
Filomat 35:10 (2021), 3293–3302
https://doi.org/10.2298/FIL2110293D

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In the present paper, we prove spectral mapping theorem for (m,n)-paranormal operator T
on a separable Hilbert space, that is, f (σw(T)) = σw( f (T)) when f is an analytic function on some open
neighborhood of σ(T). We also show that for (m,n)-paranormal operator T, Weyl’s theorem holds, that is,
σ(T) − σw(T) = π00(T). Moreover, if T is algebraically (m,n)-paranormal, then spectral mapping theorem
and Weyl’s theorem hold.

1. Introduction

LetH denote an infinite dimensional separable complex Hilbert space with inner product 〈, 〉 and B(H)
denote the C∗-algebra of bounded linear operators on H . Throughout the paper, we denote the set of all
complex numbers by C . For T ∈ B(H), we write ker(T) and ran(T) for the null space and the range space of
T, respectively, σa(T) for the approximate point spectrum of T, σ(T) for the spectrum of T, σp(T) for the point
spectrum of T, σw(T) for the Weyl spectrum of T and π00(T) denotes the set of all isolated points of spectrum
of T, which are eigen values of finite multiplicity of T [5, 12]. An operator T ∈ B(H) is called Fredholm if
it has closed range with finite dimensional null space and its range of finite co-dimension. The index of a
Fredholm operator T is given by ind(T) = α(T) − β(T), where α(T) is the dimension of ker(T) and β(T) is the
dimension of ker(T∗). Also, let isoσ(T) be the set of isolated points of spectrum of T and an operator T is said
to be isoloid if every λ ∈ isoσ(T) is an eigen value.

An operator T ∈ B(H) is called Weyl if it is Fredholm of index zero. The spectrum σ(T), the point
spectrum σp(T), the Weyl spectrum σw(T) and the isolated eigen values of finite multiplicity π00(T) of
T ∈ B(H) are defined by

σ(T) = {λ ∈ C : T − λ is not invertible},

σa(T) = {λ ∈ C : Txn = λxn for some sequence (xn) of unit vectors},

σp(T) = {λ ∈ C : Tx = λx for some non-zero vector x},

σw(T) = {λ ∈ C : T − λ is not Weyl},

π00(T) = {λ ∈ isoσ(T) : 0 < α(T − λ) < ∞}.
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An operator T ∈ B(H) is said to be (m,n)-paranormal if ‖Tx‖n+1
≤ m‖Tn+1x‖‖x‖n, for all x ∈ H , where m is a

positive real number and n is a positive integer [6].
Let p(T) and q(T) denote, respectively, the ascent and descent of an operator T. We say that T has finite

ascent and p(T) = m1, if there exists a least non-negative integer m1 such that ker(Tm1 ) = ker(Tm1+1). Also,
if such integer does not exist, then p(T) = ∞. Analogous, we say that T has finite descent and q(T) = m2,
if there exits a least non-negative integer m2 such that ran(Tm2 ) = ran(Tm2+1). Also, if such integer does not
exist, then q(T) = ∞. If p(T) and q(T) are finite, then p(T) = q(T) [13, Proposition 38.3]. Moreover, for a
complex number λ, 0 < p(T − λ) = q(T − λ) < ∞ if and only if λ is pole of resolvent.

The contents of this paper have been organized into four sections. In sect. 2, we discuss some spectral
properties of (m,n)-paranormal operators and prove spectral mapping theorem on Weyl spectrum, that is,
f (σw(T)) = σw( f (T)) for all f ∈ H(σ(T)), where H(σ(T)) is the set of all analytic functions on some open
neighborhood of spectrum of T.

In sect. 3, we prove that if T is a (m,n)-paranormal operator and σ(T) = {λ}, then T = λ. Further, for the
same class of operators and every Riesz idempotent Eλ, we prove that ran(Eλ) = ker(T − λ), where λ is the
isolated point of spectrum of T. Hence, Weyl’s theorem holds.

