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Abstract. In this paper, we establish B.-Y. Chen’s optimal inequalities for statistical submanifolds involving
Casorati curvature and the normalized scalar curavture in a statistical manifold of quasi constant curvature.
The equality cases of these inequalities are also considered. Further, we provide some applications of our
results. Moreover, as a new example we construct minimal statistical surface (statistical submanifold) of a
statistical manifold of quasi constant curvature.

1. Introduction and Motivation

A statistical structure can be considered as a generalization of Riemannian structure. The theory of
abstract generalizations of statistical models as statistical manifolds is a fast growing area of research in
differential geometry. In 1985, the notion of statistical manifolds (which was initiated from exploration of
geometric structures on sets of certain probability distributions) was proposed by Amari [2] which brings a
framework for the field of information geometry and it also associates a dual connection (known as conjugate
connection). The applications of statistical manifolds draw the attention of distinguished geometers due to
their applications in the field of science and engineering (for instance; see, [1, 3, 5, 14, 15, 18, 19, 21, 24, 27]
and references therein). In recent years, Cihan Özgür et al. [17] studied statistical manifolds of quasi
constant curvature in which they obtained Chen-Ricci inequality and generalized Wingten inequality. In
particular, a statistical space form is a particular case of statistical manifolds of quasi constant curvature.

On the other hand, Chen invariants conjecture yields the solutions to the problems which build the
correlations concerning the main intrinsic and the extrinsic invariants [7]. B.-Y. Chen [7] initially developed
some fundamental inequalities for submanifolds in real space form, eminently said to be Chen’s inequalities.
Later, he proposed the extended version of these optimal inequalities for different submanifolds of different
manifolds (see [9] and the references therein). The Chen ideal submanifolds have also been investigated
(see [4, 11, 12]).

Moreover, the extended version of the notion of the dominant curvatures of a hypersurface of a Rie-
mannian manifold known as Casorati curvature introduced by F. Casorati [6]. Some extremities containing
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the congruous’s essence and influence of the Casorati curvature have been examined by many researchers
for different submanifolds of different ambient manifolds ([7, 14, 19]). So, it is both important and very
interesting to obtain some extremities concerning such kind of algebraic curvatures of submanifolds in any
Riemannian manifolds.

Motivated by the studies of above mentioned authors, in this paper we obtain optimal inequalities for
the statistical submanifolds of a statistical manifold of quasi constant curvature involving the normalized
scalar curvature and the extrinsic generalized normalized δ-Casorati curvatures. The equality cases are also
investigated. Also, we derive Chen’s first inequality for a statistical submanifold of a statistical manifold
of quasi constant curvature with applications. At, the end we provide a non-trivial example of a statistical
submanifold (a minimal translation surface) of a statistical manifold which support the obtained results.

Notice that for the simplicity, throughout this paper we denote the quasi constant curvature by QC.

2. Statistical manifolds of QC curvature and their submanifolds

A statistical manifold is a Riemannian manifold (N, <, >, ∇̃) along a couple of torsionless affine connections
∇̃ and ∇̃∗ fascinating Codazzi equation and

X < Y,Z >=< ∇̃XY,Z > + < Y, ∇̃∗XZ >, (1)

for X,Y,Z ∈ Γ(TN). Then ∇̃ and ∇̃∗ are the dual (or conjugate) connections and the doublet (∇̃, <, >) is
statistical structure. Also, it appears (∇̃∗)∗ = ∇̃, where the dual connections are related by

2∇̃◦ = ∇̃ + ∇̃∗, (2)

where ∇̃◦ is the Levi-Civita connection on N.
Denote R̃ and R̃∗ to be the curvature tensor fields on N associating with affine connection ∇̃ and ∇̃∗

respectively. Then we have following relation

< R̃(X,Y)Z,W >= − < Z, R̃∗(X,Y)W >

for any X,Y,Z,W ∈ Γ(TN).
Let (N, ∇̃, <, >) be a statistical manifold, M be any Riemannian manifold and f : M→ N an immersion.

We define 1 and ∇ on M by

1 = f ∗ <,>, 1(∇XY,Z) =< ∇̃X f ∗Y,Z > (3)

for any X,Y,Z ∈ Γ(TM). Then the pair (∇, 1) is a statistical structure on M, which is said to be induced by f
from (∇̃, <, >) [16].

Let (M,∇, 1) and (N, ∇̃, <, >) be two statistical manifolds. If (∇, 1) coincides with the induced statistical
structure then an immersion f : M → N is called a statistical immersion and M is called a statistical
submanifold of N [16].

