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Abstract. Applying the results about harmonic moments of classical Galton–Watson process, we obtain
the deviations for random sums indexed by the generations of a branching process. Our results show that
the decay rates of large deviations and moderate deviations depend heavily on the degree of the heavy tail
and the asymptotic distributions depend heavily on the normalizing constants. If the underlying Galton–
Watson process belongs to the Schröder case, both large deviation and moderate deviation probabilities
show three decay rates, where the critical case depends heavily on the Schröder index. Else if the Galton–
Watson process belongs to the Böttcher case, there are only two decay rate for both large deviation and
moderate deviation probabilities. Simulations are also given to illustrate our results.

1. Introduction

In the last two decades, large deviation theory has been used as an important tool to measure deviations
between the offspring mean and its Lotka–Nagaev estimator for a supercritical Galton-Watson process(GW)
with or without immigration (see [1], [3],[6],[7],[9],[10], [13], [15], etc).

Formally, consider a supercritical GW (Zn,n ≥ 0) with offspring distribution {pk}k≥0. The offspring mean
is defined as m =

∑
j jp j. A basic task in statistical inference of GW is the estimation of the offspring mean m.

The well known Lotka–Nagaev estimator of m, proposed by Nagaev([11]), is defined by

Rn =

Zn+1/Zn, if Zn > 0;
1, if Zn = 0.

One of the interesting topics is to consider the convergence rate of

P (|Rn −m| > εn) , (1.1)

for some consequence of positive random variables {εn} as n→∞.
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If εn = O(1) a.s., (1.1) is said to be a large deviation probability. See [1] and [13] for εn ≡ ε > 0, and [3] for

εn = ε

√∑Zn
i=1(Xn,i − Rn)2

Zn
= O(1) a.s.,

where Xn,i stands for the offspring number of the ith individual in the nth generation.
If εn = O(1/

√
Zn) a.s., we call (1.1) a normal deviation probability. See [11] for εn = εσm−n/2 =

O(1/
√

Zn) a.s., and [8] for εn = εσ/
√

Zn.
If εn satisfies εn → 0 a.s. and

√
Znεn → ∞, then (1.1) is said to be a moderate deviation probability. [6]

and [7] deal with the case that {εn} is a sequence of positive constants which satisfy εn → 0 and mn/2εn →∞.
Particularly, one can choose εn = εm−δn, δ ∈ (0, 0.5).

In the rest of this paper, we assume that

p0 = 0, ∀ j, p j < 1, σ2 = Var(Z1) ∈ (0,∞).

In this paper, we deal with random sums indexed by the generations of a branching process. Let {Xn}

be a sequence of i.i.d. random variables with E(X1) = 0 and Var(X1) = 1. Define Sn = X1 + · · · + Xn and
Ln = SZn/Zn, the main task of this manuscript is the estimation of the rates for

P(|Ln| > εn) (1.2)

as n → ∞. Moderate deviations were given in [6] and [7] in the case that {εn} is a sequence of positive
constants which satisfy εn → 0 and mn/2εn →∞.

Note that

Rn −m =
(Xn,1 −m) + · · · + (Xn,Zn −m)

Zn
,

we know the deviations for Lotka–Nagaev estimator belong to the model (1.2).
In addition, it is well known that the martingale {Wn = Zn/mn

} convergent to a nonnegative random
variable W and

W −Wn

Wn
=

Y1 + · · · + YZn

Zn
,

where {Yn} are independent and have the same distribution as W − 1. SinceVar(Z1) < ∞, one has E(W) = 1
andVar(W) ∈ (0,∞).

Model (1.2) can also be used to estimate the deviations between pk and its nonparametric estimation p̂k,
see [14], where

p̂k =
I(Xn,1 = k) + · · · + I(Xn,Zn = k)

Zn
,

and I(A) is the indictor function of set A.
We distinguish our GW between the Schröder case and the Böttcher case depending on whether p0 +p1 > 0

or p0 + p1 = 0. Note that p0 = 0 in this paper, the Schröder index is defined as α = − logm p1 ∈ (0,+∞]. If
α ∈ (0,+∞), GW belongs to the Schröder case, else if α = ∞, GW belongs to the Böttcher case.

Firstly, we give the results of large deviations in the case that εn ≡ ε > 0.

