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Abstract. In this article, the existence of solutions for fully nonlinear Kirchhoff-type problem

−M
(∫

(Φ (|∇u|) + Φ (|u|)) dx
)

[div(a(|∇u|)∇u) + a(|u|)u] = λ
∑k

i=1

(
tqi(x)−1

− tri(x)−1
)

is proved via variational method. Finally, some new problems are introduced.

1. Introduction

Partial differential equation is an interdisciplinary area that one may study many physical phenomena
(see [2, 8–11, 25–36])). One of the main problems in this area is wave equation. The wave equation is an
important second-order linear partial differential equation for the description of waves. Historically, the
problem of a vibrating string such as that of a musical instrument was studied by Jean le Rond D’Alembert,
Leonhard Euler, Daniel Bernoulli, and Joseph-Louis Lagrange. In 1746, D’Alembert discovered the one-
dimensional wave equation, and within ten years Euler discovered the three-dimensional wave equation.
Later on, Kirchhoff [14] proposed the equation

ρ
∂2u
∂t2 − (

P0

h
+

E
2L

∫ L

0
|
∂u
∂x
|
2dx)

∂2u
∂x2 = 0. (1)

This equation is an extension of the classical D’Alembert’s wave equation by considering the effects of the
length changes of the string produced by transverse vibrations. The parameters in (1) have the following
meanings: h is the cross-section area, E is the Young modulus, ρ is the mass density, L is the length of the
string, and P0 is the initial tension. In recent years, p-Kirchhoff type problems have been studied by many
researchers, we refer to [4, 12–21, 38].

Here we consider the problem{
−M

(∫
(Φ (|∇u|) + Φ (|u|)) dx

)
[div(a(|∇u|)∇u) + a(|u|)u] = λ f (x,u) in Ω,

∂u
∂v = 0 on ∂Ω,

(2)
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where M : R+
→ R is a continuous function, λ is a positive real parameter, Ω is a bounded domain in RN

(N ≥ 3) with smooth boundary ∂Ω and ν is the outward unit normal to ∂Ω. Set

f (x, t) =


∑k

i=1

(
tqi(x)−1

− tri(x)−1
)

t ≥ 0,
0 t < 0,

(3)

for x ∈ Ω, where qi(x), ri(x) are given by (11). Assume that a : (0,∞)→ R is a function such that

ϕ(t) :=

a(|t|)t for t , 0,
0 for t = 0,

(4)

is an odd, increasing homeomorphism from R onto R and

Φ(t) =

∫ t

0
ϕ(s)ds for all t ∈ R. (5)

Notice that if ϕ(t) = p|t|p−2t, then problem (2) becomes the well-known p-Kirchhoff type equation−M(
∫

Ω
(|∇u|p + |u|p)dx)(∆pu + |u|p−2u) = λ f (x,u) in Ω,

∂u
∂v = 0 on ∂Ω.

(6)

which is related to the stationary version of the Kirchhoff equation (1). Since the first equation in (6) contains
an integral over Ω, it is no longer a pointwise identity, and therefore it is often called a nonlocal problem.
This problem models several physical and biological systems, where u describes a process which depends
on the average of itself, such as the population identity, see [5].

The existence of infinitely many solutions for−M(
∫

Ω
Φ(|∇u|)dx)div(a(|∇u|)∇u) = λ f (x,u) + µ1(x,u) in Ω,

u = 0 on ∂Ω,

is proved where M : [0,+∞)→ R is a continuous function such that there exists a positive number m with
M(t) ≥ m for all t ≥ 0, (see [20]). Also problem (2) studied in [3], where M(t) ≡ 1. Recently, in [21], problem
(2) is studied where f (x, t) = tq(x)−1

− tr(x)−1 and the existence of solutions is proved. Here we consider an
extension of f (x, t) by (3) and generalize the result of [21]. In fact, we study the existence of weak solutions
for problem (2). Here is the main result.

Theorem 1.1. Let conditions (12) and (13) be satisfied. Then there exists a constant λ∗ > 0 such that for any λ ≥ λ∗,
problem (14) admits at least two non-negative nontrivial weak solutions.

In order to prove the main theorem, we apply the minimum principle [37] to prove that the problem (12)
admits a non-negative, non–trivial weak solution (call u1) as the global minimizer of J. The existence of this
solution (as a first solution) is proved in Section 2.1. Also we apply the Mountain Pass Theorem to prove
the existence of second nontrivial weak solution (call u2) of (14) (see Section 2.2). The proof shows that the
weak solutions u2 and u1 are distinct, since J(u2) = c > 0 > J(u1). Thus we need to prove the existence of u1
and u2, separately. Due to do this, we introduce the Orlicz–Sobolev space as a suitable function space.

