirić-Reich-Rus
type contraction in the framework of partial-metric space. Here in this paper we have stated the fixed point
theorem on Ćirić-Reich-Rus type contraction in the framework of complete quasi-partial b-metric space, by
taking w-interpolation into account. Some examples are given to verify the effectiveness of the main result.
Throughout this paper, R+ denotes the set of all non-negative real numbers and N denotes the set of positive
integers.
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Definition 1. A partial metric on a non-empty set X is a function p : X × X → [0, ∞) such that for all
u, v,w ∈ X satisfies:

(i) u = v←→ p(u,u) = p(u, v) = p(v, v),

(ii) p(u,u) ≤ p(u, v),

(iii) p(u, v) = p(v,u), and

(iv) p(u, v) ≤ p(u,w) + p(w, v) − p(w,w).

A partial metric space is a pair (X, p) such that X is a non-empty set and p is a partial metric on X.

Definition 2. A quasi-partial metric on a non-empty set X is a function q : X × X→ R+ such that for all
u, v,w ∈ X satisfies:

(i) If q(u,u) = q(u, v) = q(v, v), then u = v,

(ii) q(u,u) ≤ (u, v),

(iii) q(u,u) ≤ (v,u), and

(iv) q(u, v) + q(w,w) ≤ q(u,w) + q(w, v).

A quasi-partial metric space is a pair (X, q) such that X is a non-empty set and q is a quasi-partial metric
on X.

Definition 3. A quasi-partial b-metric on a non-empty set X is a mapping qpb: X ×X→ R+ such that for
some real s ≥ 1 for all u, v,w εX.

(i) qpb(u,u) = qpb(u, v) = qpb(v, v) =⇒ u = v,

(ii) qpb(u,u) ≤ qpb(u, v),

(iii) qpb(u,u) ≤ qpb(v,u), and

(iv) qpb(u,u) ≤ s[qpb(u,w) + qpb(w, v)] − qpb(w,w).

A quasi-partial b-metric space is a pair (X, qpb) such that X is a non-empty set and qpb is a quasi-partial
b-metric on X. The number s is called the coefficient of (X,qpb).

Definition 4. Let (X, qpb) be a quasi-partial b-metric space. A self mapping T on X is called an
interpolative Ćirić-Reich-Rus type contraction, if there is λ ε [0,1) and positive reals α, βwith α + β < 1 such
that

qpb(Tη,Tµ) ≤ λ[qpb(η, µ)]β.[qpb(η,Tη)]α.[qpb(µ,Tµ)](1−α−β),

for all η, µ εX.

Example 1. Let us consider a set X = {2, 4, 8, 10} endowed with qpb(u, v) = u + v .

qpb(u,v) 2 4 8 10
2 4 6 10 12
4 6 8 12 14
8 10 12 16 18

10 12 14 18 20

Define a self mapping T on X :
(

2 4 8 10
4 2 4 2

)
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qpb ( T2, T4 ) = qpb (4, 2 ) ≤ λ ( qpb (4,2 ) + qpb ( T2, 2) + qpb (4,T4 ))
= λ (qpb (4, 2 ) + qpb ( 4, 2) + qpb (4, 2 ))
= λ(6 + 6 + 6)
= 18λ.

On the other hand choose β = 1/2 , α = 2/5 and λ = 18/10. Then, (u, v) ε {(8, 10),(10, 8),(8, 8),(10, 10)}.
Without loss of generality, we have :

Case 1. u = v = 8 , here,
qpb(Tu,Tv) = 16 ≤ 40λ = λ[qpb(u, v)]β.[qpb(u,Tu)]α.[qpb(v,Tv)](1−α−β)

Case 2. u = v = 10 , here,
qpb(Tu,Tv) = 4 ≤ 44λ = λ[qpb(u, v)]β.[qpb(u,Tu)]α.[qpb(v,Tv)](1−α−β)

Case 3. u = 8, v = 10, here,
qpb(Tu,Tv) = 8 ≤ 42λ = λ[qpb(u, v)]β.[qpb(u,Tu)]α.[qpb(v,Tv)](1−α−β)

Thus, the self mapping T is an interpolative Cirić-Reich-Rus type contraction. Hence, 2 and 4 are the
desired fixed points.

Definition 5. Let w : X × X→ [0,∞] be a mapping and X , φ. A self mapping T : X→ X is said to be a
w-orbital admissible if for all s ∈ X, we have

w(s,Ts) ≥ 1 −→ w(Ts,T2s) ≥ 1

H-condition - If {µn} is a sequence in X such that w(µn+1, µn) ≥ 1 for each n and {µn} → µ εX as n → ∞
then there exists {µn(k)} from {µn} such that w(µn(k), µ) ≥ 1 for each k.