In sect. 4, we prove that every part of algebraically (m,n)-paranormal is algebraically (m,n)-paranormal
and algebraically (m,n)-paranormal operator satisfies property (H). Further, spectral mapping theorem and
Weyl’s theorem hold for algebraically (m,n)-paranormal operators.

2. Spectral Mapping Theorem for (m, n)-Paranormal Operators

In this section, we study a matrix representation of a (m,n)-paranormal operator with respect to the
direct sum of an eigen-space and its orthogonal complement. By some authors, it was shown that the
spectral mapping theorem on Weyl spectrum holds for classes of operators [12, 14, 20]. To start with we
establish a few important results for (m,n)-paranormal operators.

Theorem 2.1. Let T ∈ B(H) be a (m,n)-paranormal operator on H = ker(T − λ) ⊕ ker(T − λ)⊥ defined by 2 × 2

matrix representation T =

[
λ T1
0 T2

]
, where 0 , λ ∈ σp(T). Then

‖Tn+1
2 x‖

2
n+1 ‖x‖

2n
n+1 ≥ ‖T1x‖2 + ‖T2x‖2 (1)

for x ∈ ker(T − λ)⊥, provided T1
∑n

i=0 λ
n−iTi

2 = 0 for each a > 0.

This result is a generalization of [21, Theorem 2.1].

Proof. Since T is (m,n)-paranormal, so

m
2

n+1 T∗n+1Tn+1
− (n + 1)anT∗T + m

2
n+1 nan+1I =

[
Q(a) R(a)
R∗(a) S(a)

]
is positive for each a > 0, where

Q(a) = m
2

n+1 λ̄n+1λn+1
− (n + 1)anλ̄λ + m

2
n+1 nan+1I,

R(a) = m
2

n+1 λ̄n+1P − (n + 1)anλ̄T1,

R∗(a) = m
2

n+1λn+1P∗ − (n + 1)anλT∗1,

and

S(a) = m
2

n+1 (P∗P + T∗2
n+1T2

n+1) − (n + 1)an(T∗1T1 + T∗2T2) + m
2

n+1 nan+1I,
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where

P = T1

n∑
i=0

λn−iTi
2.

By (m,n)-paranormality of T, S(a) ≥ 0 for each a > 0, thereby implying

m
2

n+1 (P∗P + T∗2
n+1T2

n+1) − (n + 1)an(T∗1T1 + T∗2T2) + m
2

n+1 nan+1I ≥ 0.

As P = 0,

m
2

n+1 T∗2
n+1T2

n+1
− (n + 1)an(T∗1T1 + T∗2T2) + m

2
n+1 nan+1I ≥ 0, (2)

for each a > 0. Now, by [6, Theorem 2.1], the result holds.

Remark 2.2. It is easy to conclude from (2), T2 is (m,n)-paranormal.

Corollary 2.3. Let T =

[
0 T1
0 T2

]
be a (m,n)-paranormal operator onH = ker(T) ⊕ ker(T)⊥. Then ker(T2) = {0}.

Proof. First, assume that x = 0 ⊕ x2 ∈ ker(T2). Then T2x2 = 0 and Tx = T1x2. Consequently, Tx ∈ ker(T),
this implies that x ∈ ker(T1+n) = ker(T) by (m,n)-paranormality of T. So, x ∈ ker(T) ∩ ker(T)⊥ = 0. Hence,
ker(T2) = {0}.

Corollary 2.4. If T =

[
λ T1
0 T2

]
is a (m,n)-paranormal operator onH = ker(T−λ)⊕ker(T−λ)⊥with T1

∑n
i=0 λ

n−iTi
2 =

0, then ker(T2 − λ) = {0}, where λ , 0.

