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Abstract. This work deals with the rearrangement invariant Banach function space X and Banach Hardy
classes generated by this space, which consist of analytic functions inside and outside the unit circle. In
these Hardy classes we consider homogeneous and nonhomogeneous Riemann problems with piecewise
continuous coefficient. We define new characteristic of the space X related to the power functions in X.
Canonical solution is defined depending on the jumps of the argument of the coefficient of the problem. In
terms of the above characteristic, we find a condition on the jumps of the argument depending on the Boyd
indices of space X, which is sufficient for the solvability of these problems, and, in case of solvability, we
construct a general solution. We also give an orthogonality condition for the solvability of nonhomogeneous
problem. As X, considering specific spaces, we obtain previously known results.

1. Introduction

Lately, there had been great interest in various non-standard function spaces in the context of problems
of theoretical and applied mathematics. Among those spaces, we can mention Lebesgue spaces with
variable summability index, Morrey spaces, grand-Lebesgue spaces, etc. Various problems of harmonic
analysis, theory of partial differential equations, approximation theory, theory of conjugate boundary value
problems for analytic functions, etc are studied in these spaces. Numerous research articles and review
articles have been dedicated to these problems. Many results related to the problems of harmonic analysis
have been obtained by Diening L., Harjuleto P., Hasto P., Ruzicka M. [30], D.V. Gruz-Uribe, A. Fiorenza [1],
D.R. Adams [2], V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko [3, 4], R.E. Castillo, H. Rafeiro [5], M.M.
Reo, Z.D. Ren [6], R. Lecniewicz [7], J. Musielak [8], W.M. Kozlowski [9], etc. In [10–23] (to name just a few),
the problems of approximation theory, basis theory and theory of boundary value problems for analytic
functions have been considered. Each of the above-mentioned spaces presents specific difficulties to treat
this or that problem depending on the geometry of the space. The solutions of considered problems depend
on the parameters of the space (including the norm it is supplied with) and the problem data, and you
have to find the relationships between them to solve your problem. Despite these circumstances, it should
be noted that these spaces are basically (unlike, for example, Lebesgue spaces with variable summability
index) so called rearrangement invariant Banach function spaces (r.i.s. for short). For the theory of these
spaces we refer the readers to the monographs [24, 25, 43]. The question naturally arises: is it possible
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to consider the above problems in general r.i.s.? Some problems of harmonic analysis have already been
studied in r.i.s. (see [24, 25, 43] and [26–29]).

Note that the study of basis properties (completeness, minimality, basicity) of perturbed trigonometric
systems of exponential form{

ei (nt−α(t) si1n n)
}

n∈Z
, (1)

(Z are integers) and those of sine and cosine systems

{cos (nt − α (t))}n∈Z+
; {sin (nt − α (t))}n∈N , (2)

(N is the set of natural numbers; Z+ = {0}
⋃

N; Z = {−N}
⋃

Z+) in different Banach function spaces is of
special scientific interest for the spectral theory of differential operators. One of the known methods for
treating basis properties of the systems (1) and (2) in function spaces (for example, in Lebesgue spaces Lp)
is the method of Riemann boundary value problems in corresponding Hardy spaces. For the applications
of this method in Lp and Morrey spaces we refer the readers to [31–39, 45–48]. This method requires
definition of corresponding Hardy spaces, establishment of some properties of them, basicity of the parts
of an exponential system in these spaces and solvability of Riemann problems. In [12, 13, 18, 19, 39], the
method of Riemann boundary value problems to study basis properties of the systems (1), (2) has been
developed for Lebesgue spaces with variable summability index and Morrey spaces. Similar matters have
been treated in [45] for Orlicz-Hardy spaces.

In this work, we deal with the rearrangement invariant Banach function space X and Banach Hardy
classes, generated by this space, which consist of analytic functions inside and outside the unit circle. In
these Hardy classes, we consider homogeneous and nonhomogeneous Riemann problems with piecewise
continuous coefficient. We define new characteristic of the space X related to the power functions in X.
Canonical solution is defined with regard to the jumps of the argument of the coefficient of the problem.
In terms of the above characteristic, we find a condition on the jumps of the argument which is sufficient
for the solvability of these problems, and, in case of solvability, we construct a general solution. We also
give an orthogonality condition for the solvability of nonhomogeneous problem. As X, considering specific
spaces, we obtain previously known results.

2. Needful information and auxiliary facts

Further, we will use the following standard notations and concepts. R+ = (0,+∞); χM (·) is the charac-
teristic function of the set M; R is the set of real numbers; C is the complex plane; ω = {z ∈ C : |z| < 1} is a
unit disk in C; γ = ∂ω is a unit circle; M̄ is the closure of the set M with respect to appropriate norm; ( · ) is
the complex conjugate. By [X] we denote the algebra of linear bounded operators acting in a Banach space
X.

We will need some concepts and facts from the theory of Banach function spaces (see, e.g., [24, 25]). Let(
R;µ

)
be a measure space. LetM+ be the cone of µ-measurable functions on R whose values lie in [0,+∞].

The characteristic function of a µ-measurable subset E of R denote by χE.

Definition 2.1. A mapping ρ :M+
→ [0,+∞] is called a Banach function norm (or simply a function norm) if, for

all f , 1, fn,n ∈ N inM+, for all constants a ≥ 0 and for all µ-measurable subsets E ⊂ R, the following properties hold:
(P1)ρ

(
f
)

= 0⇔ f = 0 µ-a.e.; ρ
(
a f

)
= aρ

(
f
)

; ρ
(

f + 1
)
≤ ρ

(
f
)

+ ρ
(
1
)
;

(P2) 0 ≤ 1 ≤ f µ-a.e. ⇒ ρ
(
1
)
≤ ρ

(
f
)
;

(P3) 0 ≤ fn ↑ f µ-a.e. ⇒ ρ
(

fn
)
↑ ρ

(
f
)
;

(P4)µ (E) < +∞⇒ ρ (χE) < +∞;
(P5) µ (E) < +∞ ⇒

∫
E f dµ ≤ CEρ

(
f
)
, for some constant CE : 0 < CE < +∞ depending on E and ρ, but

independent of f .

LetM denote the collection of all extended scalar-valued (real or complex) µ-measurable functions and
M0 ⊂ M the subclass of functions that are finite µ-a.e. .
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Definition 2.2. Let ρ be a function norm. The collection X = X
(
ρ
)

of all functions f inM for which ρ
(∣∣∣ f ∣∣∣) < +∞

is called a Banach function space. For each f ∈ X, define
∥∥∥ f

∥∥∥
X = ρ

(∣∣∣ f ∣∣∣).
It is valid the following

Theorem 2.3. Let ρ be a function norm and let X = X
(
ρ
)

and ‖·‖X be as above. Then under the natural vector space
operations, (X; ‖·‖X) is a normed linear space for which the inclusions

Ms ⊂ X ⊂ M0,

hold, whereMs is the set of µ-simple functions. In particular, if fn → f in X, then fn → f in measure on sets of
finite measure, and hence some subsequence converges point wise µ-a.e. to f .

A space X equipped with the norm
∥∥∥ f

∥∥∥
X = ρ

(∣∣∣ f ∣∣∣) is called a Banach function space.
In what follows we assume R = γ and µ is linear Lebesgue measure on γ. We also identify the circle γ

and the segment (−π, π] by the mapping eit : (−π, π]→ γ. Let

ρ′
(
1
)

= sup
{∫

γ
f (τ) 1 (τ) |dt| : f ∈ M+;ρ

(
f
)
≤ 1

}
,∀1 ∈ M+.

A space

X′ =
{
1 ∈ M : ρ′

(∣∣∣1∣∣∣) < +∞
}
,

is called an associate space (Kothe dual) of X.
Let w : [−π, π] → R+ (R+ = (0,+∞)) be some weight function. We define the weight space Xw ={

f ∈M0 : f w ∈ X
}
, with the norm∥∥∥ f

∥∥∥
Xw

=
∥∥∥ f w

∥∥∥
X ,∀ f ∈ Xw.