Notice that Φ defined in (5) is a Young function, that is, Φ(0) = 0, Φ is convex, and limt→∞Φ(t) = +∞.
Furthermore since Φ(t) = 0 if and only if t = 0, limt→0

Φ(t)
t = 0, and limt→∞

Φ(t)
t = +∞, the function Φ is then

called an N-function. The function Φ∗ defined by

Φ∗(t) =

∫ t

0
ϕ−1(s)ds for all t ∈ R,
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is called the Complementary function of Φ and it satisfies

Φ∗(t) = sup{st −Φ(s) : s ≥ 0} for all t ≥ 0.

Notice that Φ∗ is also an N-function and satisfies the following Young inequality

st ≤ Φ(s) + Φ∗(t) for all s, t ≥ 0.

Assume that

1 < lim inf
t→∞

tϕ(t)
Φ(t)

≤ ϕ0 < ∞, (7)

N < ϕ0 ≤ lim inf
t→∞

log(Φ(t))
log(t)

, (8)

where

ϕ0 := inf
t>0

tϕ(t)
Φ(t)

and ϕ0 := sup
t>0

tϕ(t)
Φ(t)

.

The set KΦ(Ω which is defined by

KΦ(Ω) :=
{

u : Ω→ Rmeasurable :
∫

Ω

Φ(|u(x)|)dx < ∞
}

for the N–function Φ is called the Orlicz class. The Orlicz space LΦ(Ω) is defined by the linear hull of the
set KΦ(Ω). Considering Luxemburg norm

‖u‖Φ := inf
{

k > 0 :
∫

Ω

Φ

(
u(x)

k

)
dx ≤ 1

}
,

the Orlicz space LΦ(Ω) is a Banach space. Also ‖u‖Φ is equivalent to the Orlicz norm

‖u‖LΦ
:= sup

{∣∣∣∣∣∫
Ω

u(x)v(x)dx
∣∣∣∣∣ : v ∈ KΦ∗ (Ω),

∫
Ω

Φ∗(|v(x)|)dx ≤ 1
}
.

The Hölder inequality holds for Orlicz spaces as follows (see [28])∫
Ω

uvdx ≤ 2‖u‖LΦ
‖v‖LΦ∗

for all u ∈ LΦ(Ω) and v ∈ LΦ∗ (Ω).

The Orlicz-Sobolev space W1,Φ(Ω) is defined by

W1,Φ(Ω) :=
{

u ∈ LΦ(Ω) :
∂u
∂xi
∈ LΦ(Ω), i = 1, 2, . . . ,N

}
,

and it is a Banach space with respect to the norm

‖u‖1,Φ := ‖u‖Φ + ‖|∇u|‖Φ.

This norm is equivalent to the following Luxemburg-norm

‖u‖ := inf
{
µ > 0 :

∫
Ω

Φ

(
|u(x)|
µ

)
+ Φ

(
|∇u(x)|
µ

)
dx ≤ 1

}
.
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Condition (7) assures that Φ satisfies the ∆2-condition, i.e.

Φ(2t) ≤ lΦ(t) : for all t ≥ 0, (9)

where l is a positive constant, see [23, proposition 2.3]. In the sequel we also need the condition

the function t 7→ Φ(
√

t) is convex for all t ≥ 0. (10)

Set X := W1,Φ(Ω). Notice that the spaces LΦ(Ω) and W1,Φ(Ω) are separable, reflexive Banach spaces, see [1,
p. 241 and p. 247]. Notice that for 1 ≤ q < ϕ∗0 := Nϕ0

N−ϕ0
, W1,Φ is continuously and compactly embedded in

the classical Lebesgue space Lq(Ω) (see [3, 6]).
Finally, we remind [27, Mountain Pass Theorem], which is the main tool in our problem. Also we recall

the Palais-Smale condition (see [27]).

Definition 1.2. A continuously Fréchet differentiable functional I ∈ C1(H,R) from a Hilbert space H to the reals
satisfies the Palais-Smale (PS) condition if every sequence {uk}

∞

k=1 ⊂ H such that:
(I) {I[uk]}∞k=1 is bounded, and
(II) I′[uk]→ 0 in H
has a convergent subsequence in H.