Proof. Let x = 0 ⊕ x2 ∈ ker(T2 − λ). Then T2x2 = λx2 and (T − λ)x = T1x2. By (1), we have (T − λ)x = 0.
Therefore, x ∈ ker(T − λ). So, x ∈ ker(T − λ) ∩ ker(T − λ)⊥ = {0}. Hence, ker(T2 − λ) = {0}.

Corollary 2.5. Let T =

[
λ T1
0 T2

]
be (m,n)-paranormal onH = ker(T − λ) ⊕ ker(T − λ)⊥ with T1

∑n
i=0 λ

n−iTi
2 = 0,

where λ , 0. Then ker(T − λ) ⊥ ker(T − µ), where λ and µ are two distinct eigen values of T.

Proof. Let x = x1 ⊕ x2 ∈ ker(T − µ). Then 0 = (T − µ)x = (T − µ)(x1 ⊕ x2) = [(λ − µ)x1 + T1x2] ⊕ (T2 − µ)x2.
Thus, (T2 − µ)x2 = 0. Now, by (1), we have ‖T1x2‖ = 0 and (λ − µ)x1 = 0. So, x1 = 0. Hence, x ∈ ker(T − λ)⊥

and thus ker(T − λ) ⊥ ker(T − µ).

As a consequence of the above corollary, we obtain the following proposition.

Proposition 2.6. If an operator T =

[
λ 0
0 T2

]
onH = ker(T − λ) ⊕ ker(T − λ)⊥ is (m,n)-paranormal and γ is any

eigen value of T such that λ , γ, then ker(T − λ) ⊥ ker(T − γ).

The proof of the following proposition is straightforward, so we omit it here.

Proposition 2.7. If T =

[
T1 0
0 T2

]
is a (m,n)-paranormal operator onH⊕H , then T1 and T2 are (m,n)-paranormal.

In the following theorem, we state a useful result on polar decomposition of bounded linear operators on
Hilbert space. An operator T can be decomposed as T = U|T|, where U is a partial isometry and |T| = (T∗T)

1
2

with ker(U) = ker(|T|).
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Theorem 2.8. [2, Corollary 2.2] If T is an operator with polar decomposition T = U|T|, where α is any non-zero
complex number such that α = |α|eiθ and (xn) be a sequence of vectors inH , then the following claims are equivalent.
(1) (T − α)xn → 0 and (T∗ − ᾱ)xn → 0
(2) (|T| − |α|)xn → 0 and (U − eiθ)xn → 0
(3) (|T∗| − |α|)xn → 0 and (U∗ − e−iθ)xn → 0

Theorem 2.9. Suppose that T is an operator onH . If (T − λ)x = 0, then (T∗ − λ̄)x = 0, where λ , 0.

Proof. By assumption, we have (T − λ)x = 0, so

‖Tx‖ = ‖λx‖ and ‖Tn+1x‖ = |λ|n+1
‖x‖ (3)

Now, by (3), we have

〈|T|2x, x〉 = |λ|2〈x, x〉 =⇒ 〈(|T|2 − |λ|2)x, x〉 = 0.

Therefore, (|T|2 − |λ|2) = 0 on ker(T − λ), so we have

(|T| − |λ|)x = (|T| + |λ|)−1(|T|2 − |λ|2)x = 0.

Thus,

|λ|(U − eiθ)x = U(|λ| − |T|)x + (U|T| − |λ|eiθ)x = 0,

that is, (U − eiθ)x = 0 for λ , 0. So, (T∗ − λ̄)x=0, by Theorem 2.8.

The next theorem provides spectral mapping theorem on Weyl spectrum of (m,n)-paranormal operators.

Theorem 2.10. If T is a (m,n)-paranormal operator onH , then spectral mapping theorem holds on Weyl spectrum,
that is, f (σw(T)) = σw( f (T)) for all f ∈ H(σ(T)).