Let M be a m-dimensional statistical submanifold of Nm+d. Let us denote Γ(TM) and Γ(T⊥M) by set of
all sections of tangent and normal bundle to M, respectively. Then for any X,Y ∈ Γ(TM), the fundamental
Gauss formulas for the connection ∇̃ and ∇̃∗ are outlined by [27]

∇̃XY = ∇XY + σ(X,Y), ∇̃∗XY = ∇∗XY + σ∗(X,Y). (4)

respectively, whereas σ and σ∗ are bilinear mapping from which the linear transformations AV and A∗V are
outlined by [27]

< σ∗(X,Y),V >= 1(AVX,Y), < σ(X,Y),V >= 1(A∗VX,Y), (5)

respectively for V ∈ Γ(T⊥M). Furthermore, the Weingarten formulas for the connection ∇̃ and ∇̃∗ follows
[27]

∇̃XV = −A∗VX + ∇⊥XV, ∇̃∗XV = −AVX + ∇∗⊥X V, (6)
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respectively, for X ∈ Γ(TM) whereas the normal dual connections ∇⊥ and ∇∗
⊥

are the Riemannian dual
connections on T⊥M.

Let R and R∗ be curvature tensor field of ∇ and ∇∗. Then the fundamental Gauss equations are given by
[27]

< R̃(X,Y)Z,W >= 1(R(X,Y)Z,W)+ < σ(X,Z), σ∗(Y,W) > − < σ∗(X,W), σ(Y,Z) >, (7)

< R̃∗(X,Y)Z,W >= 1(R∗(X,Y)Z,W)+ < σ∗(X,Z), σ(Y,W) > − < σ(X,W), σ∗(Y,Z) >, (8)

where X,Y,Z,W ∈ Γ(TM).
A statistical manifold N with the statistical structure (∇̃, <, >) is said to be of constant curvature c if the

curvature tensor R̃ of ∇̃ fascinates ([3, 22])

R̃(X,Y)Z = c{< Y,Z > X− < X,Z > Y}. (9)

Similar to the definition of a Riemannian manifold of quasi-constant curvature given in [13], we define a
statistical manifold of quasi-constant curvature as follows:

Definition 2.1. A statistical manifold (N, ∇̃, <, >) is said to be of quasi-constant curvature if the curvature tensor R̃
of ∇̃ satisfies

R̃(X,Y)Z = α{< Y,Z > X− < X,Z > Y} + β[η(Y)η(Z)X− < X,Z > η(Y)ξ+ < Y,Z > η(X)ξ − η(X)η(Z)Y], (10)

where α, β are scalar functions and η is a 1-form defined by

1(X, ξ) = η(X)

and ξ is a unit vector field decomposed as ξ = ξT + ξ⊥.

In particular, if β = 0, then N turns into a statistical manifold of constant curvature. Also, if (∇̃, <, >) is a
statistical structure of quasi-constant curvature, then so is (∇̃∗, <, >).

Let M be any m-dimensional statistical submanifold of a (m + d)-dimensional statistical manifold of QC
curvature Nm+d. Let {e1, · · · , em} and {em+1, · · · , em+d} be the standard orthonormal tangent and normal basis
on M, respectively. Then, the mean curvature vector fields H and H∗ of M have the following forms [19]

H =
1
m

m∑
i=1

σ(ei, ei) =
1
m

m+d∑
r=m+1

( m∑
i=1

σr
ii

)
er, H∗ =

1
m

m∑
i=1

σ∗(ei, ei) =
1
m

m+d∑
r=m+1

( m∑
i=1

σ∗rii

)
er, (11)

where σr
i j =< σ(ei, e j), er > and σ∗ri j =< σ∗(ei, e j), er >.

Next, the squared norm of the mean curvatures are stated by [19]

||H||2 =
1

m2

m+d∑
r=m+1

( m∑
i=1

σr
ii

)2

, ||H∗||2 =
1

m2

m+d∑
r=m+1

( m∑
i=1

σ∗rii

)2

.

We set

||σ||2 =

m+d∑
r=m+1

m∑
i, j=1

(σr
i j)

2, ||σ∗||2 =

m+d∑
r=m+1

m∑
i, j=1

(σ∗ri j )
2.