Theorem 1.1 (Schröder case, light tail). If there exists a constant θ0 > 0, such that E(exp(θ0|X1|)) < ∞,
then ∀ ε > 0, one has

1
pn

1
P(|Ln| > ε)→

∞∑
k=1

Ψ(k, ε)qk < ∞, (1.3)

where Ψ(k, ε) = P(|Xk| > ε), Xk = k−1Sk and {qk} are defined in Lemma Appendix A.1.
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Theorem 1.1 shows that if the Cramér condition for X1 is true and the GW belongs to Schröder case, then
the large deviation probability has an exponential rate of decay. From the proof of Theorem 1.1, we know
that these conditions lead to Ψ(k, ε) = O(λk) for some λ ∈ (0, 1) as k→∞. It turns out that if Ψ(k, ε) = O(k−r)
and r is large enough, then (1.3) is also true.

Consider X1 with the following heavy tails,

P(X1 ≥ x) ∼ P(X1 ≤ −x) ∼ θx−(1+r), (1.4)

where θ is positive constant, l(x) ∼ s(x) stands for l(x)/s(x)→ 1, x→ +∞,.

Theorem 1.2 (Schröder case, heavy tail). If there exists a constant r > max(α, 1) such that (1.4) is satisfied,
then (1.3) is true.

It turns out that if α ≤ 1 and the tail probability of X1 satisfies (1.4), then (1.3) is always true for r > 1.
But if α > 1, (1.3) is only true for r > α. We find that if 1 < r ≤ α, then large deviation probabilities have
different decay rates (since E(X2

1) < ∞, r can only be greater than 1).

Theorem 1.3 (Schröder case, heavy tail). If α ∈ (1,∞) and the tail probability of X1 satisfies (1.4) with r = α,
then we have

1
npn

1
P(|Ln| > ε)→

θ
Γ(α)

ε−(1+α)
∫ m

1
Q(φ(v))vα−1dv,

where Γ(·) is the Γ function, Q(s) is defined in Lemma Appendix A.1 and φ(·) is the Laplace transformation of W.

Theorem 1.4 (heavy tail). If α ∈ (1,∞) and the tail probability of X1 satisfies (1.4) with 1 < r < α, then we have

mrnP(|Ln| > ε)→
θ

Γ(r)
ε−(1+r)

∫
∞

0
φ(v)vr−1dv.

If GW belongs to the Böttcher case, then α = ∞. Theorem 1.4 shows that for all r > 1, if the tail probability
of X1 satisfies (1.4), then P(|Ln| > ε) = O(m−rn). The next theorem shows that if X1 has light tail, then the
decay rate of large deviation probabilities are supergeometric.

Theorem 1.5 (Böttcher case, light tail). If there exists a constant θ0 > 0, such that E(exp(θ0|X1|)) < ∞,
then ∀ ε > 0, we obtain

P(|Ln| > ε) ≤ C(ε)(λ(ε))µ
n
,

where C(ε) > 0, λ(ε) ∈ (0, 1) are two constants and µ = min{k : pk > 0}.

It is obvious that we have not found the exact rates of decay for large deviation probabilities. However,
we can obtain the following large deviation principle(LDP). Some notes are needed to illustrate the LDP.

γ = (1 − pµ)/pµ, 1(s) =

∞∑
k=µ+1

pksk−µ/(1 − pµ), R(s) =

∞∏
k=0

(1 + γ1( fk(s)))1/µk+1
, B(s) = p1/(µ−1)

µ sR(s),

Λ(λ) = logE(eλX1 ), Λ∗(x) = sup
λ∈R
{λx −Λ(λ)}, I(x) = − log(B(exp(−Λ∗(x)))).

Theorem 1.6 (Böttcher case, light tail). If there exists a constant θ0 > 0, such that E(exp(θ0|X1|)) < ∞, then Ln
satisfies LDP with speed µ−n and rate function I(x), that is, for all Borel set A in R, we have

− inf
x∈Ao

I(x) ≤ lim inf
n→∞

1
µn logP(Ln ∈ A)

≤ lim sup
n→∞

1
µn logP(Ln ∈ A)

≤ − inf
x∈A

I(x),

where Ao, A are the interior and closure of A respectively.
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Next, we give the results of moderate deviation. Let l(n) :N 7→ (0,∞) satisfy l(n)→ 0 and
√

nl(n)→∞,
if X1 has light tails, we choose εn = l(Zn).

Theorem 1.7 (Schröder case, light tail). If there exists a constant θ0 > 0, such that E(exp(θ0|X1|)) < ∞, then

1
pn

1
P(|Ln| > εn)→

∞∑
k=1

ψkqk < ∞, (1.5)

where ψk = P(|Xk| > l(k)).

If X1 has heavy tails (1.4), the phase transition results similar to those in large deviations cannot be
obtained in moderate deviations for general l(Zn), so we consider the decay rates of moderate deviation
probabilities for εn = εZ−δn , δ ∈ (0, 0.5). Define

τ =
α + δ
1 − δ

.