Theorem 1.3. Let E be a real Banach space and I ∈ C1(E,R) satisfying PS condition. Suppose I(0) = 0 and
(I1) there are constants ρ, α > 0 such that I|∂Bρ ≥ α,
(I2) there is an e ∈ E \ Bρ such that I(e) ≤ 0.
Then I possesses a critical value c ≥ α. Moreover c can be characterized as

c = inf
1∈Γ

max
u∈1([0,1])

I(u),

where

Γ = {1 ∈ C([0, 1],E); 1(0) = 0, 1(1) = e}.

In the next section we study the existence of two weak solutions for the problem (2).

2. Two weak solutions

In this section we consider a general form of f (x, t) as (3) and for 1 ≤ i ≤ k

qi, ri ∈ C+(Ω) := {h : h ∈ C(Ω), h(x) > 1 for all x ∈ Ω} (11)

are such that

1 < r− := infx∈Ω{ri(x) : 1 ≤ i ≤ k} ≤ ri(x) ≤ r+ := supx∈Ω{ri(x) : 1 ≤ i ≤ k}
< q− := infx∈Ω{qi(x) : 1 ≤ i ≤ k} ≤ qi(x) ≤ q+ := supx∈Ω{qi(x) : 1 ≤ i ≤ k}
< ρϕ0,

with

ρ ∈

(
1,min

{
N
ϕ0 ,

Nϕ0

ϕ0(N − ϕ0)

})
. (12)

Also, we suppose that M : R+
→ R is a continuous function satisfying

M(t) ≥ k0tρ−1 for all t ∈ R+ (13)

where k0 is a positive constant. Here we assume the Kirchhoff function M is not degenerate i.e. set ρ = 1.
Consider the following nonlocal problem{

−M
(∫

Ω
Φ(|∇u|) + Φ(|u|)dx

)
(div(a(|∇u|)∇u) + a(|u|)u) = λ f (x,u) in Ω,

∂u
∂v = 0 on ∂Ω.

(14)



A. Razani / Filomat 35:10 (2021), 3267–3278 3271

Definition 2.1. A function u : Ω→ R is said to be a weak solution of problem (14) if u ∈ X (u ≥ 0 a.e in Ω) and

M
(∫

Ω
Φ(|∇u|) + Φ(|u|)dx

) ∫
Ω

(a(|∇u|)∇u.∇v + a(|u|)uv)dx
−λ

∑k
i=1

∫
Ω

(
uqi(x)−1

− uri(x)−1
)

vdx = 0,

for all v ∈ X.

We define the energy functional J : X→ R by

J(u) = M̂
(∫

Ω

[Φ(|∇u(x)|) + Φ(|u(x)|)]dx
)

(15)

− λ
k∑

i=1

∫
Ω

(
1

qi(x)
uqi(x)

+ −
1

ri(x)
uri(x)

+

)
dx

=M(u) − λF (u) , u ∈ X, (16)

where

M = M̂
(∫

Ω

Φ(|∇u(x)|) + Φ(|u(x)|)dx
)
,

M̂ : =

∫ t

0
M(s)ds,

F (u) =

k∑
i=1

∫
Ω

(
1

qi(x)
uqi(x)

+ −
1

ri(x)
uri(x)

+

)
dx, (17)

u±(x) = max{±u(x), 0}.

We know that u ∈ X implies u+,u− ∈ X and

∇u+ =

0 for u ≤ 0,
∇u for u > 0,

and ∇u− =

0 for u ≥ 0,
∇u for u < 0.

The following proposition is from [9].

Proposition 2.2. Let u ∈W1,Φ(Ω), then∫
Ω

Φ(|u|) + Φ(|∇u|)dx ≥ ‖u‖ϕ
0
; if ‖u‖ < 1∫

Ω

Φ(|u|) + Φ(|∇u|)dx ≥ ‖u‖ϕ0 ; if ‖u‖ > 1∫
Ω

Φ(|u|) + Φ(|∇u|)dx ≤ ‖u‖ϕ0 ; if ‖u‖ < 1∫
Ω

Φ(|u|) + Φ(|∇u|)dx ≤ ‖u‖ϕ
0
; if ‖u‖ > 1

Lemma 2.3. There exists λ0 > 0 such that

λ0 = inf
‖u‖>1

k0

(∫
Ω

Φ(|∇u|) + Φ(|u|)dx
)ρ

ρ
∫

Ω
|u|ρϕ0 dx

.
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Proof. Since X = W1,Φ(Ω) is continuously embedded in W1,ϕ0 (Ω) and consequently it is continuously
embedded in Lρϕ0 (Ω), there exists C1 > 0 such that