For any orthonormal vector fields X,Y ∈ Γ(TM), the sectional curvature κ∇̃,∇̃
∗

on M is defined by ([3], [25])

κ∇̃,∇̃
∗

(X ∧ Y) =
1
2

[< R̃(X,Y)Y,X > + < R̃∗(X,Y)Y,X >].
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The scalar curvature is determined by

τ∇,∇
∗

=
∑

1≤i< j≤m

κ∇,∇
∗

(ei ∧ e j)

and the normalized scalar curvature ρ∇,∇
∗

is calculated as [19]

ρ∇,∇
∗

=
2τ∇,∇

∗

m(m − 1)
.

The Casorati curvatures C and C∗ of the submanifoldM are outlined as

C =
1
m

m+d∑
r=m+1

m∑
i, j=1

(σr
i j)

2 =
||σ||2

m
, C∗ =

1
m

m+d∑
r=m+1

m∑
i, j=1

(σ∗ri j )
2 =
||σ∗||2

m
.

Now, let us denote a k-dimensional subspace of TpM by L, where k > 2 and {ei}
k
1 as an orthonormal basis of

L. Next, C(L) and C∗(L) of L are given as follows [19]

C(L) =
1
k

m+d∑
r=m+1

k∑
i, j=1

(σr
i j)

2, C∗(L) =
1
k

m+d∑
r=m+1

k∑
i, j=1

(σ∗ri j )
2.

We set

B = {C(L) : L a hyperplane of TpM}, B∗ = {C∗(L) : L a hyperplane of TpM}.

Then the normalized δ-Casorati curvatures δc(m − 1) and δ̂c(m − 1) of M are given as [20]:

[δc(m − 1)](p) =
1
2
C(p) +

m + 1
2m

inf(B), [δ̂c(m − 1)](p) = 2C(p) +
2m − 1

2m
sup(B).

The dual normalized δ∗-Casorati curvatures δ∗c(m − 1) and δ̂∗c(m − 1) of M are stated as

[δ∗c(m − 1)](p) =
1
2
C
∗(p) +

m + 1
2m

inf(B∗), [δ̂∗c(m − 1)](p) = 2C∗(p) +
2m − 1

2m
sup(B∗).

Moreover, the generalized normalized δ-Casorati curvatures δc(t; m−1) and δ̂c(t; m−1) of M for A(t,m−1) =
(m−1)(m+t)[m2

−m−t]
mt are given by [20]:

[δc(t; m − 1)](p) = tC(p) + A(t,m − 1) inf(B), 0 < t < m(m − 1),
[δ̂c(t; m − 1)](p) = tC(p) + A(t,m − 1) sup(B), t > m(m − 1).

Furthermore, the dual generalized normalized δ∗-Casorati curvatures δ∗c(t; m − 1) and δ̂∗c(t; m − 1) of the
submanifold M are stated as

[δ∗c(t; m − 1)](p) = tC∗(p) + A(t,m − 1) inf(B∗), 0 < t < m(m − 1)
[δ̂∗c(t; m − 1)](p) = tC∗(p) + A(t,m − 1) sup(B∗), t > m(m − 1).

Next, we find some general extremities involving scalar curvature, normalized scalar curvature, Casorati
curvature. From the definition of the scalar curvature, we find

2τ∇,∇
∗

= α(m2
−m) + 2β(m − 1)‖ξT

‖
2 + m21(H,H∗) − σr

i jσ
∗r
i j

By the virtue of H◦ = H + H∗, we have 4‖H◦‖2 = ‖H‖2 + ‖H∗‖2 + 21(H,H∗) which yields

2τ∇,∇
∗

= α(m2
−m) + 2β(m − 1)‖ξT

‖
2
− σr

i jσ
∗r
i j +

m2

2
[4‖H◦‖2 − ‖H‖2 − ‖H∗‖2], (12)

or

2τ∇,∇
∗

= α(m2
−m) + 2β(m − 1)‖ξT

‖
2
− 2mC◦ +

m
2

(C + C∗) +
m2

2
[4‖H◦‖2 − ‖H‖2 − ‖H∗‖2]. (13)

Hence, we conclude that
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Theorem 2.2. Let Mm be a statistical submanifold of a statistical manifold Nm+d of QC curvature. Then

2τ∇,∇
∗

≤ α(m2
−m) + 2β(m − 1)‖ξT

‖
2 +

m
2

(C + C∗) +
m2

2
[4‖H◦‖2 − ‖H‖2 − ‖H∗‖2] (14)

and equality holds in (14) if and only if σ = −σ∗.

We have the following consequences of above thorem.