Theorem 1.8 (Schröder case, heavy tail). Let εn = εZ−δn , δ ∈ (0, 0.5). If there exists a constant r > max(τ, 1) such
that (1.4) is satisfied, then (1.5) is true.

It turns out that if α ≤ 1 − 2δ and the tail probability of X1 satisfies (1.4), then (1.5) is always true for
r > 1. But if α > 1 − 2δ, (1.5) is only true for r > τ. We will show that if 1 < r ≤ τ, then moderate deviation
probabilities have different decay rates.

Theorem 1.9 (Schröder case, heavy tail). Let εn = εZ−δn , δ ∈ (0, 0.5). If α ∈ (1 − 2δ,∞) and the tail probability
of X1 satisfies (1.4) with r = τ, then we have

1
npn

1
P(|Ln| > εn)→

θ
Γ(α)

ε−(1+τ)
∫ m

1
Q(φ(v))vα−1dv,

where Q(s) is defined in Lemma Appendix A.1 and φ(·) is the Laplace transformation of W.

Theorem 1.10 (heavy tail). Let εn = εZ−δn , δ ∈ (0, 0.5). If α ∈ (1 − 2δ,∞) and the tail probability of X1 satisfies
(1.4) with 1 < r < τ, then we have

mςnP(|Ln| > εn)→
θ

Γ(ς)
ε−(1+r)

∫
∞

0
φ(v)vς−1dv,

where ς = r(1 − δ) − δ.

If GW belongs to the Böttcher case, then α = ∞ and τ = ∞. Theorem 1.10 shows that for all r > 1, if the
tail probability of X1 satisfies (1.4), then P(|Ln| > εn) = O(m−ςn). The next theorem shows that if X1 has light
tail, then the decay rate of moderate deviation probabilities are supergeometric.

Theorem 1.11 (Böttcher case, light tail). Let δ ∈ (0, 0.5), εn = εZ−δn . If there exists a constant θ0 > 0, such
that E(exp(θ0|X1|)) < ∞, then for some C(ε) > 0, one has

P(|Ln| > εn) ≤ exp
(
−C(ε)µ(1−2δ)n

)
.

Finally, we consider the normal deviations. Two cases of εn are chosen, εn = εm−n/2 and εn = εZ−1/2
n .

Theorem 1.12. Assume that εn = εm−n/2, we obtain

P(|Ln| > εn)→ 2
∫
∞

0

(
1 −Φ

(
εx1/2

))
w(x)dx,

where Φ(x) is the cumulative distribution function of a standard normal random variable and w(x) is the probability
density function of W.



Y. Zhu, Z. Gao / Filomat 35:10 (2021), 3303–3317 3307

Theorem 1.13. Assume that εn = εZ−1/2
n , we have

P(|Ln| > εn)→ 2(1 −Φ(x)).

The rest of this paper is organized as follows. In Section 2, we give the proofs of main results. In Section
3, we give some examples and conduct simulation studies to illustrate the performance of our results.
Axillary results needed in the proofs are given in Appendix.

2. Proofs of main results

2.1. Proofs of large deviation results
The proofs are heavily dependent on the decay rates of generating function fn(s) = E(sZn ) and that of

harmonic moments of Zn, see Lemma Appendix A.1 – Lemma Appendix A.3.
The proof of Theorem 1.1.
Choose c ∈ (0, θ0), β < 0, by Markov inequality, we obtain

Ψ(k, ε) = P(Xk > ε) + P(Xk < −ε)
= P(Sk > kε) + P(Sk < −kε)
= P(exp(cSk) > exp(ckε)) + P(exp(βSk) > exp(−βkε))
≤ E(exp(cSk))/ exp(ckε) + E(exp(βSk))/ exp(−βkε)

= (1(c)/ exp(cε))k + (1(β)/ exp(−βε))k,

where 1(s) = E(exp(sX1)) is the generating function of X1. Denote

u(s) = 1(s) − exp(sε), v(s) = 1(s) − exp(−sε),

one has u(0) = 0, v(0) = 0, u′(0) = E(X1) − ε < 0 and v′(0) = E(X1) + ε > 0. Thus, we can choose c0 ∈

(0, θ0), β0 < 0 such that u(c0) < 0, v(β0) < 0, which means

0 < 1(c0)/ exp(c0ε) < 1, 0 < 1(β0)/ exp(−β0ε) < 1.

Define λ = [1(c0)/ exp(c0ε)] ∨ [1(β0)/ exp(−β0ε)], we know

Ψ(k, ε) ≤ 2λk.

According to the formula of total probability, we obtain

P(|Ln| > ε) =

∞∑
k=1

Ψ(k, ε)P(Zn = k)

≤

∞∑
k=1

2λkP(Zn = k)

= 2 fn(λ).