In this paper we have stated the idea of w-interpolative Ćirić-Reich-Rus type contraction in quasi-partial
b-metric space using the notion of w-admissibility.

2. Main Results

Let (X, qpb) be a quasi-partial b-metric space. The map T : X → X is said to be a w-interpolative Ćirić-
Reich-Rus type contractions if there exists λ ε ψ, w : X × X → [0,∞] and positive reals α, β > 0, verifying
α + β < 1, such that :

w(η, µ)qpb(Tη,Tµ) ≤ λ[qpb(η, µ)]β.[qpb(η,Tη)]α.[qpb(µ,Tµ)](1−α−β) (2.1)

for all η, µ ε X .

The essential main result is given as follows:

Theorem 1. Let a continuous self mapping T : X→ X is w-orbital admissible and forms a w-interpolative
Ćirić-Reich-Rus type contractions on a complete quasi-partial b-metric space (X, qpb). If there exists η ε X
such that w(η,Tη) ≥ 1, then T possesses a fixed point in X.

Proof - Let η ε X be a point such that w(η,Tη) ≥ 1 and {ηn} be a sequence defined by ηn = Tn(η) = T(ηn),
where η ≥ 0. If for some n0, we get ηn0 = ηn0+1, then ηn0 is a fixed point of T, hence it is proved for this case.

Let ηn , ηn+1, n ≥ 0. We have w(η0, η1) ≥ 1. As T is w-orbital admissible, w(η1, η2) = w(Tη0,Tη1) ≥ 1,
continuing further w(ηn, ηn+1) ≥ 1 for all n ≥ 0.
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Let η = ηn, µ = ηn−1 in (2.1),
qpb(ηn+1, ηn) ≤ w(ηn, ηn−1)qpb(Tηn,Tηn−1)

≤ λ([qpb(ηn, ηn−1]α[qpb(ηn,Tηn]β[qpb(ηn−1,Tηn−1]1−β−α

= λ([qpb(ηn, ηn−1]α[qpb(ηn, ηn+1]β[qpb(ηn−1, ηn]1−β−α

= λ([qpb(ηn−1, ηn]1−β[qpb(ηn, ηn+1]β (2.2)
Particularly, as λ(t) < t for each t > 0.
qpb(ηn+1, ηn) ≤ λ([qpb(ηn−1, ηn)]1−β[qpb(ηn, ηn+1)]β)

< [qpb(ηn−1, ηn)]1−β[qpb(ηn, ηn+1)]β

We derived, [qpb(ηn, ηn+1)]1−β < [qpb(ηn−1, ηn)]1−β

Therefore, qpb(ηn, ηn+1) < qpb(ηn−1, ηn) for all n ≥ 1 (2.3)
So,(qpb(ηn−1, ηn) is decreasing .
Let limn→∞ qpb(ηn−1, ηn) = L
Multiplying qpb(ηn−1, ηn)1−β on both sides of (2.3)
[qpb(ηn−1, ηn)]1−β[qpb(ηn, ηn+1)]β ≤ [qpb(ηn−1, ηn)]1−β[qpb(ηn−1, ηn)β

= qpb(ηn−1, ηn) (2.4)
From (2.2) and (2.4) ,
qpb(ηn+1, ηn) ≤ λ([qpb(ηn−1, ηn)]1−β[qpb(ηn, ηn+1)]β]

≤ λ[qpb(ηn−1, ηn)]
Repeating this argument,we get
qpb(ηn, ηn+1) ≤ λ[qpb(ηn−1, ηn)] ≤ λ2[qpb(ηn−2, ηn−1)] ≤ · · ·λn[qpb(η0, η1)] ( 2.5)

Taking n→∞ in (2.5) and using the fact , limn→∞ λn(t) = 0 for all t > 0 ,
We get , L = 0 which implies limn→∞ qpb(ηn, ηn+1) = 0

We will show that {ηn} is a Cauchy Sequence ie. limn→∞ qpb(ηn, ηn+p) = 0 for all p ∈ N.
From (2.5) and using the triangular inequality,
qpb(ηn, ηn+p) ≤ λn(qpb(η0, η1)) + · · · + λn+p−1(qpb(η0, η1))

≤
∑
∞

i=n λ
i(qpb(η0, η1)) (2.6)

Taking n → ∞ in (2.6) , we get zero on the right side of the equation. So, {ηn} is a Cauchy Sequence in
(X, qpb).