Corollary 2.3. Let Mm be a totally umbilical statistical submanifold of a statistical manifold Nm+d of QC curvature.
Then

2τ∇,∇
∗

= m(m − 1)(α) + 2(m − 1)β‖ξT
‖

2 + m2 + 1(H,H∗). (15)

Corollary 2.4. The scalar curvature of a totally umbilical statistical submanifold Mm of a statistical manifold Nm+d

of QC curvature satisfies

τ∇,∇
∗

=
(mα

2
+ β‖ξT

‖
2
)
(m − 1) (16)

if and only if one of the following holds

(1) H = 0

(2) H∗ = 0

(3) H and H∗ are orthogonal.

3. Extremities involving Casorati curvature

Here, we shall prove a general inequality giving bounds for the normalized scalar curvature ρ∇,∇
∗

involving the generalized normalized δ-Casorati curvature and later some of its consequences are also
discussed.

First, we need the following lemma, which plays an important role in the proof of our successive
theorem.

Lemma 3.1. [26] Let S = {(x1, x2, · · · , xm) ∈ Rm : x1 + x2 + · · · + xm = k} be a hyperplane of Rm and F : Rm
→ R

a quadratic form stated as

F (x1, x2, · · · , xm) = a
m−1∑
i=1

(xi)2 + b(xm)2
− 2

∑
1≤i< j≤m

xix j, a > 0, b > 0.

Then by the constrained extremum problem, F has a global solution given by

x1 = x2 = · · · = xm−1 =
k

a + 1
, xn =

k
b + 1

= (a −m + 2)
k

a + 1
,

where b = m−1
a−m+2 .

Now, we are going to present our result which shows that the normalized scalar curvature ρ∇,∇
∗

is
bounded above by generalized normalized δ-Casorati cuvature.

Theorem 3.2. Let Mm be a statistical submanifold of a statistical manifold Nm+d of QC curvature. Then, the
generalized normalized δ-Casorati curvature satisfies

ρ∇,∇
∗

≤
2δ◦c (t; m − 1)

m(m − 1)
−

m
2(m − 1)

(
‖H‖2 + ‖H∗‖2

)
+
C + C∗

2(m − 1)
+ α +

2β
m
‖ξT
‖

2, (17)

where 2δ◦c (t; m − 1) = δc(t; m − 1) + δ∗c(t; m − 1) for 0 < t < m(m − 1).
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Proof. We consider the quadratic polynomial P given by

P = 2tC◦ + 2A(t,m − 1)C◦(L) − 2τ∇,∇
∗

(p) +
m
2

(C + C∗) + α(m2
−m) + 2β(m − 1)‖ξT

‖
2
−

m2

2
(‖H‖2 + ‖H∗‖2).

Let us assume that L is spanned by {ei}
m−1
1 . Then using (13) and writing the above relation in indices form,

it gives

P =

m+d∑
r=m+1

[ t
m

m∑
i, j=1

(σ◦ri j )2 +
2A(t,m − 1)

m − 1

m−1∑
i, j=1

(σ◦ri j )2
]

+ 2mC◦ − 2m2
‖H◦‖2

=

m+d∑
r=m+1

[
2
( (m − 1)(m + t)

t
− 1

) m−1∑
i=1

(σr
ii)

2 +
4(m − 1)(m + t)

t

∑
1≤i< j≤m−1

(σ◦ri j )2

+ 4
( t + m

m

) m−1∑
i=1

(σ◦rin )2 +
2t
m

(σ◦rmm)2
− 4

∑
1≤i< j≤m

σ◦rii σ
◦r
j j

]
or

P

2
=

m+d∑
r=m+1

[( (m − 1)(m + t)
t

− 1
) m−1∑

i=1

(σ◦rii )2 +
t
m

(σ◦rmm)2
− 2

∑
1≤i< j≤m

σ◦rii σ
◦r
j j

]
. (18)

Now, we consider a real valued function Fr on Rm given by

Fr(σ◦r11, · · · , σ
◦r
mm) =

( (m − 1)(m + t)
t

− 1
)m−1∑

i=1

(σ◦rii )2 +
t
m

(σ◦rmm)2
− 2

∑
1≤i< j≤m

σ◦rii σ
◦r
j j . (19)

We contemplate with the optimization dilemma for invariant real constant cr

min Fr

subjected to Fr : σ◦r11 + σ◦r22 + · · · + σ◦rmm = cr.

Next, using simple calculations the partial derivative of Fr for i ∈ {1, 2, · · · ,m − 1} are given as ∂Fr
∂σ◦rii

=
2(m+t)(m−1)

t σ◦rii − 2
∑m

k=1 σ
◦r
kk,

∂Fr
∂σ◦rmm

= 2t
mσ
◦r
mm − 2

∑m−1
k=1 σ

◦r
kk.