The functions f ; 1 ∈ M0 are called equimeasurable if∣∣∣∣{τ ∈ γ :
∣∣∣ f (τ)

∣∣∣ > λ}∣∣∣∣ =
∣∣∣∣{τ ∈ γ :

∣∣∣1 (τ)
∣∣∣ > λ}∣∣∣∣ ,∀λ ≥ 0.

Banach function norm ρ : M+
→ [0,∞] is called rearrangement invariant if for arbitrary equimeasurable

functions f ; 1 ∈ M+
0 the relation ρ

(
f
)

= ρ
(
1
)

holds. In this case, Banach function space X with the norm
‖ · ‖X = ρ (| · |) is said to be rearrangement invariant function space (r.i.s. for short). Classical Lebesgue,
Orlicz, Lorentz, Lorentcz–Orlicz spaces are r.i.s..

To obtain our main results, we will significantly use the following result of [41] (see also [25]). Let αX
and βX be upper and lower Boyd indices for the space X (for Boyd indices the reader is referred to, e.g.,
[24–29]).

Theorem 2.4. For every p and q such that

1 ≤ q <
1
βX
≤

1
αX

< p ≤ ∞,

we have

Lp ⊂ X ⊂ Lq,

with the inclusion maps being continuous.

In establishing the basicity of parts of the system of exponents in Banach Hardy classes we will use some
results related to Fourier series in r.i.s.. Let’s state some relevant concepts and notations.
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Definition 2.5. Let X be a Banach function space. The closure in X of the set of simple functionsMs is denoted by
Xb.

Recall the definition of resonant space.

Definition 2.6. Suppose f (·) belongs to M0. The decreasing rearrangement of f (·) is the function f ∗ defined on
[0,∞) by

f ∗ (t) = inf
{
λ : µ f (λ) ≤ t

}
, t ≥ 0,

where µ f (λ) = µ
{
t :

∣∣∣ f (t)
∣∣∣ > λ} , λ ≥ 0, is a distribution function of f (·).

It is valid the following well known

Theorem 2.7. (Hardy, Littlewood). If f (·) and 1 (·) belong toM0 , then∫
R

∣∣∣ f 1∣∣∣ dµ ≤ ∫
∞

0
f ∗ (s) 1∗ (s) ds. (3)

An immediate consequence of the Hardy-Littlewood inequality (3) is that∫
R

∣∣∣ f 1̃∣∣∣ dµ ≤ ∫
∞

0
f ∗ (t) 1∗ (t) dt, (4)

for every function 1̃ on R equimeasurable with 1.

Definition 2.8. If the supremum on 1̃ of the integrals on the left of (4) coincide with the value on the right, such
measure spaces is called resonant. If the supremum is in fact attained, then the measure space will be called strongly
resonant.

In what follows, we assume that all the functions under consideration are defined on the interval (−π, π],
periodically continued on R with a period of 2π and the interval (−π, π] will be identified with γ.

We denote by Ts the translation operator
(
Ts f

)
(t) = f

(
ei(s+t)

)
, −π < s; t ≤ π, and by ωX

(
f , ·

)
the X

-modulus of continuity of f :

ωX
(

f ; δ
)

= sup
|s|≤δ

∥∥∥Ts f − f
∥∥∥

X , 0 ≤ δ ≤ π.

Definition 2.9. Let X be a rearrangement-invariant Banach space (r.i.s.) over a resonant space
(
R;µ

)
. For each finite

value of t belonging to the range of µ, let E be a subset of R with µ (E) = t and let

ϕX (t) = ‖χE‖X .

The function ϕX is called the fundamental function of X.
If f belongs to L1

(
γ
)

, then for each integer n the n-th Fourier coefficient of f is defined by

f̂ (n) =
1

2π

∫ π

−π
f
(
eiθ

)
e−inθdθ , n ∈ Z.

So called the “multiplier” operator m is defined initially on trigonometric polynomials

P
(
eiθ

)
=

r∑
n=−r

aneinθ by mP
(
eiθ

)
=

r∑
n=−r

−isi1n n aneinθ.
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It is evidently that

(
∧

mP
)

(n) =


−isi1n n an, ∀n = −r, r,

0, n , −r, r ,

for arbitrary trigonometric polynomial P
(
eiθ

)
=

∑r
n=−r aneinθ.

Let Sn ’s be partial sums of the Fourier series of the function f :

Sn
(

f
)

=
∑
|k|≤n

f̂ (k) eikt.

In the sequel we also need the following

Theorem 2.10. Suppose X is a r.i.s. on γ whose fundamental function satisfies ϕX (+0) = 0. Then the following
conditions are equivalent:

1. Fourier series converge in norm in Xb;
2. the partial-sum operators Sn are uniformly bounded on Xb;
3. the multiplier operator m is bounded on Xb ;
4. the conjugate-function operator is bounded on Xb;
5. the Calderon operator

S f ∗ (t) =

∫ 1

0
f ∗ (s) min

(
1;

s
t

) ds
s
,

is bounded on (Xb)− − the Luxemburg representation of Xb on the interval [0, 1].

More detail on the Luxemburg representation one can see the monograph [24].
The conjugate-function operator f̃ is defined by

f̃
(
eiθ

)
=

1
2π

lim
ε→+0

∫
ε<|s|≤π

f
(
ei(θ−s)

)
cot

s
2

ds,∀θ : −π < θ ≤ π.

If any one of these conditions holds, then m f = f̃ a.e. for ∀ f ∈ Xb.

Corollary 2.11. Let X be a separable r.i.s. on [−π, π]. Fourier series converge in norm in X if and only if the Boyd
indices of X satisfy 0 < αX; βX < 1.

We will need also the following lemma from the work [24].

Lemma 2.12. [24] Let X = X
(
ρ
)

be a Banach function space and suppose fn ∈ X , n ∈ N.
i) If 0 ≤ fn ↑ f µ-a.e., then either f < X and

∥∥∥ fn
∥∥∥

X ↑ +∞, or f ∈ X and
∥∥∥ fn

∥∥∥
X ↑

∥∥∥ f
∥∥∥

X.
ii) (Fatous lemma) If fn → f µ-a.e., and if lim

n→∞
inf

∥∥∥ fn
∥∥∥

X < +∞, then f ∈ X and
∥∥∥ f

∥∥∥
X ≤ lim

n→∞
inf

∥∥∥ fn
∥∥∥

X.

In establishing the direct decomposition of the space X into Banach Hardy classes, the following easily
proved lemma plays a key role.

Lemma 2.13. Let the Banach space
(
Y1; ‖·‖Y1

)
be continuously embedded in the Banach space

(
Y2; ‖·‖Y2

)
. Let

T ∈ [Y2; Y1] and ImT = Y1 (closure of the image of T). If the set M ⊂ Y2 is everywhere dense in Y2, i.e. M̄ = Y2,
then TM = Y1.
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In fact, let y1 ∈ Y1 be an arbitrary element and ε > 0 be an arbitrary number. It is clear that ∃z1 ∈ ImT:∥∥∥z1 − y1

∥∥∥
Y1
< ε.

Consequently, ∃x2 ∈ Y2 : Tx2 = z1. From M = Y2 it follows that ∃m2 ∈M : ‖m2 − x2‖Y2
< ε. We have∥∥∥Tm2 − y1

∥∥∥
Y1
≤ ‖Tm2 − z1‖Y1

+ ε = ‖Tm2 − Tx2‖Y1
+ ε ≤

≤ ‖T‖ ‖m2 − x2‖Y2
+ ε = (1 + ‖T‖) ε.