We complete the proof of Theorem 1.1 via Lemma Appendix A.1 and Lebesgue’s dominated convergence
theorem.

The proof of Theorem 1.2 depends on the relation of deviation for Sn and its individuals, see Lemma
Appendix B.1.

The proof of Theorem 1.2.
According to Lemma Appendix B.1,

Ψ(k, ε) = P(|Xk| > ε)
= P(|Sk| > kε)
∼ kP(|X1| > kε), k→∞
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Since (1.4) is satisfied, we know that P(|X1| > kε) = O(k−(1+r)). Then there exists a constant C(ε) > 0 such
that

Ψ(k, ε) ≤ C(ε)k−r.

The formula of total probability implies that

P(|Ln| > ε) =

∞∑
k=1

Ψ(k, ε)P(Zn = k)

≤

∞∑
k=1

C(ε)k−rP(Zn = k)

= C(ε)E(Z−r
n ).

Note that r > max{α, 1}, we complete the proof of Theorem 1.2 via Lemma Appendix A.3 and Lebesgue’s
dominated convergence theorem.

The proof of Theorem 1.3.
Note that Ψ(k, ε) ∼ kP(|X1| > kε), k → ∞, from (1.4), we know that for any δ > 0, there exists a

constants θ > 0, k0 = k0(δ) such that for all k ≥ k0, one has

θk−αε−(1+α)(1 − δ) ≤ Ψ(k, ε) ≤ θk−αε−(1+α)(1 + δ). (2.1)

Conditioning on Zn, we obtain

P(|Ln| > ε) =

∞∑
k=1

Ψ(k, ε)P(Zn = k)

=

k0−1∑
k=1

Ψ(k, ε)P(Zn = k) +

∞∑
k=k0

Ψ(k, ε)P(Zn = k)

≥

k0−1∑
k=1

Ψ(k, ε)P(Zn = k) + θε−(1+α)(1 − δ)
∞∑

k=k0

k−αP(Zn = k)

= θε−(1+α)(1 − δ)E(Z−αn ) +

k0−1∑
k=1

Ψ(k, ε)P(Zn = k)

− θε−(1+α)(1 − δ)
k0−1∑
k=1

k−αP(Zn = k)

= θε−(1+α)(1 − δ)E(Z−αn ) + I0(n),

where

I0(n) =

k0−1∑
k=1

Ψ(k, ε)P(Zn = k) − θε−(1+α)(1 − δ)
k0−1∑
k=1

k−αP(Zn = k).

According to Lemma Appendix A.1, for any k ≤ k0, we have

P(Zn = k)
npn

1
=

1
n
P(Zn = k)

pn
1

= O(n−1)→ 0, n→∞,

Consequently, I0(n)/(npn
1)→ 0, n→∞. By Lemma Appendix A.3 and the arbitrariness of δ, we obtain

lim inf
n→∞

1
npn

1
P(|Ln| > ε) ≤

θ
Γ(α)

ε−(1+α)
∫ m

1
Q(φ(v))vr−1dv. (2.2)
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Similarly, if we use the right hand of (2.1), we have

lim sup
n→∞

1
npn

1
P(|Ln| > ε) ≥

θ
Γ(α)

ε−(1+α)
∫ m

1
Q(φ(v))vr−1dv. (2.3)

We complete the proof of Theorem 1.3 by (2.2) and (2.3).
The proof of Theorem 1.4.
The proof of Theorem 1.4 is similar to that Theorem 1.3. It is only need to note that when r < α, p1mr < 1,

then for any k, we have

mrnP(Zn = k) = (p1mr)nP(Zn = k)
pn

1
= O((p1mr)n)→ 0, n→∞.

When GW belongs to the Böttcher case, fn(s) has a supergeometric decay rate, see Lemma Appendix A.2.
The proof of Theorem 1.5.
According to the proof of Theorem 1.1, there exists a constant λ0 = λ0(ε) ∈ (0, 1) such that

P(|Ln| > ε) ≤ 2 fn(λ0).

By Lemma Appendix A.2, we know for some positive constant C = C(ε), we have

P(|Ln| > ε) ≤ C(B(λ0))µ
n
.

Denote λ = λ(ε) := B(λ0), if λ ∈ (0, 1), then Theorem 1.5 is true. In fact, according to Lemma Appendix A.2,
one has

f (s)R( f (s)) = pµ(sR(s))µ,

By iteration, we know for any n ≥ 1, one has

fn(s)R( fn(s)) = pµ( fn−1(s)R( fn−1(s)))µ

= pµ+1
µ ( fn−2(s)R( fn−2(s)))µ

2

= · · ·

= pµ
n−1+···+µ+1
µ (sR(s))µ

n

= p−1/(µ−1)
µ (p1/(µ−1)

µ sR(s))µ
n
.