(20)

From Lemma 3.1, we have

a =
(m − 1)(m + t)

t
− 1, b =

t
m
.

Now, to get an extremum solution (σ◦r11, σ
◦r
22, · · · , σ

◦r
mm) of the constraint Fr, the vector gradFr ∈ T⊥M at Fr.

From the system of equations of (20), the critical point of the optimized problem is outlined by{
σ◦rii = tcr

(t+m)(m−1) = cr

a+1 , for 1 ≤ i ≤ m − 1
σ◦rmm = mcr

m+t = cr

b+1
(21)

which is global minimum point. Then (19) and (21) yield

Fr(σ◦r11, · · · , σ
◦r
mm) = 0
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and P ≥ 0. Thus, we derive

2τ∇,∇
∗

(p) ≤ 2tC◦ + 2A(t,m − 1)C◦(L) + α(m2
−m) +

m
2

(C + C∗) + 2β(m − 1)‖ξT
‖

2
−

m2

2
(‖H‖2 + ‖H∗‖2)

equivalent to

ρ∇,∇
∗

≤
2δ◦c (t; m − 1)

m(m − 1)
−

m
2(m − 1)

(
‖H‖2 + ‖H∗‖2

)
+
C + C∗

2(m − 1)
+ α +

2β
m
‖ξT
‖

2. (22)

This completes the proof of theorem.

Theorem 3.3. Let Mm be a statistical submanifold of a statistical manifold Nm+d of QC curvature. Then, for the
equality case, the necessary and sufficient condition for (17) is

σr
i j = −σ∗ri j , for i , j ∈ {1, 2, . . . ,m}, σ◦rmm =

m(m − 1)
t

σ◦r11 = . . . =
m(m − 1)

t
σ◦rm−1 m−1.

Remark 3.4. Similarly, we have an inequality for a generalized normalized δ-Casorati cuvature δ̂◦c (t; m − 1)(=
(δ̂c(t; m−1) + δ̂∗c(t; m−1))/2) where t > m(m−1). Further, we can easily prove that the normalized sacalar curvature
is bounded above by the generalized normalized δ-Casorati cuvature δc(t; m − 1) and its dual δ∗c(t; m − 1).

Corollary 3.5. Let Mm be a statistical submanifold of a statistical manifold Nm+d of QC curvature. Then for
0 < t < m(m − 1), the generalized normalized δ-Casorati curvature satisfies

(1) If ξ is tangent to M

ρ∇,∇
∗

≤
2δ◦c (t; m − 1)

m(m − 1)
+
C + C∗

2(m − 1)
+ α +

2β
m
−

m
2(m − 1)

(
‖H‖2 + ‖H∗‖2

)
.

(2) If ξ is normal to M

ρ∇,∇
∗

≤
2δ◦c (t; m − 1)

m(m − 1)
−

m
2(m − 1)

(
‖H‖2 + ‖H∗‖2

)
+
C + C∗

2(m − 1)
+ α.

Remark 3.6. Similarly, we can obtain a result for the generalized normalized δ-Casorati cuvature δ̂◦c (t; m− 1) where
t > m(m − 1).

Remark 3.7. Here, one can note that δc(t; m − 1) and δ̂c(t; m − 1) are the generalized versions of δc(m − 1) and
δ̂c(m − 1) respectively by substituting t to m(m−1)

2 as[
δc

(m(m − 1)
2

; m − 1
)]

(p) = m(m − 1)[δc(m − 1)](p);
[
δ̂c

(m(m − 1)
2

; m − 1
)]

(p) = m(m − 1)[δ̂c(m − 1)](p),

for p ∈M.

Corollary 3.8. Let Mm be a statistical submanifold of a statistical manifold Nm+d of QC curvature. Then, the
normalized δ-Casorati curvature satisfies

ρ∇,∇
∗

≤ 2δ◦c (m − 1) −
m

2(m − 1)

(
‖H‖2 + ‖H∗‖2

)
+
C + C∗

2(m − 1)
+ α +

2β
m
‖ξT
‖

2,

where 2δ◦c (m − 1) = δc(m − 1) + δ∗c(m − 1) for 0 < t < m(m − 1).
Moreover, the necessary and sufficient condition for above relation for equality is

σr
i j = −σ∗ri j , for i , j ∈ {1, 2, . . . ,m}; σ◦rmm =

m(m − 1)
t

σ◦r11 = . . . =
m(m − 1)

t
σ◦rm−1 m−1.