From arbitrariness of ε it directly follows that TM = Y1.
More details concerning the above results can be found in [24, 25, 43] and [26–29, 40–42].
In what follows, we will also use the concept of Nevanlinna class of analytic functions in ω. By N we

denote the set of analytic functions F (·) in ω such that

sup
0<r<1

∫ π

−π
log+

∣∣∣∣F (
reit

)∣∣∣∣ dt < +∞ ,

where
log+ u = log max {1; u} ,u ≥ 0.

It is known (see, e.g., [7, 44]) that the non-zero function F (·) belongs to the class N if and only if it can be
represented as

F (z) = B (z) exp
(

1
2π

∫ π

−π

eit + z
eit − z

dh (t)
)
, (5)

where B (·) is a Blaschke function, and h (·) is a function of bounded variation on [−π, π]. ByN ′ (Nevanlinna
class) we denote a class of functions F ∈ N such that the function h (·) in (5) is absolutely continuous on
[−π, π].

We need the following characteristic of the space X:

γX = inf
{
α : |t|α ∈ X

}
. (6)

It is easy to see that γX ≥ −1. This directly follows from the embedding X ⊂ L1, since, for α ≤ −1, |t|α < L1.
It is clear that also γX ≤ 0, since, for α ≥ 0, |t|α, is bounded and therefore belongs to X. Let us show that for
∀α > γX,|t|α ∈ X. It suffices to show that if |t|α1 ∈ X, γX ≤ α1 < 0, then for ∀α2 ∈ (α1, 0) |t|α2 ∈ X is true. And
this, in turn, follows from the estimate

|t|α2 = |t|α2−α1 |t|α1 ≤ C |t|α1 ,

where C > 0 is some constant, as α2 − α1 > 0. So, the following lemma is true.

Lemma 2.14. Let X be Banach function space and the quantity γX is defined by (6). Then γX ∈ [−1, 0] and
|t|α ∈ X,∀α > γX.

Using this lemma, the following lemma is easily proved.

Lemma 2.15. Let X be a Banach function space and γX is defined by (6). Then the finite product

µ (t) =

m∏
k=0

|t − tk|
αk ,

belongs to X if αk > γX , ∀k = 1,m , where −π ≤ t0 < t1 < ... < tm < π are some points.
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In particular, it is true

Corollary 2.16. Let X be a Banach space and γX is defined by (6). Then the finite production

µ (t) =

r∏
k=0

∣∣∣∣∣sin
t − sk

2

∣∣∣∣∣αk

, t ∈ (−π, π) ,

belongs to X , if αk > γX , ∀k = 1, r; where −π ≤ s0 < s1 < ... < sm < π are some points.

Define the class of Muckenhoupt weights Ap. Let p ∈ (1,∞) and 1
p + 1

p′ = 1. We will say that the weight

ν : γ→ R+ belongs to the class Ap if ‖νχI‖p

∥∥∥ν−1χI

∥∥∥
p′ ≤ C |I|, where |I| is a linear measure I ⊂ γ, and C > 0 is

a constant independent of I.
Consider the following singular integral with the Cauchy kernel(

S f
)

(τ) =
1

2πi

∫
γ

f (ξ) dξ
ξ − τ

, τ ∈ γ,

where f ∈ X is some function. Denote by AX a class of weights such that the singular operator S is bounded
in the weighted space Xw, i.e.

AX = {w (·) : S ∈ [Xw]} .

We need the following result of D.Boyd [41].

Theorem 2.17. Suppose that T ∈
[
Lp

]
and T ∈

[
Lq

]
, with 1 < p < q < +∞. Let X be a r.i.s. with Boyd indices αX

and βX which satisfy 1
q < αX ≤ βX < 1

p . Then T ∈ [X].

This theorem immediately implies the following

Corollary 2.18. Let X be a r.i.s. over [−π, π] with Boyd indices αX; βX ∈ (0, 1). Then singular operator S acts
boundedly in X, i.e. S ∈ [X].

Let X be a r.i.s. with Boyd indices αX and βX. Let αX; βX ∈ (0, 1) . Then ∃p; q ∈ (1,+∞)

1 < q <
1
βX
≤

1
αX

< p < +∞ . (7)

Then, by Theorem 2.4 (see, e.g., [25, p. 134]), the following continuous inclusions hold

Lp ⊂ X ⊂ Lq .

Combined with the arbitrariness of the numbers p and q satisfying (7), the last statement implies γX ∈[
−βX,−αX

]
. So the following lemma is true.

Lemma 2.19. Let X be a r.i.s. with Boyd indices αX; βX ∈ (0, 1). Then γX ∈
[
−βX,−αX

]
. In particular, if αX = βX,

then γX = −αX.

Let’s find out under which conditions |t|α ∈ Xb. Let α > −αX be an arbitrary number. For α ≥ 0 it is clear
that |t|α ∈ Xb. Therefore, it suffices to consider the case α < 0. Then ∃p, q :

−
1
q
< −βX ≤ −αX < −

1
p
< α < 0⇔ q <

1
βX
≤

1
αX

< p < −
1
α
.

Obviously, |t|α ∈ Lp (−π, π). Then it follows from the continuous embedding Lp ⊂ X that |t|α has an absolutely
continuous norm ‖·‖X and, consequently, |t|α ∈ Xb. So, it is valid

Lemma 2.20. Let X be a r.i.s. with Boyd indices αX; βX ∈ (0, 1). Then for ∀α > −αX : |t|α ∈ Xb.

We also need the following lemma from the monograph [24] (see page 10).

Lemma 2.21. In order that a measurable function 1 belong to the associate space X′ , it is necessary and sufficient
that f (·) 1 (·) be integrable for every f in X.
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3. Banach Hardy classes and some facts about them

Let X be a Banach function space over [−π, π]. By H+
X we denote a Hardy class of functions F (·) analytic

inside ω equipped with the norm

‖F‖H±X = lim
r→1−0

‖Fr (·)‖X , where Fr (t) = F
(
reit

)
.

We also define its subclass

H+
Xb
≡

{
F ∈ H+

X : F+
∈ Xb

}
,

where F+ (·) are the non-tangential boundary values of F on γ.
Similar to classical case, we define the Banach Hardy class mH−X of analytic functions outside the unit

circle which have a finite order at infinity. Let the function f (·), analytic outside ω, have a Laurent
decomposition of the form

f (z) =

m∑
n=−∞

anzn , z→∞, am , 0 ,

in the vicinity of the infinitely remote point. So, for m > 0 the point z = ∞ is a pole of order m, and for m ≤ 0
the point z = ∞ is a zero of order (−m). Let f (·) = f0 (·) + f1 (·), where f0 (·) is the principal part, and f1 (·)

is the regular part of Laurent decomposition in the vicinity of z = ∞. If the function 1 (z) = f0
(

1
z̄

)
, |z| < 1,

belongs to the class H+
X, then we will say that the function f (·) belongs to the class mH−X.

It is valid the following

Theorem 3.1. Let X be a r.i.s. on γ. Then the system of exponent
{
eint

}
n∈Z

forms a basis for Xb if and only if the Boyd
indices of X satisfy 0 < αX; βX < 1.

Using this theorem, the validity of the following theorem is easily established.

Theorem 3.2. Let X be a r.i.s. onγwith Boyd indicesαX; βX ∈ (0, 1). Let X+
b =

(
1
2 I + S

)
Xb and −1X−b =

(
1
2 I − S

)
Xb,

where S− is the singular integral Cauchy. Then the system
{
eint

}
n∈z+

({
e−int

}
n∈N

)
forms a basis for X+

b

(
−1X−b

)
.

Theorem below has been proved in [49].