Hence, {ηn} is a Cauchy Sequence in (X, qpb). As (X, qpb) is complete, there exists, η ε X, such that
limn→∞ qpb(η, ηn) = 0.

As T is continuous, η = limn→∞ ηn+1 = limn→∞ Tηn = T(limn→∞ ηn) = Tη.

Example 2. Let us consider a set X = [0, 3] endowed with qpb(u, v) = | u− v | + u . Suppose that T is a self
mapping defined on X by -

Interval Values of Tx Values of w
[0,2] 7/5 1
(2,3] 23/10 0

Let u, v ε X such that u , Tu and v , Tv and w(u, v) ≤ 1. Then, u, v ε [0, 2] and u, v < 7
5 as we have

Tu = Tv = 7
5 .

Hence, (2.1) holds. For u0 = 2 ,

w(2,T2) = w(2,
7
5

) = 1

Now, let u, v ε X such that, w(u, v) ≥ 1. It yields that u, v ε [0, 2], so Tu = Tv ε [0, 2].
Hence, w(Tu, Tv) ≥ 1 , that is w-orbital admissible. Notice, T is not continuous. We shall show that

H-condition too holds.
Let there exists a sequence {un} in X such that w(un,un+1) ≥ 1 for each n ε N. Then , un ⊂ [0, 2] .
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If {un} → c as n→∞ , we have | un − c | → 0 as n→∞.
Hence, c ε [0,2] and so, w(un, c) = 1. All conditions of Theorem 1 holds.
Therefore, 7

5 and 23
10 are two fixed points of T.

Theorem 2. Let a self mapping T : X → X is a w-orbital admissible and forms a w-interpolative
Ćirić-Reich-Rus type contraction on a quasi-partial b-metric space(X, qpb) and suppose the H-condition is
fulfilled. If there exists η ε X such that w(η0,Tη0) > 1, then T has a fixed point.

Proof - From Theorem 1, we conclude that the constructed sequence {ηn} is Cauchy and limn→∞ qpb(ηn, η) =
0 holds.

Let η , Tη (by contradiction)
So, ηn(k) , Tηn(k) for each k ≥ 0.

Due to H-condition, there is a partial subsequence {ηn(k)} of {ηn} such that w(ηn(k), η) ≥ 1 for all k.
Since sequences, qpb(ηn(k), η) → 0 and qpb(ηn(k),Tηn(k)) → 0 ( as η = Tη, shown in Theorem 1 ) and

qpb(η,Tη) > 0, there exists n ∈ N such that for all k ≥ n,
qpb(ηn(k), η) ≤ qpb(η,Tη) and qpb(ηn(k),Tηn(k) ≤ qpb(η,Tη).
Taking η = ηn(k) and µ = η (in equation 1)
qpb(ηn(k)+1,Tη) ≤ w(ηn(k), η)qpb(Tηn(k),Tη)

≤ λ[qpb(ηn(k), η)]α[qpb(ηn(k),Tηn(k)]β[qpb(η,Tη)](1−α−β)

As λ is non-decreasing ,
qpb(ηn(k)+1,Tη) ≤ λ([qpb(η,Tη)]α[qpb(η,Tη)]β[qpb(η,Tη)]1−α−β]

= λ(qpb(η,Tη))
Let k→∞ ,
0 < (qpb(η,Tη)) < λ(qpb(η,Tη)) < (qpb(η,Tη)) , which is a contradiction. Therfore, η = Tη .

Example 3. Let us consider a set X = [2, 5] endowed with qpb(u, v) = | ln ( u
v ) |. Suppose that T is a self

mapping defined on X by -

Interval Values of Tx Values of w
[2, 3] 9/100 1
(3, 5] 5/100 0

Let u, v ε X such that u , Tu and v , Tv and w(u,v) ≤ 1 . Then, u, v ε [2, 3] and u, v < 9
100 as we have

Tu = Tv = 9
100 .

Hence, (2.1) holds. For u0 = 2 ,

w(2,T2) = w(2,
9

100
) = 1.

.
Now, let u, v ε X such that, w(u, v) ≥ 1. It yields that u, v ε [2, 3], so Tu = Tv ε [2, 3].
Hence, w(Tu, Tv) ≥ 1, that is w-orbital admissible. Notice, T is not continuous. We shall show that

H-condition too holds.
Let there exist a sequence {un} in X such that w(un,un+1) ≥ 1 for each n ∈ N. The, un ⊂ [2,3] .
If {un} → c as n→∞ , we have | un − c | → 0 as n→∞.
Hence, c ε [2, 3] and so, w(un, c) = 1. All conditions of Theorem 1 holds.
Therefore, 9

100 and 5
100 are two fixed points of T.