Proof. First, let T be a (m,n)-paranormal operator defined by a matrix representation as: T =

[
λ T1
0 T2

]
on

H = ker(T − λ) ⊕ ker(T − λ)⊥, where λ , 0. It is always true that σw( f (T)) ⊆ f (σw(T)) [10, Theorem 2(b)]. To
prove converse part, assume that γ < σw( f (T)). Then f (T) − γ is Fredholm operator of index zero. We take

f (z) − γ = (z − γ1)(z − γ2) · · · (z − γk)1(z),

where 1(z) , 0 for any z in G and γi, i = 1, 2, . . . , k, are zeros of f (z)−γ in G, where G is the open neighborhood
of spectrum of T. Thus, consider the operator equation

f (T) − γ = (T − γ1)(T − γ2) · · · (T − γk)1(T). (4)

Considering (4), it is clear that γ ∈ f (σw(T)) if and only if γi ∈ σw(T) for some i. Now, to prove the reverse
inequality, it is suffices to prove that γi < σw(T) for all i. Since f (T) − γ is Fredholm operator of index zero,
so by [18, Lemma 5.19], T − γi is also Fredholm for each i and so is 1(T). Observe that

0 = ind( f (T) − γ) = ind(T − γ1) + · · · + ind(T − γk) + ind(1(T)). (5)

Now, by [11, Corollary 5], we have ind(T − γi) = ind(T2 − γi) for each i.
If γi = 0, then by Corollary 2.3, ind(T) ≤ 0 for each i. If γi , 0, then by Theorem 2.9, ind(T − γi) ≤ 0

for each i. As 1(T) is invertible, so (5) implies that ind(T − γi) = 0 for each i. Thus γi < σw(T) for each i.
Therefore, γ < f (σw(T)). Hence, the result holds.
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3. Weyl’s Theorem for (m, n)-Paranormal Operators

According to Coburn, for any operator T, Weyl’s theorem holds if σ(T) − σw(T) = π00(T) [4]. In recent
years, many authors have extended this theorem on various classes of operators [12, 14, 20, 21].

If λ is an isolated point of spectrum of T, then the Riesz idempotent of T denoted as Eλ with respect to
λ, is defined as

Eλ =
1

2πi

∫
∂D

(z − T)−1dz,

where D is a the closed disk with center λ and with radius small enough so that D ∩ σ(T) = {λ}. Then
E2
λ = Eλ, EλT = TEλ, σ(T|ran(Eλ)) = {λ} and ker(T − λ) ⊆ ran(Eλ).

Lemma 3.1. Let T be (m,n)-paranormal for m ≤ 1 and σ(T) = {λ}, where λ is a complex number. Then T = λI.

Proof. For λ = 0, σ(T) = {0}. By [7, Theorem 2.8], T is normaloid, so T = 0. Now, we assume that λ , 0 and
A1 = 1

λT. Thus, σ(A1) = {1}. Therefore, by [16, Theorem 1.5.14], A1 is identity. Hence, T = λI.

Theorem 3.2. Let T be a (m,n)-paranormal operator for m ≤ 1. Ifλ is an isolated point of σ(T), then Riesz idempotent
Eλ with respect to λ satisfies ran(Eλ) = ker(T − λ).

Proof. By the general conditions of Riesz idempotent, we have that σ(T|ran(Eλ)) = {λ} and ker(T−λ) ⊆ ran(Eλ).
By [6, Proposition 2.2] and Lemma 3.1, we obtain T|ran(Eλ) = λI. Thus, ran(Eλ) = ker(T − λ).

Theorem 3.3. For m ≤ 1, if T is (m,n)-paranormal, then Weyl’s theorem holds, that is, σ(T) − σw(T) = π00(T).

Proof. If λ ∈ σ(T) − σw(T), then T − λ is Fredholm of index zero and ker(T − λ) is also non-zero finite
dimensional space. We represent T as the following 2×2 operator matrix with respect to the decomposition
H = ker(T − λ) ⊕ ker(T − λ)⊥:

T =

[
λ 0
0 T2

]
.