Remark 3.9. Similarly, one can have a result like Corollary 3.8 for the normalized δ-Casorati curvature.
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4. B.-Y. Chen’s first inequality for statistical submanifolds

This section is devoted to derive an inequality named as Chen’s first inequality for a statistical sub-
manifold in a statistical manifold of QC curvature. Later, we give some consequences of our derived
result.

Revoke that the Chen first inequality notion is given in [7, 8]

δm(p) = τ(p) − inf{κ(π)|π ⊂ TpMm, dim π = 2}, (23)

where κ(π) is sectional curvature of Mm associated with 2-plane sectionπ ⊂ TpM and τ(p) is scalar curvature
at p.

Let ξπ = prπξ. Then, for a statistical submanifold of a statistical manifold of QC curvature, we state and
prove Chen first inequality as follows.

Theorem 4.1. Let Mm be a statistical submanifold of a statistical manifold Nm+d of QC curvature. Then we have

κ∇,∇
∗

(π) − 2τ∇,∇
∗

≤α[1 − (m2
−m)] + β[‖ξπ‖2 − 2(m − 1)‖ξT

‖
2] + 2‖σ◦‖2

+
3m2

4
[‖H‖2 + ‖H∗‖2] − 2m2

‖H◦‖2, (24)

provided 2(σ∗r11σ
r
22 − σ

r
12σ
∗r
12) = σr

11σ
r
22 + σ∗r11σ

∗r
22.

Proof. From (12), we have

2τ∇,∇
∗

= α(m2
−m) + 2β(m − 1)‖ξT

‖
2 +

m2

2
[4‖H◦‖2 − ‖H‖2 − ‖H∗‖2] − 2‖σ◦‖2 +

1
2

(‖σ‖2 + ‖σ∗‖2). (25)

For a section π ⊂ TpN generated by orthonormal vectors e1, e2, we have

κ∇,∇
∗

(π) =α + β[1(e1, ξ)2 + 1(e2, ξ)2] +
1
2

(
σ22σ

∗

11 − 2σ12σ
∗

12 + σ∗22σ11

)
=α + β‖ξπ‖

2 +
1
2

(
σ22σ

∗

11 − 2σ12σ
∗

12 + σ∗22σ11

)
. (26)

From (25) and (26) one gets

κ∇,∇
∗

(π) − 2τ∇,∇
∗

=α[1 − (m2
−m)] + β[‖ξπ‖2 − 2(m − 1)‖ξT

‖
2] +

1
2

(
σ22σ

∗

11 − 2σ12σ
∗

12 + σ∗22σ11

)
−

1
2

(‖σ‖2 + ‖σ∗‖2) + 2‖σ◦‖2 −
m2

2
[4‖H◦‖2 − ‖H‖2 − ‖H∗‖2]. (27)

Moreover, we can write

||σ||2 =

m+d∑
r=m+1

((
σr

11

)2
+
(
σr

22 + · · · + σr
mm

)2
+

m∑
1≤i< j≤

(
σr

i j

)2
−

m∑
2≤i, j≤

σr
iiσ

r
j j

)

=
1
2

m+d∑
r=m+1

((
σr

11 + · · · + σr
mm

)2
+

(
σr

11 − · · · − σ
r
mm

)2
)

+

m+d∑
r=m+1

2
∑

1≤i< j≤m

(
σr

i j

)2
−

∑
2≤i, j≤m

σr
iiσ

r
j j

 .
Thus, we find

||σ||2 ≥
m2

2
||H||2 −

m+d∑
r=m+1

∑
2≤i, j≤m

(
σr

iiσ
r
j j −

(
σr

i j

)2
)
. (28)
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Similarly, we have the same inequality for ∇∗ as follows

||σ∗||2 ≥
m2

2
||H∗||2 −

m+d∑
r=m+1

∑
2≤i, j≤m

(
σ∗

r

ii σ
∗

r

j j −
(
σ∗

r

i j

)2
)
. (29)

Then from (28) and (29), we get

||σ||2 + ||σ∗||2 ≥
m2

2

(
||H||2 + ||H∗||2

)
−

m+d∑
r=m+1

∑
2≤i, j≤m

(
σr

iiσ
r
j j + σ∗rii σ

∗r
j j −

(
σr

i j

)2
−

(
σ∗ri j

)2
)