Corollary 1. Let A1 and A2 be two non-empty subsets of a complete quasi-partial b-metric space (X, qpb)
are closed. Consider that T : A1 ∪ A2 → A1 ∪ A2 satisfies,

w(η, µ)qpb(Tη,Tµ) ≤ λ([qpb(η, µ)]β.[qpb(η,Tη)]α.[qpb(µ,Tµ)](1−α−β)
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for all η ε A1 and µ ε A2 such that η, µ < Fix(T), where λ ε ψ and α, β > 0 are positive reals such that
α + β < 1. If T(A1) ⊆ A2 and T(A2) ⊆ A1, then there exists a fixed point of T in A1 ∩ A2.

Corollary 2. Let A1 and A2 be two non-empty subsets of a complete quasi-partial b-metric space (X, qpb)
are closed. Consider that T : A1 ∪ A2 → A1 ∪ A2 satisfies,

w(η, µ)qpb(Tη,Tµ) ≤ λ([qpb(η,Tη)]β.[qpb(µ,Tµ)](1−α−β)

for all η ε A1 and µ ε A2 , such that η , µ < Fix(T) , where λ ε φ and 0 < β < 1 . If T(A1) ⊆ A2 and
T(A2) ⊆ A1 , then there exists a fixed point of T in A1 ∩ A2.

Example 4. Let us consider a set X = A1 ∪ A2 endowed with qpb(u, v) = | u − v |. Let A1 = [1, 6]
and A2 = [0, 5].

Interval Values of Tx
A1 2
A2 3

Interval Values of w
(A1 × A2) ∪ (A2 × A1) 1

Otherwise 0

Let u, v ε X such that u , Tu and v , Tv and w(u, v) ≤ 1. Then, u, v ε (A1 × A2) ∪ (A2 × A1)
and u, v < 2 as we have Tu = Tv = 2. Hence, equation 1 holds. For u0 = 3,

w(3,T3) = w(3, 2) = 1.

Now, let u, v ε X such that, w(u, v) ≥ 1. It yields that for u, v ε (A1 × A2) ∪ (A2 × A1), T(A1) ⊆ A2 and
T(A2) ⊆ A1. Hence, w(Tu, Tv) ≥ 1 , that is w-orbital admissible. Notice, T is not continuous. We shall show
that H-condition too holds.

Let sequence {un} in X such that w(un,un+1) ≥ 1 for each n ∈ N. Then , un ⊂ [1, 5] .
If {un} → c as n→∞, we have | un − c | → 0 as n→∞.
Hence, c ε [1, 5] and so, w(un, c) = 1. All conditions of Theorem 1 holds. A1 ∩A2 = [1, 5], which satisfies

the corollary. Therefore, 2 and 3 are two fixed points of T and they belong to A1 ∩ A2.

Corollary 3. Let T be a self mapping on a complete quasi-partial b-metric space, (X, qpb) such that

w(η, µ)qpb(Tη,Tµ) ≤ λ([qpb(η,Tη)]β.[qpb(µ,Tµ)](1−β)

for all η, µ ε Fix(T), where 0 < β < 1. Then T admits a fixed point in X.

Example 5. Suppose a set X = [0, Π
2 ] is endowed with qpb(u, v) = sin u + sin v. Suppose that T is a self

mapping defined on X by -

Interval Values of Tx Values of w
[0, Π

4 ] 1
2 1

( Π
4 , Π

2 ] 1 +
√

3
2 0

Let u, v ε X such that u , Tu and v , Tv and w(u, v) ≤ 1 . Then, u, v ε [0, Π
4 ] and u, v < 1

2 as we have
Tu = Tv = 1

2 .
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Hence, (2.1) holds. For u0 = Π
6 ,

w(
Π

6
,T

Π

6
) = w(

Π

6
,

1
2

) = 1.

Now, let u, v ε X such that, w(u, v) ≥ 1. It yields that u, v ε [1, 2], so Tu = Tv ε [0, Π
4 ].

Hence, w(Tu, Tv) ≥ 1, that is w-orbital admissible. Notice, T is not continuous. We shall show that
H-condition too holds.

Let there exists a sequence {un} in X such that w(un,un+1) ≥ 1 for each n ∈ N. Then, un ⊂ [0, Π
4 ] .

If {un} → c as n→∞ , we have | un − c | → 0 as n→∞.
Hence, c ε [0, Π

4 ] and so, w(un, c) = 1. All conditions of Theorem 1 holds.

Therefore, 1
2 and 1 +

√
3

2 are two fixed points of T.
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