Now, by [11, Corollary 5], we have

ind(T − λ) = ind(T2 − λ) = 0.

Now, ker(T2 − λ) = {0}, so T2 − λ is one-one, so it is invertible, this implies that λ < σ(T2). By [11], it is easy
to see that σ(T) = σ(T2) ∪ {λ} , so λ ∈ π00(T).

Conversely, let λ be any arbitrary point of π00(T). It is clear from Theorem 3.2 that ran(Eλ) = ker(T − λ).
We know that σ(T|ran(Eλ)) = {λ}, so by the general theory of Riesz idempotent, λ < σ(T|ran(I−Eλ)). It follows that
ran(T − λ) = (T − λ)ran(Eλ) + (T − λ)ran(I − Eλ). Thus, we have ran(T − λ) = (T − λ)ran(I − Eλ) = ran(I − Eλ).

However, β(T − λ) = dim(H/ran(T − λ)) = dim(H/ran(I − Eλ)) = dim(ran(Eλ)) = α(T − λ). Hence,
α(T − λ) = β(T − λ). So, T − λ is Fredholm operator of index zero. Therefore, λ ∈ σ(T) − σw(T). This
completes the proof.

Theorem 3.4. Suppose that T is (m,n)-paranormal and ran(T) is not dense. We define the representation of T as

2 × 2 matrix as T =

[
T1 T2
0 T3

]
on H = ran(T) ⊕ ker(T∗). Then T1 is (m,n)-paranormal on ran(T) and T3 = 0.

Moreover, σ(T) = σ(T1) ∪ {0}.
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Proof. If P is projection on ran(T), then we write P =

[
1 0
0 0

]
. Consider

[
T1 0
0 0

]
= TP = PTP. By [6, Theorem

2.1], we obtain

P(m
2

n+1 T∗n+1Tn+1
− (n + 1)anT∗T + m

2
n+1 nan+1I)P ≥ 0,

for each a > 0. It follows that

m
2

n+1 T∗1
n+1T1

n+1
− (n + 1)anT∗1T1 + m

2
n+1 nan+1I ≥ 0,

for each a > 0. Hence, T1 is (m,n)-paranormal on ran(T).
For x = x1⊕x2 inH , we deduce that 〈T3x2, x2〉 = 〈T(I−P)x, (I−P)x〉 = 〈(I−P)x,T∗(I−P)x〉 = 0. Therefore,

T3 = 0 on ker(T∗). It is clear that σ(T1) ∩ σ(T3) has no interior point, so by [11, Corollary 8], we obtain that
σ(T) = σ(T1) ∪ σ(T3), i.e., σ(T) = σ(T1) ∪ {0}.

Corollary 3.5. If we define an operator T =

[
λ T2
0 T3

]
onH in Theorem 3.4, where λ is any complex number, then λI

is (m,n)-paranormal operator on ran(T), T3 = 0 and σ(T) = {λ, 0}.

Theorem 3.6. Let T ∈ B(H⊕H) be an operator represented by 2×2 matrix as
[
C 0
D 0

]
. Then T is (m,n)-paranormal

if and only if

m
2

n+1 C∗n+1Cn+1
− (n + 1)anC∗C + m

2
n+1 nan+1I

≥ (n + 1)anD∗D −m
2

n+1 (C∗)nD∗DCn, (6)

for each a > 0.

Proof. If T is (m,n)-paranormal, then by [6, Theorem 2.1]

m
2

n+1 T∗n+1Tn+1
− (n + 1)anT∗T + m

2
n+1 nan+1I =

[
X 0
0 Y

]
(7)

is positive for each a > 0, where X = m
2

n+1 (C∗n+1Cn+1 + (C∗)nD∗DCn) − (n + 1)an(C∗C + D∗D) + m
2

n+1 nan+1 and
Y = m

2
n+1 nan+1. Now, by (m,n)-paranormality T, X ≥ 0. Thus, (6) holds.