=
m2

2

(
||H||2 + ||H∗||2

)
−

m+d∑
r=m+1

∑
2≤i, j≤m

((
σr

ii + σ∗rii

) (
σr

j j + σ∗rj j

)
− σr

iiσ
∗r
j j − σ

∗r
ii σ

r
j j

)
+

m+d∑
r=m+1

∑
2≤i, j≤m

((
σr

i j

)2
+

(
σ∗ri j

)2
)

which yields

||σ||2 + ||σ∗||2 ≥
m2

2

(
||H||2 + ||H∗||2

)
− 2

m+d∑
r=m+1

∑
2≤i, j≤m

(
2σ◦rii σ

◦r
j j − σ

∗r
ii σ

r
j j

)
+

m+d∑
r=m+1

∑
2≤i, j≤m

(
(σr

i j)
2 + (σ∗ri j )

2
)
. (30)

From (27) and (30), we obtain

κ∇,∇
∗

(π) − 2τ∇,∇
∗

≤α[1 − (m2
−m)] + β[‖ξπ‖2 − 2(m − 1)‖ξT

‖
2] + 2‖σ◦‖2 +

m2

4
[‖H‖2 + ‖H∗‖2] − 2m2

‖H◦‖2

+

m+d∑
r=m+1

2 ∑
2≤i, j≤m

σ◦rii σ
◦r
j j −

∑
1≤i, j≤m

σ∗rii σ
r
j j

 +
1
2

(
3σ22σ

∗

11 − 2σ12σ
∗

12 + σ∗22σ11

)
. (31)

Also, since

m+d∑
r=m+1

∑
1≤i, j≤m

σ∗
r

ii σ
r
j j =

∑
1≤i, j≤m

1(σ(e1, ei), σ(e j, e j)) = m21(H,H∗) = 2m2
‖H◦‖2 −

m2

2
[‖H‖2 + ‖H∗‖2], (32)

m+d∑
r=m+1

∑
2≤i, j≤m

σ◦
r

ii σ
◦

r

j j =
∑

2≤i, j≤m

1(σ◦(e1, ei), σ◦(e j, e j)) = m21(H◦,H◦) − σ◦11σ
◦

22 = m2
‖H◦‖2 − σ◦11σ

◦

22. (33)

Using (32) and (33) in (31), we find

κ∇,∇
∗

(π) − 2τ∇,∇
∗

≤α[1 − (m2
−m)] + β[‖ξπ‖2 − 2(m − 1)‖ξT

‖
2] + 2‖σ◦‖2 +

m2

4
[‖H‖2 + ‖H∗‖2] − 2m2

‖H◦‖2

+
m2

2
[‖H‖2 + ‖H∗‖2] − σ◦r11σ

◦r
22 +

1
2

(
3σ22σ

∗

11 − 2σ12σ
∗

12 + σ∗22σ11

)
=α[1 − (m2

−m)] + β[‖ξπ‖2 − 2(m − 1)‖ξT
‖

2] + 2‖σ◦‖2 +
3m2

4
[‖H‖2 + ‖H∗‖2] − 2m2

‖H◦‖2

+
1
2

(
2σ∗r11σ

r
22 − 2σr

12σ
∗r
12 − σ

r
11σ

r
22 − σ

∗r
11σ
∗r
22

)
which gives the desired result.

Remark 4.2. For β = 0 Theorem 4.1 states Chen first inequality for a statistical submanifold Mm of a statistical space
form Nm+d(α).
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As an application of Theorem 4.1, we have the the following result.

Corollary 4.3. Let Mm be a statistical submanifold of a statistical manifold Nm+d of QC curvature. Then

(1) If ξ is tangent to M

κ∇,∇
∗

(π) − 2τ∇,∇
∗

≤α[1 − (m2
−m)] + β[‖ξπ‖2 − 2(m − 1)] + 2‖σ◦‖2 +

3m2

4
[‖H‖2 + ‖H∗‖2] − 2m2

‖H◦‖2,

(2) If ξ is normal to M

κ∇,∇
∗

(π) − 2τ∇,∇
∗

≤α[1 − (m2
−m)] + 2‖σ◦‖2 +

3m2

4
[‖H‖2 + ‖H∗‖2] − 2m2

‖H◦‖2,

provided 2(σ∗r11σ
r
22 − σ

r
12σ
∗r
12) = σr

11σ
r
22 + σ∗r11σ

∗r
22.

5. Example

Here, we construct a new example of a statistical submanifold (a minimal translation surface) of a
statistical manifold of QC curvature using the following result.