Consequently,

B(s) = p1/(µ−1)
µ sR(s)

= p1/(µn(µ−1))
µ ( fn(s)R( fn(s)))1/µn

.

Note that for any s ∈ [0, 1), fn(s)→ 0, according to the continuity of R(s) at s = 0 and R(0) = 1, we obtain that
for any s ∈ [0, 1), fn(s)R( fn(s))→ 0. Consequently, one can choose some positive n0 such fn0 (λ0)R( fn0 (λ0)) < 1.
Then

λ = B(λ0) = p1/(µn0 (µ−1))
µ ( fn0 (λ0)R( fn0 (λ0)))1/µn0 < 1.

we complete the proof of Theorem 1.5
The proof of Theorem 1.6 depends on that classical deviation results for i.i.d. case, see Lemma Appendix

B.3 and Appendix B.4.
The proof of Theorem 1.6.
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Upper bound. For any closed set F ⊂ R, by Lemma Appendix B.3, one has

P(Ln ∈ F) =

∞∑
k=µn

P(Xk ∈ F)P(Zn = k)

≤

∞∑
k=µn

2P(Zn = k) exp(−k inf
x∈F

Λ∗(x))

= 2 fn(exp(− inf
x∈F

Λ∗(x))).

Note that B(s) increases as s increases, by Lemma Appendix A.2, we know

lim sup
n→∞

1
µn logP(Ln ∈ F) ≤ log(B(exp(− inf

x∈F
Λ∗(x))))

= log(sup
x∈F

B(exp(−Λ∗(x))))

= − inf
x∈F

(− log(B(exp(−Λ∗(x)))))

= − inf
x∈F

I(x).

Lower bound. According to Lemma Appendix B.4, for any open set G ⊂ R and δ > 0, there exists a
positive constant N = N(δ) such that for any k ≥ N, we have

P(Xk ∈ G) ≥ exp(−k(inf
x∈G

Λ∗(x) + δ)).

For n large enough, one has µn
≥ N, then

P(Ln ∈ G) ≥ 2 fn(exp(−(inf
x∈G

Λ∗(x) + α))).

Applying Lemma Appendix A.2, the monotonicity ofB(s) and the arbitrariness of δ, we obtain

lim inf
n→∞

1
µn logP(Ln ∈ G) ≥ − inf

x∈G
I(x).

We complete the proof of Theorem 1.6.

2.2. Proofs of moderate deviation results

The proof of Theorem 1.7 is similar to that of Theorem 1.1, we omit it.
The proof of Theorem 1.8.
Note that for any δ ∈ (0, 0.5),

k1−δ

(1 − δ) log k
→∞, k→∞,

according to Lemma Appendix B.1, we have

ψk = P(|Xk| > k−δ)
∼ kP(|X1| > k1−δ)
= O(k · (k1−δ)−(1+r))
= O(k1−(1−δ)(1+r)), k→∞.

Then, there exists a positive constant C such that

ψk ≤ Ck1−(1−δ)(1+r).
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Conditioning on Zn, one has

P(|Ln| > εn) ≤
∞∑

k=1

Ck1−(1−δ)(1+r)P(Zn = k) = CE(Z1−(1−δ)(1+r)
n ).

Since r > max{τ, 1}, 1− (1− δ)(1 + r) < −α, we complete the proof of Theorem 1.8 via Lemma Appendix A.1,
Lemma Appendix A.3 and Lebesgue’s dominated convergence theorem.

The proof of Theorem 1.9.
According to Lemma Appendix B.1,

ψk ∼ kP(|X1| > εk1−δ), k→∞.

From (1.4), we know that for any ϑ > 0, there exists a positive constant θ > 0, k0 = k0(δ) such that for
any k ≥ k0, one has

ψk ≥ θk · k−(1−δ)(1+τ)(1 − ϑ)ε−(1+τ)

= θ(1 − ϑ)kδ−τ(1−δ)ε−(1+τ)

= θ(1 − ϑ)k−αε−(1+τ), (2.4)

and similarly

ψk ≤ θ(1 + ϑ)k−αε−(1+τ). (2.5)

Conditioning on Zn, by (2.4), one has

P(|Ln| > εn) ≥ θ(1 − ϑ)ε−(1+τ)E(Z−αn ) + I0(n),

where

I0(n) =

k0−1∑
k=1

ψkP(Zn = k) − θ(1 − ϑ)ε−(1+τ)
k0−1∑
k=1

k−αP(Zn = k).