On the other hand, when X is non-negative, the matrix on right side of (7) is hermitian as Y is also
non-negative, implying thereby the non-negativity of the determinant of the matrix.

Lemma 3.7. [3] LetH be a complex Hilbert space. Then there exists a Hilbert spaceK such thatH ⊆ K and a map
φ : B(H)→ B(K ) such that

1. φ is a faithful ∗-representation of the algebra B(H) onK ;
2. φ(A) ≥ 0 for any A ≥ 0 in B(H);
3. σa(T) = σa(φ(T)) = σp(φ(T)) for any T in B(H).

Theorem 3.8. Let T be a (m,n)-paranormal operator. If φ : B(H)→ B(K ) is Berberian’s faithful ∗-representation of
Lemma 3.7, then φ(T) is also (m,n)-paranormal.

Proof. Since T is (m,n)-paranormal, by [6, Theorem 2.1], we have

(m
2

n+1 T∗n+1Tn+1
− (n + 1)anT∗T + m

2
n+1 nan+1I) ≥ 0,
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for each a > 0. By using Lemma 3.7,

φ(m
2

n+1 T∗n+1Tn+1
− (n + 1)anT∗T + m

2
n+1 nan+1I) ≥ 0,

that is,

m
2

n+1φ(T)∗n+1φ(T)n+1
− (n + 1)anφ(T)∗φ(T) + m

2
n+1 nan+1I ≥ 0,

for each a > 0. This completes the result.

Theorem 3.9. For m ≤ 1, let T be (m,n)-paranormal for some positive integer n. Then Weyl’s theorem holds for
f (T), i.e., σ( f (T)) − σw( f (T)) = π00( f (T)), for every f ∈ H(σ(T)).

Proof. By Theorem 3.2, the operator T is isoloid. Then by [17, Lemma],

σ( f (T)) − π00( f (T)) = f (σ(T) − π00(T)), (8)

for every f ∈ H(σ(T)). Now, from Theorem 3.3 and Theorem 2.10, it follows that

f (σ(T) − π00(T)) = f (σw(T))
= σw( f (T)). (9)

From (8) and (9), Weyl’s theorem holds for f (T).

4. Algebraically (m, n)-Paranormal Operators

In this section, we show that the class of algebraically (m,n)-paranormal operators is independent from
the class of (m,n)-paranormal and also show that algebraically (m,n)-paranormal operators are Polaroid.
Moreover, we prove spectral mapping theorem and Weyl’s theorem for the class of algebraically (m,n)-
paranormal operators.

Definition 4.1. An operator T on H is said to be an algebraically (m,n)-paranormal operator if there exists a
non-constant complex polynomial p(t) such that p(T) is (m,n)-paranormal.

Now, we define quasi nilpotent part of T, i.e., is subspace ofH , that is,

H(T) = {x ∈ H : lim
n→∞
‖Tnx‖

1
n = 0}.

It is easy to see that ker(Tm) ⊆ H(T) for each m ∈ N. Moreover, we say that an operator T is said to have
property (H) if ker(T − λ) = H(T − λ) for all complex number λ.

Proposition 4.2. [6, Proposition 2.2] If an operator T is algebraically (m,n)-paranormal, then T is algebraically
(m,n)-paranormal on every invariant subspace ofH .

Lemma 4.3. Let T be a (m,n)-paranormal operator for m ≤ 1, then T has property (H).

Proof. By Theorem 3.2 and [15, Theorem 3.1], T satisfies the required result. Consequently, by [1, Theorem
2.5], T − λ has finite ascent for all λ ∈ C.