Theorem 3.3. Let X be a r.i.s. with Boyd indices αX; βX ∈ (0, 1). Then the following assertions are valid:
i) Analytic function F ∈ N in ω belongs to the class H+

Xb

(
H+

X

)
if and only if its boundary values F+ belong to

Xb (X) and the Cauchy formula

F (z) =
1

2πi

∫
γ

F+ (τ)
τ − z

dτ , z ∈ ω,

holds;
ii) The spaces H+

Xb
and X+

b ; −1H−Xb
and −1X−b (H+

X and X+; −1H−X and −1X−) can be equated to each other from an
isometric point of view: ‖F+

‖H+
X

= ‖F+
‖X ; ‖F‖

−1H−X
= ‖F−‖X and direct decompositions

Xb = H+
Xb

+̇−1H−Xb
; X = H+

X+̇−1H−X,

hold;
iii) The system {zn

}n∈z+
({z−n
}n∈N) forms a basis for H+

Xb
(for −1H−Xb

).

The following analog of classical Riesz theorem is also true.
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Theorem 3.4. Let X be a r.i.s. with Boyd indices αX; βX ∈ (0, 1). Then the following assertions are valid:
i) If F ∈ H+

X, then lim
r→1−0

‖Fr‖X = ‖F+
‖X;

ii) The relation lim
r→1−0

‖Fr − F+
‖ = 0 is true if and only if F ∈ H+

Xb
.

Similar results are true for the classes mH−X.

Theorem 3.5. Let X be a r.i.s. with Boyd indices αX; βX ∈ (0, 1). Then the following assertions are valid:
i) If F ∈m H−X, then lim

r→1+0
‖Fr‖X = ‖F−‖X;

ii) The relation lim
r→1+0

‖Fr − F−‖ = 0 is true if and only if F ∈m H−Xb
.

iii) Analytic function F (·) outside ω belongs to the class −1H−X(−1H−Xb
) if and only if its boundary values F− (·)

belong to X (Xb) and the Cauchy formula

F (z) = −
1

2πi

∫
γ

F− (τ)
τ − z

dτ , |z| > 1,

holds.

In the end of this section we will give the following proposition, which we will use in obtaining the
main results.

Proposition 3.6. If f (·) is a real function with ‖ f ‖∞ < +∞, then Cauchy type integral (z = ρeiσ)

Φ (z) = exp
(
±

i
2π

∫ π

−π
f (s)

eis + ρeiσ

eis − ρeiσ ds
)
,

belongs to the Hardy class H+
δ for sufficiently small δ > 0.

About this proposition one can see the monograph [43].

4. General solution of homogeneous Riemann problem

Consider homogeneous Riemann problem

F+ (τ) − G (τ) F− (τ) = 0, τ ∈ γ, F+ (·) ∈ H+
X; F− (·) ∈ mH−X, (8)

with complex-valued coefficient G
(
eit

)
=

∣∣∣∣G (
eit

)∣∣∣∣ eiθ(t), t ∈ [−π, π] . By the solution of the problem (8) we
mean a pair of analytic functions (F+; F−) ∈ H+

X × mH−X, whose non-tangential boundary values satisfy the
equation (8) a.e. on γ. We assume that the coefficient G (·) satisfies the following conditions:

i) G±1 (·) ∈ L∞ (−π, π) ;
ii)θ (t) = arg G

(
eit

)
is a piecewise Hölder function on [−π, π] with the jumps hk = θ (sk + 0)−θ (sk − 0) , k =

1, r, at the points of discontinuity{sk}
r
1 : −π < s1 < . . . < sr < π.

To solve the problem (8), we will follow [39]. Let

H (s; z) =
eis + z
eis − z

be a Schwarz kernel. Consider the following analytic functions in C\γ:

Z1 (z) ≡ exp
{

1
4π

∫ π

−π
log

∣∣∣∣G (
eit

)∣∣∣∣ H (t; z) dt
}
,

Z2 (z) ≡ exp
{

i
4π

∫ π

−π
θ (t) H (t; z) dt, z < γ

}
.
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It is absolutely clear that the function Z2 (·) depends on the choice of the argument θ (·). Let

Zθ (z) = Z1 (z) Z2 (z) , z < γ.

Integral of the form

Φ (z) =
1

2π

∫ π

−π
f (s) H (s; z) ds, z < γ, (9)

is called a Schwarz integral with the density f ∈ L1 (−π, π). The following Sokhotski-Plemelj formulas are
true for Schwarz integral

Φ±
(
eiσ

)
≡ ± f (σ) +

1
2π

∫ π

−π
f (s) H

(
s; eiσ

)
ds,

where Φ+ (·)(Φ− (·)) are non-tangential boundary values of the function Φ (·) inside (outside) ω on γ. From
these formulas it immediately follows that

∣∣∣∣G (
eit

)∣∣∣∣ =
Z+

1

(
eit

)
Z−1 (eit)

, eiθ(t) =
Z+

2

(
eit

)
Z−2 (eit)

, a.e. t ∈ [−π, π] .

Consequently

Z+
θ (τ) − G (τ) Z−θ (τ) = 0, a.e. τ ∈ γ. (10)

Zθ (·) will be called a canonical solution of homogeneous problem (8), corresponding to the argument θ (·).
Considering (10) in (8), we have

F+ (τ)
Z+
θ

(τ)
=

F− (τ)
Z−θ (τ)

, a.e. τ ∈ γ.

Introduce the following piecewise analytic function

Φ (z) =
F (z)

Zθ (z)
, z < γ.

We have

Φ+ (τ) = Φ− (τ) , a.e. τ ∈ γ.

Let’s show that the function Φ (·) satisfies all conditions of the uniqueness theorem. It is absolutely clear
that the function Zθ (·) has no zeros and poles when z < γ. Therefore, the functions Φ (·) and F (·) have
the same order at infinity. Let’s find the conditions which guarantee that the piecewise analytic function
Φ (·) = (Φ+ (·) ; Φ− (·)) belongs to the class H+

1 × mH−1 . The conditions i) , ii) and the results of [8] imply the
existence of sufficiently small number δ > 0 such that the function Φ+ (z) belongs to the space H+

δ (also,
Φ− (z) belongs to m̃H−δ for some m̃ ∈ Z+). In fact, the assertion that the function X±1

2 (z) belongs to H+
σ for

sufficiently small δ > 0 follows from Proposition 3.6. As for the function X±1
1 (z) ,we apply Jensen’s integral

inequality of the form

exp

 1∫ b

a

∣∣∣p (s)
∣∣∣ ds

∫ b

a

∣∣∣p (s) f (s)
∣∣∣ ds

 ≤ 1∫ b

a

∣∣∣p (s)
∣∣∣ ds

∫ b

a

∣∣∣p (s)
∣∣∣ exp

∣∣∣ f (s)
∣∣∣ ds,

and obtain

1
2π

∫ π

−π

∣∣∣∣X±1
1

(
ρeiσ

)∣∣∣∣p dσ =
1

2π

∫ π

−π

{
exp
±p
4π

∫ π

−π
ln

∣∣∣∣G (
eis

)∣∣∣∣ Pρ (σ − s) ds
}

dσ ≤
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≤
1

2π

∫ π

−π

{
1

2π

∫ π

−π

∣∣∣∣G (
eis

)∣∣∣∣± p
2

Pρ (σ − s) ds
}

dσ ≤ ‖G‖±
p
2
∞ ,

where Pr (·) is a Poisson kernel. It follows that if the condition i) holds, then the function X±1 (z) belongs to
all classes H+

p , ∀p > 0. Applying Hölder’s inequality, we conclude that the function X±1 (z) belongs to the
Hardy class H+

δ for sufficiently small δ > 0. From the representation Φ (z) = F (z) [X (z)]−1 it follows that the
same is true also about the function Φ (z).

Let’s find out under which conditions the function Φ (·) belongs to the class H+
1 . To do so, it suffices to

find out if the boundary values Φ+ (τ) belong to L1 (−π, π) (the rest will follow from the Smirnov theorem).
Let us represent the function θ (·) in the form

θ (t) = θ0 (t) + θ1 (t) ,

where θ0 (·)−its continuous (Hölderian) part, and θ1 (·) is a jump function, which is determined by the
expression

θ1 (−π) = 0 , θ1 (s) =
∑

k:−π<sk<s

hk , ∀s ∈ (−π, π] .