Applying Lemma Appendix A.1, we know that for any k ≤ k0, we have

P(Zn = k)
npn

1
=

1
n
P(Zn = k)

pn
1

= O(n−1), n→∞,

Consequently, I0(n)/(npn
1)→ 0, n→∞. Applying Lemma Appendix A.3 and the arbitrariness of ϑ, one has

lim inf
n→∞

1
npn

1
P(|Ln| > εn) ≥

θ
Γ(α)

ε−(1+τ)
∫ m

1
Q(φ(v))vα−1dv. (2.6)

Similarly, by (2.5), we have

lim sup
n→∞

1
npn

1
P(|Ln| > εn) ≤

θ
Γ(α)

ε−(1+τ)
∫ m

1
Q(φ(v))vr−1dv. (2.7)

We complete the proof of Theorem 1.9 via (2.6) and (2.7).
The proof of Theorem 1.10 is similar to that of Theorem 1.9, we omit it.
The proof of Theorem 1.11.
Define

φ(k, ε) = log(P(|Xk| > εk−δ)).

Letting an = n2δ−1 in Lemma Appendix B.5, one has
√

nan = nδ and for any ϑ > 0, there exists a positive
constant k0 = k0(ϑ, ε, δ) such that if k ≥ k0, one has

φ(k, ε) ≤
(
−
ε2

2
+ ϑ

)
k1−2δ.
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Note that for n large enough, one has µn
≥ k0. Conditioning on Zn, we obtain

P(|Ln| ≥ εn) =

∞∑
k=µn

P(|Xk| > εk−δ)P(Zn = k)

≤

∞∑
k=µn

exp
((
−
ε2

2
+ ϑ

)
k1−2δ

)
P(Zn = k)

≤

∞∑
k=µn

exp
((
−
ε2

2
+ ϑ

)
µ(1−2δ)n

)
P(Zn = k)

= exp
((
−
ε2

2
+ ϑ

)
µ(1−2δ)n

)
.

We complete the proof of Theorem 1.11.

2.3. Proofs of normal deviation results

The proof of Theorem 1.12.
Conditioning on Zn,

P(|Ln| > εn) =

∞∑
k=1

P(|Sk| > εnk)P(Zn = k).

For any 1 > δ > 0, we divide P(|Ln| > εn) into the following three parts,

J1(n, ε) =
∑

k<εmn

P(|Sk| > εnk)P(Zn = k),

J2(n, ε) =
∑

εmn≤k≤ε−1mn

P(|Sk| > εnk)P(Zn = k),

J3(n, ε) =
∑

k>ε−1mn

P(|Sk| > εnk)P(Zn = k).

Note that Zn/mn
→W a.s., see [2] for example, one has

|J1(n, ε)| ≤
∑

k<εmn

P(Zn = k)

= P(Zn < εmn)
= P(Wn < ε)
→ P(W < ε).

Similarly, |J3(n, ε)| ≤ P(Wn > ε−1)→ P(W > ε−1). If p0 = 0, one has P(W > 0) = 1, see [2]. Letting ε→ 0, we
have

lim
ε↓0

lim
n→∞

J1(n, ε) = lim
ε↓0

lim
n→∞

J3(n, ε) = 0.
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Next, according to Lemma Appendix B.2, we have

J2(n, ε) =
∑

εmn≤k≤ε−1mn

P
(
|Sk| > εm−n/2k

)
P(Zn = k)

=
∑

εmn≤k≤ε−1mn

P
(
k−1/2
|Sk| > ε(km−n)−1/2

)
P(Znm−n = km−n)

= 2
∫ ε−1

ε

(
1 −Φ

(
εx1/2

))
dP(Wn ≤ x) + o(1)

→ 2
∫ ε−1

ε

(
1 −Φ

(
εx1/2

))
w(x)dx,

where the convergence is guaranteed by the continuity of Φ(εx1/2) for x and the absolute continuity of the
distribution of W, see [2]. Letting ε ↓ 0, we complete the proof of Theorem 1.12.

The proof of Theorem 1.13 is similar to that of Theorem 1.12, we omit it.

3. Examples and simulations

The only one non–trivial example for which the generating functions fn(s),n ≥ 1 have been explicitly
computed is the linear fractional case. Note that p0 = 0 in our paper, we can choose our offspring distribution
satisfies the following geometric distribution,

pk = p(1 − p)k−1, k = 1, 2, · · · ,

where p ∈ (0, 1). It is obvious that p1 = p, m = 1/p and the Schröder index α = 1. In addition,

fn(s) =
s

mn − (mn − 1)s
, Q(s) =

1
1 − s

, qk ≡ 1,∀k ≥ 1, φ(v) =
1

1 + v
, w(x) = e−x.