It is easy to understand every (m,n)-paranormal operator is algebraically (m,n)-paranormal but converse
need not be true. The following example shows that an algebraically (m,n)-paranormal operator is not
(m,n)-paranormal.
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Example 4.4. First, we take an operator T onH ⊕H as matrix representation T =

[
−1 0
2 −1

]
. By [6, Theorem 2.1],

T is (( 1
2 )

3
2 , 2)-paranormal if and only if

1
2

T∗3T3
− 3a2T∗T + a3I ≥ 0, (10)

for each a > 0. Observe that

1
2

T∗3T3
− 3a2T∗T + a3I =

[
37
2 − 15a2 + a3

−3 + 6a2

−3 + 6a2 37
2 − 3a2 + a3

]
is not positive at a = 1.3. Thus, T is not (( 1

2 )
3
2 , 2)-paranormal.

Now, consider the polynomial f (z) = (z + 1)2, this implies that, f (T) = (T + I)2. From (10), we have the operator

1
2

f (T)∗3 f (T)3
− 3a2 f (T)∗ f (T) + a3I =

[
a3 0
0 a3

]
is positive for each a > 0. Therefore, f (T) is (( 1

2 )
3
2 , 2)-paranormal operator.

In the following example, we show that an operator T is algebraically (m,n)-paranormal and (m,n)-
paranormal both.

Example 4.5. An operator T ∈ B(H ⊕ H) defined by the matrix representation T =

[
2 0
1 2

]
. The operator T is

(2
3
2 , 2)-paranormal if and only if

2T∗3T3
− 3a2T∗T + 4a3I ≥ 0, (11)

for each a > 0. Consider the operator equation

2T∗3T3
− 3a2T∗T + 4a3I =

[
416 − 15a2 + 4a3 192 − 6a2

192 − 6a2 128 − 12a2 + 4a3

]
.

The above operator is positive for each a > 0. So, T is (2
3
2 , 2)-paranormal.

Now from the complex polynomial f (z) = (z − 2)2 follows the polynomial in operator variable f (T) = (T − 2)2.
So, observe that the following operator equation

2 f (T)∗3 f (T)3
− 3a2 f (T)∗ f (T) + 4a3I =

[
4a3 0
0 4a3

]
.

The above operator is positive for each a > 0.

Definition 4.6. An operator T is said to have single valued extension property (abbreviated as SVEP) at γ0 ∈ C, if for
every open neighborhood G of γ0, the only analytic function f : G→H which satisfies the equation (T−γI) f (γ) = 0
for all γ ∈ G is the function f = 0.

An operator T has SVEP if T has SVEP at every γ ∈ C.

By using Proposition 2.6, the following theorem is proved.

Theorem 4.7. [19, Theorem 8] If an operator T is (m,n)-paranormal, then T has SVEP.

Immediate consequences, we got the following result.

Corollary 4.8. Let T be an algebraically (m,n)-paranormal operator. Then p(T) has SVEP for some polynomial p(t).
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Theorem 4.9. [16, Theorem 3.3.9] Let T be an algebraically (m,n)-paranormal operator. Then T has SVEP.

We also provide spectral mapping theorem for algebraically (m,n)-paranormal operators for Weyl
spectrum.

Theorem 4.10. If T is an algebraically (m,n)-paranormal operator for some positive real number m ≤ 1 and positive
integer n, then f (σw(T)) = σw( f (T)) for all f ∈ H(σ(T)).

Proof. It can be easily verified that σw( f (T)) ⊆ f (σw(T)). To prove the converse part it suffices to prove that
f (σw(T)) ⊆ σw( f (T)). Suppose λ < σw( f (T)). Then f (T)−λ is Weyl operator, i.e., Fredholm operator of index
zero. Observe that

f (T) − λ = (T − λ1)(T − λ2) · · · (T − λk)1(T),

where λ1, λ1, · · · , λk are zeros of f (T) − λ and 1(T) is an invertible operator. Thus, we get

0 = ind( f (T) − λ) = ind(T − λ1) + ind(T − λ2) + · · · + ind(T − λk) + ind(1(T)).