Proposition 5.1. [23] Let N = I × f M(c) be a statistical warped product manifold and X̃, Ỹ, Z̃, W̃ ∈ Γ(TN). Then
the curvature tensor R̃ of N is given by

R̃(X̃, Ỹ, Z̃, W̃) = [
c
f 2 −

( f ′)2

f 2 ][< Ỹ, Z̃ >< X̃, W̃ > − < X̃, Z̃ >< Ỹ, W̃ >] (34)

+ [
c
f 2 −

( f ′)2

f 2 +
f ′λ + f ′′

f
][< X̃, Z̃ >< Ỹ, ∂t >< W̃, ∂t > + < Ỹ, Z̃ >< X̃, ∂t >< W̃, ∂t >

+ [
c
f 2 −

( f ′)2

f 2 −
f ′λ − f ′′

f
][< Ỹ, W̃ >< X̃, ∂t >< Z̃, ∂t > − < X̃, W̃ >< Ỹ, ∂t >< Z̃, ∂t >],

R̃∗(X̃, Ỹ, Z̃, W̃) = [
c
f 2 −

( f ′)2

f 2 ][< Ỹ, Z̃ >< X̃, W̃ > − < X̃, Z̃ >< Ỹ, W̃ >] (35)

+ [
c
f 2 −

( f ′)2

f 2 −
f ′λ − f ′′

f
][< X̃, Z̃ >< Ỹ, ∂t >< W̃, ∂t > − < Ỹ, Z̃ >< X̃, ∂t >< W̃, ∂t >

+ [
c
f 2 −

( f ′)2

f 2 +
f ′λ + f ′′

f
] < Ỹ, W̃ >< X̃, ∂t >< Z̃, ∂t > − < X̃, W̃ >< Ỹ, ∂t >< Z̃, ∂t >].

If I ⊂ R is a trivial statistical manifold and the warping f ≡ 1, a constant function; then by Proposition
5.1, we have

R̃(X̃, Ỹ, Z̃, W̃) = c[< Ỹ, Z̃ >< X̃, W̃ > − < X̃, Z̃ >< Ỹ, W̃ >] + c[< X̃, Z̃ >< Ỹ, ∂t >< W̃, ∂t > (36)

+ < Ỹ, Z̃ >< X̃, ∂t >< W̃, ∂t > + < Ỹ, W̃ >< X̃, ∂t >< Z̃, ∂t > − < X̃, W̃ >< Ỹ, ∂t >< Z̃, ∂t >].

So, the statistical product manifold N = I ×M(c) has natural QC curvature by α = β = c = constant.
On the other hand, D. W. Yoon [28] defined the following two translation surfaces in the Riemannian

product manifold R ×H2(−1) as following

ϕ(s, t) = (s1(t), st, f (s)), ϕ(s, t) = (1(t), st, f (s)),

where f (s) and 1(t) are smooth functions and s, t > 0. In his paper, he completely classified minimal
translation surfaces in R ×H2(−1).
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Next, we consider one of the minimal translation surfaces [28]

M2 : ϕ(s, t) = (as, st, bs + d), a, b, d ∈ R. (37)

Then in R ×H2(−1), the product Riemannian metric is defined by

1̃ =
dx2 + dy2

y2 + dz2.

With respect to the metric 1̃, an orthonormal basis on R ×H2(−1) is defined by

e1 = y
∂
∂x

, e2 = y
∂
∂y

, e3 =
∂
∂z
.

Now, we assume that R has a trivial statistical structure. By using statistical structure on H2(−1), we can
construct dualistic structure on a product of two statistical manifolds R ×H2(−1) as follows

∇̃e1 e1 = 2e2, ∇̃e2 e1 = e1, ∇̃e3 e1 = 0, ∇̃e1 e2 = 0,

∇̃e2 e2 = 2e2, ∇̃e3 e2 = 0, ∇̃e1 e3 = 0, ∇̃e2 e3 = 0, ∇̃e3 e3 = 0.

Then with the help of (37), we obtain

ϕs =
a
st

e1 +
1
s

e2 + be3, ϕt =
1
t

e2.

So, we can find the unit normal vector field U of surface of M2

U =
ϕs × ϕt

‖ ϕs × ϕt‖
= −

b
wt

e1 +
b

wst2 e3, w =‖ ϕs × ϕt‖. (38)

On the other hand, we calculate

∇̃ϕsϕs =

(
2

a2

s2t2 +
1
s2

)
e2, ∇̃ϕsϕt =

2
st

e2, ∇̃ϕtϕt =
2
t2 e2. (39)

By (38) and (39), we get coefficients of second fundamental form

L = 1̃(∇̃ϕsϕs,U) = 0, M = 1̃(∇̃ϕsϕt,U) = 0, N = 1̃(∇̃ϕtϕt,U) = 0.

Hence, M2 is minimal statistical surface and also H = H∗ = 0 = H0.
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