Let

h0 = θ (−π) − θ (π) , h(0)
0 = θ0 (π) − θ0 (−π) .

Assume

u0 (t) =

∣∣∣∣∣sin
t + π

2

∣∣∣∣∣−
h(0)
0
2π

exp
(
−

1
4π

∫ π

−π
θ0 (τ) ct1

t − τ
2

dt
)
.

We also use the notation

u (t) =

r∏
k=0

∣∣∣∣∣sin
t − sk

2

∣∣∣∣∣ hk
2π

,

where s0 = −π . Applying the Sokhotsky-Plemelj formulas to Z1 (z) we have

Z±1
(
eiσ

)
= exp

{
±

1
2

ln
∣∣∣∣G (

eiσ
)∣∣∣∣ +

1
4π

∫ π

−π
ln

∣∣∣∣G (
eis

)∣∣∣∣ eis + eiσ

eis − eiσ ds
}
.

Hence it follows directly that the following relation holds

sup vrai
(−π,π)

{ ∣∣∣∣Z−1 (
eit

)∣∣∣∣±1}
< +∞.

According to the results of the monograph [43], the boundary values of
∣∣∣Z−2 (τ)

∣∣∣ are expressed by the formula

∣∣∣∣Z−2 (
eit

)∣∣∣∣ = u0 (t) u−1 (t) = u0 (t)
r∏

k=0

∣∣∣∣∣sin
t − sk

2

∣∣∣∣∣− hk
2π

.

Therefore, for the boundary values of the canonical solution Zθ (·)we obtain

∣∣∣∣Zθ− (
eit

)∣∣∣∣ =
∣∣∣∣Z−1 (

eit
)∣∣∣∣ |u0 (t)|

r∏
k=0

∣∣∣∣∣sin
t − sk

2

∣∣∣∣∣− hk
2π

.
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Taking into account the expression

eis + eiσ

eis − eiσ =
ei s−σ

2 + ei σ−s
2

ei s−σ
2 − ei σ−s

2
=

cos s−σ
2

i sin s−σ
2

= ict1
σ − s

2
,

for Z±1 (·) we have

Z±1
(
eiσ

)
= exp

{
±

1
2

ln
∣∣∣∣G (

eiσ
)∣∣∣∣ +

i
4π

∫ π

−π
ln

∣∣∣∣G (
eis

)∣∣∣∣ ct1
σ − s

2
ds

}
.

Consequently∣∣∣∣Z±1 (
eiσ

)∣∣∣∣ =
∣∣∣∣G (

eiσ
)∣∣∣∣± 1

2
,

and, as a result

∣∣∣∣Zθ− (
eit

)∣∣∣∣ =
∣∣∣∣G (

eit
)∣∣∣∣− 1

2
|u0 (t)|

r∏
k=0

∣∣∣∣∣sin
t − sk

2

∣∣∣∣∣− hk
2π

. (11)

It is clear that θ0 (·) is Holder function on [−π, π]. Then again, as follows from the results of the monograph
[43], the relation

sup vrai
[−π,π]

|u0 (t)|±1 < +∞ ,

holds. We have

Φ−
(
eit

)
= F−

(
eit

) [
Z−θ

(
eit

)]−1
. (12)

So, by definition of solution F− (·) ∈ X is true. Paying attention to Lemma 2.21 and representation (12),

we get that for the validity of Φ− (·) ∈ L1 (−π, π), it is sufficient that the inclusion
∣∣∣Z−θ (·)

∣∣∣−1
∈ X′

is true. As
follows from the representation (11), for this it suffices to show that u (·) ∈ X′

. We will suppose that X is a
r.i.s. with Boyd indices αX; βX ∈ (0, 1). The Boyd indices of space X′

denote by αX′ and βX′ (upper and lower,
respectively). The following relations between the Boyd indices of the spaces X and X′

are well known (see,
e.g. [24, p.149]. Proposition 5.13).

αX′ = 1 − βX; βX′ = 1 − αX.

Also put

γX′ = inf
{
α : |t|α ∈ X

′
}
.

By Lemma 2.19

−βX′ ≤ γX′ ≤ −αX′ ⇔ −1 + αX ≤ γX′ ≤ −1 + βX′ ,

holds. Applying Corollary 2.16 to this case, we obtain that if the inequalities

hk

2π
> γX′ , k = 0, r;

are fulfilled, then u (·) ∈ X′

⇔

∣∣∣Z−θ (·)
∣∣∣−1
∈ X′

, and, as a result, Φ− (·) ∈ L1 (−π, π). Then it follows from
Smirnov’s theorem that Φ ∈ H+

1 . From the same considerations, we obtain Φ ∈ mH−1 . Since, Φ+ (τ) = Φ− (τ),
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a.e. τ ∈ γ, then from the uniqueness theorem it follows that Φ (·) is a polynomial Pk (·) of degree k ≤ m ( for
m < 0 assume Pk (z) ≡ 0). As a result, for the function F (·) we have a presentation

F (z) ≡ Zθ (z) Pk (z) , k ≤ m. (13)

Let’s find out under which conditions the function (13) belongs to the Hardy classes H+
X×m H−X. It is clear

that for sufficiently small δ > 0 the inclusion Φ (·) ∈ H+
δ is true (this follows directly from the representation

(13) and from the known facts regarding Zθ (·)). Similar considerations hold for the outside ω. If F+
∈ X,

then it is clear that F+
∈ L1 and, as a result, F ∈ H+

1 and the Cauchy formula is valid for it. Then by Theorem
3.3 we get that F ∈ H+

X. Thus, it suffices to prove that F+
∈ X, and for this it is enough to prove that F− ∈ X.

It is clear that if Z−θ ∈ X, then F− ∈ X. Applying again Corollary 2.16 to the representation (11) we obtain
that if the inequalities

−
hk

2π
> γX, k = 0, r;

are fulfilled, then Z−θ ∈ X ⇒ F− ∈ X, and, as a result, it is clear that (F+; F−) ∈ H+
X × mH−X. So, the following

theorem is proved.

Theorem 4.1. Let X be a r.i.s. with Boyd indices 0 < αX ≤ βX < 1. Suppose that the coefficient G (·) of problem (8)
satisfies the conditions i), ii) and Zθ (·) is a canonical solution corresponding to argument θ (·). Let jumps {hk}

r
0 of the

function θ (·) (h0 = θ (−π) − θ (π)), satisfy the inequalities

γX′ <
hk

2π
< −γX, k = 0, r; (14)

Then :
α) for m ≥ 0 the homogeneous problem (8) has a general solution of the form

F (z) ≡ Zθ (z) Pk (z) , (15)

in the Hardy classes H+
X × mH−X, where Pk (z) is an arbitrary polynomial of degree k ≤ m;

β) for m < 0 this problem has only a trivial solution, i.e. zero solution in the Hardy classes H+
X × mH−X.

This theorem directly implies

Corollary 4.2. Let all the conditions of Theorem 4.1 be satisfied. Then under the condition F (∞) = 0 the homogeneous
problem (8) has only a trivial solution in the Hardy classes H+

X × mH−X.

Consider the most general case. Define the argument θ (·) as follows

θ̃ (t) ≡


θ (t) , −π < t < s1,
θ (t) − 2πn1, s1 < t < s2,
...
θ (t) − 2πnr, sr < t < π,

(16)

where {nk}
r
1 ⊂ Z is some integer. Assume

G̃ (t) ≡ |G (t)| eiθ̃(t), t ∈ (−π, π) .

It is obvious that G (t) ≡ G̃ (t). Therefore, in (8) instead of the coefficient G (·) we can take G̃ (·). Denoting the
jumps of the function θ̃ (·) at the points {sk}

r
1, by

{
h̃k

}r

1
we have

h̃1 = h1 − 2πn1; h̃k = hk − 2π (nk − nk−1) , k = 2, r; h̃0 = h0 + 2πnr.