We choose p = 0.5 in our simulations. The simulations include the following two steps.
Step I: Simulate the probability of deviations.
We conduct 10000 simulations and the frequency (FQ) is used to instead of the probability of deviations.

According to our assumption, the distribution of Zn is a geometric distribution with parameter 2−n. One can
generate Zn from this population. Samples (X1, · · · ,XZn ) are generated from the following two populations,
a light tail distribution N(0, 1) and a heavy tail distribution (Pareto distribution with parameters (3, 1)).
Since Zn = Op(2n) as n → ∞, we choose the following three sample size: 1. n = 6(26 = 64) stands for
relatively small sample case; 2. n = 8(28 = 256) stands for middle sample case; 3. n = 10(210 = 1024) stands
for relatively large sample case.

Step II: Simulate the values given in our results.
For every k, we conduct 1000 simulations for Ψ(k, x) and ψk and use

∑100
k=1 qkΨ(k, x),

∑100
k=1 qkψk instead of∑

∞

k=1 qkΨ(k, x) and
∑
∞

k=1 qkψk respectively. We choose x = 0.3, 0.4, 0.5, 0.6 in our simulations as examples.
Let LD and MD stand for our large and moderate deviation results respectively. Compares of LD and

FQ are given in Table 1 and Table 2. For moderate deviations, we choose δ = 0.1 ∈ (0, 0.5) as an example.
Compares of MD and FQ are given in Table 3 and Table 4. It turns out that both large and moderate
deviation results can work effectively for large samples. In addition, it is obvious that for n large enough,
the decay rates for moderate deviations are slower than that of moderate deviations.

Let ND stands for our normal deviation result in Theorem 1.11. Compares of ND and empirical
distribution functions are given in Figure 1 and Figure 2, where we choose n = 10. It turn out that if we
choose εn = εm−n/2, then the degree of dispersion of the data is larger than a standard normal random
variable.

Since the result of Theorem 1.12 does not need the explicit expression of fn(s), for each population, we
can choose any non–trivial offspring distributions. Except for Z1 ∼ Geom(0.5), we choose Z1 − 1 ∼ Pois(1)
as an example.

Compares of Φ(x) and empirical distribution functions are given in Figure 3 –Figure 6. It turns out that
both Theorem 1.11 and Theorem 1.12 can work effectively for samples large enough.
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Table 1: {pk} ∼ Geom(0.5), X1 ∼ N(0, 1)
Size Method ε = 0.3 ε = 0.4 ε = 0.5 ε = 0.6
n = 6 FQ 0.1366 0.0833 0.0538 0.0377

LD 0.1672 0.0901 0.0579 0.0368
n = 8 FQ 0.0398 0.0234 0.0128 0.0093

LD 0.0408 0.0231 0.0138 0.0093
n = 10 FQ 0.0103 0.0064 0.0040 0.0023

LD 0.0104 0.0058 0.0035 0.0023

Table 2: {pk} ∼ Geom(0.5),
√

3X1/2 + 0.5 ∼ Pareto(3, 1)
Size method ε = 0.3 ε = 0.4 ε = 0.5 ε = 0.6
n = 6 FQ 0.0934 0.0507 0.0276 0.0163

LD 0.1150 0.0581 0.0320 0.0197
n = 8 FQ 0.0292 0.0138 0.0072 0.0045

LD 0.0288 0.0145 0.0077 0.0048
n = 10 FQ 0.0073 0.0033 0.0021 0.0014

LD 0.0072 0.0036 0.0020 0.0012

Table 3: {pk} ∼ Geom(0.5), X1 ∼ N(0, 1), δ = 0.1
Size Method ε = 0.3 ε = 0.4 ε = 0.5 ε = 0.6
n = 6 FQ 0.2193 0.1366 0.0829 0.0590

MD 0.3242 0.1758 0.1016 0.0642
n = 8 FQ 0.0798 0.0439 0.0258 0.0149

MD 0.0811 0.0441 0.0260 0.0155
n = 10 FQ 0.0223 0.0115 0.0058 0.0039

MD 0.0203 0.0110 0.0063 0.0040

Table 4: {pk} ∼ Geom(0.5), δ = 0.1,
√

3X1/2 + 0.5 ∼ Pareto(3, 1)
Size method ε = 0.3 ε = 0.4 ε = 0.5 ε = 0.6
n = 6 FQ 0.1683 0.0857 0.0494 0.0256