Since 1(T) is invertible, so ind(1(T)) = 0. By Theorem 4.9 and [13, Proposition 38.5], ind(T − λi) ≤ 0, for each
i = 1, 2, · · · , k. Therefore, ind(T − λi) = 0 for each i. Thus, T − λi is Fredholm operator of index zero for each
i, so λi < σw(T). Hence, λ < f (σw(T)), which yields the required result.

We say that an operator T is Polaroid if for every isolated point of spectrum of T is a pole of the resolvent.
In the following theorem, we show that (m,n)-paranormal operator is Polaroid.

Theorem 4.11. Let T be an algebraically (m,n)-paranormal operator for m ≤ 1. Then 1(T) is Polaroid for some
polynomial 1(t).

Proof. Since T is algebraically (m,n)-paranormal operator then there exists a non-constant polynomial
1(t) such that 1(T) is (m,n)-paranormal. Let λ ∈ isoσ(1(T)) and corresponding spectral projection Eλ =

1
2πi

∫
∂D(z − 1(T))−1dz, where D is closed disk of center λ with σ(1(T)) ∩D = {λ}. We can then represent 1(T)

as:

1(T) =

[
T1 0
0 T2

]
with σ(T1) = {λ} and σ(T2) = σ(1(T))− {λ}. By Proposition 2.7, T1 and T2 are (m,n)-paranormal operators for
m ≤ 1. If σ(T1) = {λ}, then by Lemma 3.1, T1 −λ = 0. This implies that ker(T1 −λ) = H and ker(T1 −λ)2 = H .
Thus, p(T1 − λ) = 1. Analogously, ran(T1 − λ) = {0} and ran(T1 − λ)2 = {0} and hence q(T1 − λ) = 1.
This implies that p(T1 − λ) = q(T1 − λ). In the same way, T2 − λ is invertible, so ker(T2 − λ) = {0} and
ker(T2 − λ)0 = ker(I) = {0}, it follows that p(T2 − λ) = 0. Also, ran(T2 − λ) = H and ran(T2 − λ)0 = ran(I) = H ,
this implies that q(T2 − λ) = 0. Consequently, p(T2 − λ) = q(T2 − λ).

Now, by above computation ker(1(T) − λ) = ker(1(T) − λ)2 and hence p(1(T) − λ) = 1. In the sequel,
ran(1(T)−λ) = ran(1(T)−λ)2, it follows that q(1(T)−λ) = 1. Consequently, by [13, Proposition 38.3], we get
p(1(T) − λ) = q(1(T) − λ). Thus, 0 < p(1(T) − λ) = q(1(T) − λ) < ∞. So, λ is a pole of resolvent of 1(T). This
implies that 1(T) is Polaroid operator.

Corollary 4.12. [16, Theorem 3.3.9] If T is an algebraically (m,n)-paranormal operator for m ≤ 1, then T is Polaroid.
Consequently, by [9, Lemma 3.3], T is an isoloid operator.

The proof of the following theorem is obvious by using Corollary 4.12 and Theorem 4.9.

Theorem 4.13. [8, Theorem 2.2] If an operator T is algebraically (m,n)-paranormal for m ≤ 1, then Weyl’s theorem
holds for T.

Theorem 4.14. If an operator T algebraically (m,n)-paranormal for m ≤ 1, then Weyl’s theorem holds for f (T) for
all f ∈ H(σ(T)).
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Proof. By Corollary 4.12, the operator T is isoloid, so by [17, Lemma], we get σ( f (T)) − π00( f (T)) = f (σ(T) −
π00(T)). So, theorem 4.13 implies that f (σ(T) − π00(T)) = f (σw(T)).

Now, by Theorem 4.10, we get f (σw(T)) = σw( f (T)). Finally, we have σ( f (T))− σw( f (T)) = π00( f (T)). This
completes the proof.
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