Applying Theorem 4.1 to the problem (8) with the coefficient G̃ (·), we get the following theorem.
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Theorem 4.3. Let X be a r.i.s. with Boyd indices αX; βX ∈ (0, 1) , the coefficient G (·) of the problem (8) satisfy the
conditions i),ii) and ∃ {nk}

r
1 ⊂ Z such that

γX′ <
h1

2π
− n1 < −γX;γX′ <

hk

2π
− nk + nk−1 < −γX; k = 2, r;

γX′ <
h0

2π
+ 2πnr < −γX . (17)

Then:
α) for m ≥ 0 the problem (8) has a general solution of the form

F (z) = Zθ̃ (z) Pk (z) ,

in the Hardy classes H+
X × mH−X, where Pk (·) is an arbitrary polynomial of degree k ≤ m, and Zθ̃ (·) is a canonical

solution corresponding to the argument θ̃ (·);
β) for m < 0 this problem has only a trivial solution.

Let all the conditions of Theorem 4.3 be satisfied. It is clear that for ∀α > γX : |t|α ∈ X and for
∀α

′

> γX′ : |t|α
′

∈ X′

. Consequently, from Corollary 4.2 it follows that the integral
∫ π
−π
|t|α+α

′

dt exists, and
hence α + α

′

> −1. It immediately follows that γX′ + γX ≥ −1. As a result, we get the validity of

Lemma 4.4. Let X be a r.i.s. with Boyd indices αX; βX ∈ (0, 1). Then it is valid

αX + αX′ ≤ −γX − γX′ ≤ 1.

Remark 4.5. From Lemma 4.4 it immediately follows that the integers {nk}
r
1 in (17) (if they exist) are defined uniquely.

Consider the special case when the Boyd indices αX and βX coincide: αX = βX. Then from the relation
αX + βX′ = 1 follows αX +αX′ = 1 and it is clear that γX = −αX. In this case, the restrictions on the coefficient
G (·) can be weakened, namely, let

{
hk
2π − αX

}r

0

⋂
Z = ∅. Let us define integers {nk}

r
1 from the following

relations

−αX′ <
h1
2π − n1 < αX;

−αX′ <
hk
2π − nk + nk−1 < αX; k = 2, r;

}
(18)

Let the function θ̃ (·) be defined by the relations (16). We have

h̃0 = θ̃ (−π) − θ̃ (π) = θ (−π) − θ (π) + 2πnr ⇒
h̃0

2π
=

h0

2π
+ nr.

Suppose æ0 =
[

h0
2π

]
+ nr( [ · ] is an integer part). Let us reformulate problem (8) in the following form

F+ (τ) − G (τ) F− (τ) = 0⇔
F+ (τ) − G̃ (τ) τæ0 F−1 (τ) = 0, τ ∈ γ, (19)

where

F1 (z) =

{
z−æ0 F (z) , |z| > 1,
0, |z| < 1.

Let Gæ0 (τ) = G (τ) τæ0 = G̃ (τ) τæ0 , τ ∈ γ. It is clear that
∣∣∣Gæ0 (τ)

∣∣∣ = |G (·)| and θæ0 (t) = arg Gæ0

(
eit

)
=

θ̃ (t) + æ0t, t ∈ (−π, π). It is obvious that the discontinuity points and jumps of the function θæ0 (·) on the
interval (−π, π) coincide with the discontinuity points and jumps of the function θ̃ (·). Moreover

θæ0 (−π) − θæ0 (π) = θ̃ (−π) − θ̃ (π) − 2πæ0 ⇒

⇒

[
θæ0 (−π)−θæ0 (π)

2π

]
=

[
θ̃(−π)−θ̃(π)

2π

]
−æ0 = 0 .
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It is obvious that F ∈ mH−X ⇔ F1 ∈ m−æ0 H−X. Consequently, problem (8) is solvable in Hardy classes H+
X ×mH−X

if and only if problem (19) is solvable in H+
X × m−æ0 H−X. Obviously, with respect to the coefficient Gæ0 (·) all

the conditions of Theorem 4.1 are satisfied. We have

n1 =
[

h1
2π + αX′

]
, n2 = n1 +

[
h2
2π + αX′

]
=

=
[

h1
2π + αX′

]
+

[
h2
2π + αX′

]
, . . . , nr =

∑r
k=1

[
hk
2π + αX′

]
⇒

æ0 =
∑r

k=0

[
hk
2π + αX′

]
.

Applying Theorem 4.1 to problem (19) we obtain the following final result.

Theorem 4.6. Let X be a r.i.s. with Boyd indices αX = βX ∈ (0, 1); the coefficient G (·) satisfy the conditions i), ii )
and

{
hk
2π − αX

}r

0

⋂
Z = ∅. Suppose æ = m −

∑r
k=0

[
hk
2π + αX′

]
.

Then:
α) for æ ≥ 0 the homogeneous Riemann problem (8) has a general solution of the form

F (z) =

{
Zθæ (z) Pk (z) , |z| < 1,
zæ−mZθæ (z) Pk (z) , |z| > 1,

in classes H+
X × mH−X, where Zθæ (·) is a canonical solution corresponding to the argument θæ (·), Pk (·)is an arbitrary

polynomial of degree k ≤ æ;
β) for æ < 0 this problem has only a trivial solution in classes H+

X × mH−X.
Quantity æ = m −

∑r
k=0

[
hk
2π + αX′

]
= m − r − 1 −

∑r
k=0

[
hk
2π − αX

]
is called an index of the problem (8) in classes

H+
X × mH−X.

5. Nonhomogeneous Riemann problem

Consider the following nonhomogeneous Riemann problem

F+ (τ) − G (τ) F− (τ) = f (τ) , a.e. τ ∈ γ,
(F+; F−) ∈ H+

X × mH−X,

}
, (20)

where f (·) ∈ X is some function. We will assume that the coefficient G (·) satisfies the conditions i), ii), and,
as before, we will denote by Zθ (·) a canonical solution corresponding to the argument θ (·). We first will
seek for a partial solution of the problem (20), and then we will construct the general one.

5.1. Partial solution of the problem (20).

Consider the following Cauchy type integral

F1 (z) =
Zθ (z)

2π

∫ π

−π

f (t) eit

Z+
θ

(eit)
dt

eit − z
. (21)

Denote by
(
K f

)
(·) a singular integral with a Cauchy kernel

(
K f

)
(τ) =

Z+
θ

(τ)

2π

∫ π

−π

f (t) eit

Z+
θ

(eit)
dt

eit − τ
, τ ∈ γ.

Applying Sokhotski-Plemelj formula to (21), we obtain

F±1 (τ) = Z±θ (τ)
[

1
2π

∫ π

−π

f (t)
Z+
θ

(eit)
eitdt

eit − z

]±
γ

=
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= Z±θ (τ)
(
±

1
2

[
Z+
θ

(τ)
]−1

f (τ) −
[
Z+
θ

(τ)
]−1 (

K f
)

(τ)
)
, a.e. τ ∈ γ,

where [ · ]±γ denotes the boundary values on γ from inside (with “+”) and outside (with “-”), respectively.
It immediately follows

F+
1 (τ)

Z+
θ

(τ)
−

F−1 (τ)

Z−θ (τ)
=

f (τ)
Z+
θ

(τ)
, a.e. τ ∈ γ. (22)

As the canonical solution Zθ (τ) satisfies

Z+
θ (τ) − G (τ) Z−θ (τ) = 0, a.e. τ ∈ γ,

from (22) it follows that

F+
1 (τ) − G (τ) F−1 (τ) = f (τ) , a.e. τ ∈ γ.