LD 0.2288 0.1128 0.0592 0.0353
n = 8 FQ 0.0569 0.0287 0.0145 0.0084

LD 0.0577 0.0281 0.0152 0.0090
n = 10 FQ 0.0165 0.0066 0.0032 0.0023

LD 0.0143 0.0071 0.0038 0.0022



Y. Zhu, Z. Gao / Filomat 35:10 (2021), 3303–3317 3315

−3 −2 −1 0 1 2 3

0
.2

0
.4

0
.6

0
.8

 x 

 C
D

F
 

ND

ECDF

N(0, 1)

Figure 1: εn = εm−n/2, X1 ∼ N(0, 1)
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Figure 2: en = εm−n/2,
√

3X1/2 + 0.5 ∼ Pareto(3, 1)
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Figure 3: εn = εZ−1/2
n , X1 ∼ N(0, 1)
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Figure 4: εn = εZ−1/2
n ,

√
3X1/2 + 0.5 ∼ Pareto(3, 1)
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Figure 5: Z1 − 1 ∼ Pois(0.5), εn = εZ−1/2
n , X1 ∼ N(0, 1)
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Figure 6: Z1 − 1 ∼ Pois(0.5), εn = εZ−1/2
n ,

√
3X1/2 + 0.5 ∼

Pareto(3, 1)
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Appendix A. Axillary results on Galton–Watson process

Lemma Appendix A.1 ([1] or [2]). If GW belongs to Schröder case, p0 = 0, E(Z2
1) < ∞, then

fn(s)
pn

1
↑ Q(s) =

∞∑
k=1

qksk,
P(Zn = k)

pn
1

→ qk,

where fn(s) = E(sZn ) and Q(s) is the unique solution of the following equation,{
Q( f (s)) = p1Q(s), 0 ≤ s < 1;
Q(0) = 0.

Lemma Appendix A.2 ([1]). If GW belongs to Böttcher case, E(Z2
1) < ∞, then

fn(s) ∼
(
p−1/(µ−1)
µ

)
(B(s))µ

n
, s ∈ [0, 1], f (s)R( f (s)) = pµ(sR(s))µ,

where µ,B(s),R(s) are defined before Theorem 1.6 and f (s) = E(Z1).

Lemma Appendix A.3 ([13]). If E(Z2
1) < ∞, then for any r > 0, we have

lim
n→∞

An(r)E(Z−r
n ) = C(r),

where

An(r) =


p−n

1 , p1mr > 1;

(npn
1)−1, p1mr = 1;

(mr)n, p1mr < 1

and

C(r) =



1
Γ(r)

∫
∞

0
Q(exp{−v})vr−1dv, p1mr > 1;

1
Γ(r)

∫ m

1
Q(φ(v))vr−1dv, p1mr = 1;

1
Γ(r)

∫
∞

0
φ(v)vr−1dv, p1mr < 1.

Appendix B. Axillary results on deviations of partial sums of i.i.d. case

Let {Xn} be a sequence of i.i.d. radom variables with E(X1) = 0 andVar(X1) = 1. Define

Sn = X1 + · · · + Xn, Xn = Sn/n.

Lemma Appendix B.1 ([12]). Assume that

P(X1 ≥ x) ∼ x−rh1(x), P(X1 ≤ −x) ∼ x−rh2(x),

for some r > 2, where h1(x), h2(x) are slowly varying functions. Let {an} be a sequence of positive constants with
an/ log(an) ≥

√
n, one has

P(|Sn| > an)
nP(|X1| > an)

→ 1, n→∞.

Lemma Appendix B.2 ([5]P105). Define Fn(x) = P(
√

nXn ≤ x), x ∈ R, one has

∆n := sup
x∈R
|Fn(x) −Φ(x)| → 0, n→∞.



Y. Zhu, Z. Gao / Filomat 35:10 (2021), 3303–3317 3317

Lemma Appendix B.3 ([4]P27). Assume that there exists a constant θ0 > 0 such that E(eθ0 |X1 |) < ∞. Define

Λ(λ) = logE(eλX1 ), Λ∗(x) = sup
λ∈R
{λx −Λ(λ)}.

Then for any closed set F ⊂ R, one has

P(Xn ∈ F) ≤ 2e−n infx∈F Λ∗(x).

Lemma Appendix B.4 ([4]P27). Assume that there exists a constant θ0 > 0 such that E(eθ0 |X1 |) < ∞. Then for
any open set G ⊂ R, one has

1
n

logP(Xn ∈ G) ≥ − inf
x∈G

Λ∗(x).

Lemma Appendix B.5 ([4]P109). Let {an} be a sequence of positive constants with an → 0, nan → ∞, if there
exists a constant θ0 > 0 such that E(eθ0 |X1 |) < ∞, then for any ε > 0, one has

an logP(
√

nan|Xn| ≥ ε)→ −
ε2

2
.
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