Thus, F1 (·) satisfies (20). Let’s find out under which conditions the function F1 (·) belongs to the Hardy
classes H+

X × mH−X. So, let’s assume that the coefficient G (·) satisfies the conditions i),ii). In terms of the
notations of previous section, we have∣∣∣∣Z−θ (

eit
)∣∣∣∣ =

∣∣∣∣Z−1 (
eit

)∣∣∣∣ u0 (t)
r∏

k=0

∣∣∣∣∣sin
t − sk

2

∣∣∣∣∣− hk
2π

.

Consequently∣∣∣∣Z+
θ

(
eit

)∣∣∣∣−1
=

∣∣∣∣G (
eit

)∣∣∣∣−1 ∣∣∣∣Z−θ (
eit

)∣∣∣∣−1
∼

r∏
k=0

∣∣∣∣∣sin
t − sk

2

∣∣∣∣∣ hk
2π

, t ∈ (−π, π) . (23)

By the conditions of the problem, we have f ∈ X. Therefore it is clear that if
∣∣∣Z+
θ

(·)
∣∣∣−1
∈ X′

, then

f (·)
[
Z+
θ

(·)
]−1
∈ L1 (−π, π). Applying Corollary 2.16 to (23), we conclude that if

hk

2π
> γX′ , k = 0, r, (24)

then
∣∣∣Z+
θ

(·)
∣∣∣−1
∈ X′

, and, as a result, we have f (·)
∣∣∣Z+
θ

(·)
∣∣∣−1
∈ L1 (−π, π). Then, by the well-known Smirnov

theorem (see, e.g. [7, 43]), Cauchy type integral

F2 (z) =
1

2π

∫ π

−π

f (t)
Z+
θ

(eit)
eitdt

eit − z
, z ∈ ω,

belongs to the Hardy class H+
δ ,∀δ ∈ (0, 1). As already established, Zθ (·) belongs to the Hardy class H+

δ for
sufficiently small δ > 0. Applying Hölder’s inequality, we find that the product F1 (·) = Zθ (·) F2 (·) belongs
to the Hardy class H+

δ for sufficiently small δ > 0. Consequently, F1 (·) ∈ N
′

(Nevanlinna class). Let’s show
that F+

1 (·) ∈ X. From Smirnov theorem we have F1 ∈ H+
1 (because X ⊂ L1), and hence, by Theorem 3.4,

Cauchy formula holds for F1, which implies F1 ∈ H+
X. We have

F+
1 (τ) =

1
2

f (τ) −
(
K f

)
(τ) , τ ∈ γ. (25)

The last relation implies that it only remains to prove the validity of the inclusion
(
K f

)
(·) ∈ X. Let

1 (τ) = f (τ) (Zθ (τ))−1 , τ ∈ γ,
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and consider the following singular operator

(
S1

)
(τ) =

1
2πi

∫
γ

1 (ξ) dξ
ξ − τ

, τ ∈ γ.

Consider the following weight function

ρ0 (t) =
∣∣∣t2
− π2

∣∣∣− h0
2π

r∏
k=1

|t − sk|
−

hk
2π , t ∈ (−π, π) . (26)

It is not difficult to see that∣∣∣∣Zθ (
eit

)∣∣∣∣ ∼ ρ0 (t) , t ∈ (−π, π) .

Consequently,
∥∥∥1∥∥∥Xρ0

∼

∥∥∥ f
∥∥∥

X. From these relations it immediately follows that the operator K acts boundedly

in X if and only if the operator S acts boundedly in the weighted space Xρ0 :(
K f

)
(·) ∈ X⇔

(
S1

)
(·) ∈ Xρ0 .

Let ρ0 ∈ AX ⇒
(
K f

)
(·) ∈ X. Then, from previous considerations we obtain F1 (·) ∈ H+

X. It is not difficult to
see that there exists a finite limit lim

z→∞
Zθ (z) , 0. Then from the expression for F1 (·) we immediately obtain

lim
z→∞

F1 (z) = 0. Based on this relation, it can be similarly proved that F1 (·) ∈ −1H−X. Thus, the following
theorem is true.

Theorem 5.1. Let X be a r.i.s. with Boyd indices αX and βX, and the coefficient G (·) satisfy the conditions i), ii). Let
the following relations hold:

hk

2π
> γX′ , k = 0, r; ρ0 (·) ∈ AX,

where the weight ρ0 (·) is defined by (26). Then the function F1 (·) defined by (21) is a solution of the nonhomogeneous
problem (20) in the Hardy classes H+

X × −1H−X.

Let us find concrete conditions for the validity of the inclusion ρ0 (·) ∈ AX. Assume that αX; βX ∈ (0, 1)
and ρ0 (·) ∈ A 1

αX

⋂
A 1

βX
. It follows that ρ0 (·) ∈ AX, i.e. the operator S is bounded in X (see. e.g. [40, 41]). It

is known that

|t|α ∈ Ap ⇔ −
1
p
< α < −

1
p

+ 1, 1 < p < +∞.

Consequently

ρ0 (·) ∈ A 1
αX
⇔ −αX < −

hk
2π < −αX + 1, k = 0, r;

ρ0 (·) ∈ A 1
βX
⇔ −βX < −

hk
2π < −βX + 1, k = 0, r .

Taking into account the relation αX ≤ βX we obtain

ρ0 ∈ A 1
αX

⋂
A 1

βX
⇔ βX − 1 <

hk

2π
< αX, k = 0, r.

Taking into account these relations from Theorem 5.1 we get the following
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Corollary 5.2. Let X be a r.i.s. with continuous norm and with Boyd indices αX; βX ∈ (0, 1) . Let the coefficient G (·)
satisfy the conditions i), ii) and the following relations hold

max
{
−αX′ ; βX − 1

}
<

hk

2π
< αX, k = 0, r.

Then the function F1 (·), which is defined by (21), be the solution of nonhomogeneous problem (20) in the classes
Hardy H+

X × −1H−X.

In addition if αX = βX ∈ (0, 1), then it is evident that αX′ = βX′ = 1 − αX ⇒−αX′ = αX − 1 = βX − 1.
In the result we obtain the following

Corollary 5.3. Let all conditions of Corollary 5.2 are satisfied and αX = βX. If the following inequalities hold

αX − 1 <
hk

2π
< αX, k = 0, r,

then the function (21) is the solution of the problem (20) in the Hardy classes H+
X × −1H−X.

5.2. General solution of nonhomogeneous problem.
Let’s find a general solution of the nonhomogeneous problem (20) in the Hardy classes H+

X × mH−X. It is
absolutely clear that the general solution of the problem (20) can be expressed in the form F (·) = F0 (·)+F1 (·),
where F0 (·) is a general solution of corresponding homogeneous problem (8), and F1 (·) is some partial
solution of the homogeneous problem (20). We first consider the case m ≥ −1. In this case it is not difficult
to see that the function F1 (·) defined by (21) belongs to the Hardy classes H+

X × mH−X if ρ0 (·) ∈ AX and the
inequalities (24) hold. As already established, the general solution of the homogeneous problem in this
case has the form F0 (·) = Zθ (·) Pk (·) if all the conditions of Theorem 4.1 hold, where Pk (·) is an arbitrary
polynomial of degree k ≤ m (for m = −1 we assume Pk (·) ≡ 0). Consider the case m < −1. In this case, with
all the conditions of Theorem 4.1 fulfilled, the homogeneous problem (8) has only a trivial solution in the
classes H+

X × mH−X. Let’s show that if the problem (20) has a solution Φ1 (·), then it coincides withF1 (·) , i.e.
Φ1 (·) ≡ F1 (·) . But this follows directly from the trivial solvability of the homogeneous problem, because
the function F0 (·) = Φ1 (·)− F1 (·) is a solution of the homogeneous problem in the Hardy classes H+

X × mH−X.
Let’s show that the function F1 (·) belongs to the classes H+

X × mH−X. It is clear that F1 (·) ∈ H+
X. Moreover,

F−1 (·) ∈ X. Then it is evident that F1 (·) ∈ mH+
X if and only if F1 (·) has a Laurent decomposition of the form

F1 (z) =

m∑
k=−∞

akzk, z→∞,

in the vicinity of the infinitely remote point. As ∃ lim
z→∞

∣∣∣Z−θ (z)
∣∣∣±1
, 0, from F1 (·) = Zθ (·) K (·) it immediately

follows that the Cauchy type integral

K (z) =
1

2π

∫ π

−π

f (t)
Z+
θ

(eit)
K (z, t) dt,

has a decomposition of the form

K (z) =

m∑
k=−∞

bkzk, z→∞, (27)

as z→∞. We have

K (z) = −
z−1

2π

∫ π

−π

f (t)
Z+
θ

(eit)
eitdt

1 − eitz−1
= −

−1∑
k=−∞

∫ π

−π

f (t)
Z+
θ

(eit)
e−iktdt zk. (28)
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Comparing the decompositions (27) and (28), we see that the function F1 (·) belongs to the class mH−X if and
only if the orthogonality conditions∫ π

−π

f (t)
Z+
θ

(eit)
eiktdt = 0, k = 1,−m − 1, (29)

hold.
So, the following theorem is true

Theorem 5.4. Let X be a r.i.s. with Boyd indices αX; βX ∈ (0, 1). Let the coefficient G (·) satisfies the conditions i), ii)
and Zθ (·) is the canonical solution corresponding to the argument θ (·). Suppose that the jumps {hk}

r
0 of the argument

θ (·) satisfy the following inequalities

γX′ <
hk

2π
< −γX, k = 0, r,

and the weight function ρ0 (·) belongs to the class AX. Then:
α) for m ≥ −1 the non-homogeneous problem (20) for ∀ f ∈ X has a general solution of the form

F (z) ≡ Zθ (z) Pk (z) +
Zθ (z)

2π

∫ π

−π

f (t)
Z+
θ

(eit)
eitdt

eit − z
, (30)

in classes H+
X × mH−X , where Pk (·) is an arbitrary polynomial of degree k ≤ m ( for m = −1 we assume Pk (·) ≡ 0);

β) for m < −1 this problem is solvable in classes H+
X × mH−X if and only if right-hand side f (·) satisfies the

orthogonality conditions (29) and in this case the unique solution F1 (·) is representable in the form of the integral
(21).

This theorem immediately implies the following

Corollary 5.5. Let all the conditions of Theorem 5.4 be satisfied. Then the nonhomogeneous problem (20) has a
unique solution of the form (21) in classes H+

X × −1H−X for ∀ f ∈ X.

Consider the case where the Boyd indices of the space X coincide with each other. Let
{

hk
2π − αX

}r

0

⋂
Z =

∅. Set æ0 =
[

1
2π

∑r
k=0 hk − αX

]
+ 1. Absolutely similar to the homogeneous case, we establish that the

nonhomogeneous problem (20) is solvable in the classes H+
X × mH−X with the right-hand side f (·) if and only

if the nonhomogeneous problem

F+ (τ) − Gæ0 (τ) F− (τ) = f (τ) , τ ∈ γ,

is solvable in the classes H+
X × m−æ0 H−X, where the coefficient Gæ0 (·) is defined by the formula

Gæ0 (τ) = G (τ) τæ0 , τ ∈ γ.

Taking this into account, we obtain the following result.

Theorem 5.6. Let X be a r.i.s. with Boyd indices αX = βX ∈ (0, 1) , the coefficient G (·) satisfy the conditions i), ii)
and

{
hk
2π − αX

}r

0

⋂
Z = ∅ holds. Let

æ = m − r − 1 −
r∑

k=0

[
hk

2π
− αX

]
.

Then:
α) for æ ≥ −1 nonhomogeneous problem with arbitrary right-hand side f ∈ X has a general solution of the form

(30) in classes H+
X × mH−X, where Pk (·) is an arbitrary polynomial of degree k ≤ æ ( for æ = −1 assume Pk (·) ≡ 0);
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β) for æ < −1 this problem is solvable in the classes H+
X × mH−X if and only if the the right-hand side f (·) satisfies

the orthogonality conditions∫ π

−π

f (t)
Z+
θ

(eit)
eiktdt = 0, k = 1,−æ − 1, (31)

and unique solution is representable in the form of the integral (21):

F (z) =
Zθ (z)

2π

∫ π

−π

f (t)
Z+
θ

(eit)
eitdt

eit − z
, z < γ. (32)

From this theorem in particular we obtain the following

Corollary 5.7. Let all the conditions of Theorem 5.6 be satisfied. If the index of the problem (20) is equal to (-1), i.e.
æ = −1, then for ∀ f ∈ X this problem has a unique solution in classes H+

X × mH−X representable as an integral (32).

It should be noted that the Lebesgue, Orlicz, Lorentz, Lorentz-Orlicz, Morrey, grand-Lebesgue and other
spaces are the examples of r.i.s. Consequently, the results of this work are applicable to any one of these
spaces. Note, however, that in every single case the Boyd indices of these spaces must be calculated. Let us
consider some special cases.

5.3. Lebesgue case.
Consider a particular case X = Lp (−π, π) , 1 < p < +∞. In this case we have αX = βX = 1

p . Then following
Theorem 5.6 we have

Corollary 5.8. Let the coefficient G (·) satisfy the conditions i), ii) and
{

hk
2π −

1
p

}r

0
∩Z = ∅ holds. Assume

æ = m − r − 1 −
r∑

k=0

[
hk

2π
−

1
p

]
.

Then:
α) for æ ≥ −1 the nonhomogeneous problem (20) for ∀ f ∈ Lp (−π, π) , 1 < p < +∞ , has a general solution of

the form (30), in the Hardy classes H+
p × mH−p , where Pk (·) is an arbitrary polynomial of degree k ≤ æ ( for æ = −1

assume Pk (·) ≡ 0);
β) for æ < −1 this problem is solvable in the classes H+

p × mH−p if and only if the orthogonality conditions (31)
hold.

The results of this corollary are well-known, and the corresponding theory was developed by I.I.Daniliuk
[43].

5.4. Symmetric Morrey space.
Consider the following Morrey type space (we will call this space as symmetric Morrey space) SLp,α (−π, π)

of Lebesgue measurable functions on (−π, π) with norm ‖·‖p,α :

∥∥∥ f
∥∥∥

p,α = sup
I⊂(−π,π)

(
1

|I|1−α

∫
I

∣∣∣ f (t)
∣∣∣p dt

) 1
p

,

where I ⊂ (−π, π) is an arbitrary Lebesgue measurable set, |I| is Lebesgue measure of I and α ∈ (0, 1) is some
parameter. This is not a separable space. In this case, the Boyd indices are equal αX = βX = α

p . Hardy
Banach classes corresponding to Morrey space SLp,α (−π, π), denote by H+

p,α and mH−p,α. Again following
Theorem 5.6 we obtain the following
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Corollary 5.9. Let the coefficient G (·) satisfy the conditions i), ii) and
{

hk
2π −

α
p

}r

0
∩Z = ∅ holds. Denote

æ = m − r − 1 −
r∑

k=0

[
hk

2π
−
α
p

]
, 1 < p < +∞ , 0 < α < 1 .

Then:
α) for æ ≥ −1 the nonhomogeneous problem (20) for ∀ f ∈ SLp,α (−π, π) , has a general solution of the form (30),

in the Hardy-Morrey classes H+
p,α × mH−p,α , where Pk (·) is an arbitrary polynomial of degree k ≤ æ( for æ = −1

assume Pk (·) ≡ 0);
β) for æ < −1 this problem is solvable in the classes H+

p,α × mH−p,α if and only if the orthogonality conditions (31)
hold.

It should be noted that the same result was obtained in the work [10] with respect to Morrey space
Lp,α (−π, π).
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