‖u‖ ≥ C1‖u‖Lρϕ0 (Ω) , for all u ∈ X. (18)

On the other hand, Proposition 2.2 shows that∫
Ω

[Φ(|∇u|) + Φ(|u|)]dx ≥ ‖u‖ϕ0 , for all u ∈ X. with ‖u‖ > 1 (19)

Now from (18) and (19), we have

k0

(∫
Ω

Φ(|∇u|) + Φ(|u|)dx
)ρ
≥ k0‖u‖ρϕ0

≥ k0Cρϕ0

1

∫
Ω

|u|ρϕ0 dx, (20)

for all u ∈ X with ‖u‖ > 1, which implies that

λ0 := inf
‖u‖>1

k0

(∫
Ω

Φ(|∇u|) + Φ(|u|)dx
)ρ

ρ
∫

Ω
|u|ρϕ0 dx

exists and the proof is complete.

Also Proposition 2.2 and the continuous embedding (obtained from hypothesis (12)) imply that the func-
tional J is well-defined on X, J ∈ C1(X) and

J′(u)(v) = M
(∫

Ω

Φ(|∇u|) + Φ(|u|)dx
) ∫

Ω

(a(|∇u|)∇u.∇v + a(|u|)uv)dx

− λ
k∑

i=1

(∫
Ω

uqi(x)−1
+ vdx −

∫
Ω

uri(x)−1
+ vdx

)
for all u, v ∈ X. The critical points of the functional J are the weak solutions of problem (14). In fact,

0 = J′(u)(u−)

= M
(∫

Ω

Φ(|∇u|) + Φ(|u|)dx
) ∫

Ω

(a(|∇u|)∇u∇u− + a(|u|)uu−)dx

− λ
k∑

i=1

∫
Ω

(uqi(x)−1
+ u− − uri(x)−1

+ u−)dx

≥ k0

(∫
Ω

Φ(|∇u|) + Φ(|u|)dx
)ρ−1 ∫

Ω

a(|∇u|)∇u∇u− + a(|u|)uu−dx

= k0

(∫
Ω

Φ(|∇u−|) + Φ(|u−|)dx
)ρ−1 ∫

Ω

a(|∇u−|)|∇u−|2 + a(|u−|)|u−|2dx

≥ k0ϕ0

(∫
Ω

Φ(|∇u−|) + Φ(|u−|)dx
)ρ
.

Proposition 2.2 and (13) show u ≥ 0. This means that the nontrivial critical points of J are non-negative,
nontrivial weak solutions of problem (14).
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2.1. First solution
By a standard argument, if the functional J is coercive, bounded from below and weakly lower semi-

continuous, then the problem (14) admits at least one weak solution u1 which is the global minimizer of the
functional J. Due to this, we study these properties for the functional J (see [37] for more details).

Lemma 2.4. The functional J which is given by the formula (15) is coercive, bounded from below and weakly lower
semicontinuous.

Proof. Due to show that the functional J is coercive and bounded from blow, (12), implies

lim
t→∞

∑k
i=1

(
1

qi(x) t
qi(x)
−

1
ri(x) t

ri(x)
)

tρϕ0
= 0

uniformly in x ∈ Ω. Then for any λ > 0 there exists Cλ > 0 depending on λ which

λ
k∑

i=1

(
1

qi(x)
tqi(x)
−

1
ri(x)

tri(x)

)
≤
λ0

2
tρϕ0 + Cλ (21)

for all t ≥ 0 and all x ∈ Ω, where λ0 is defined in Lemma 2.3. Combining (21) and (13),

J(u) = M̂
(∫

Ω

Φ(|∇u|) + Φ(|u|)dx
)

(22)

− λ
k∑

i=1

∫
Ω

(
1

qi(x)
uqi(x)

+ −
1

ri(x)
uri(x)

+

)
Vdx

≥
k0

ρ

(∫
Ω

Φ(|∇u|) + Φ(|u|)dx
)ρ
−
λ0

2

∫
Ω

|u|ρϕ0 dx − Cλ|Ω|

≥
k0

2ρ

(∫
Ω

Φ(|∇u|) + Φ(|u|)dx
)ρ
− Cλ|Ω|

≥
k0

2ρ
‖u‖ρϕ0 − Cλ|Ω| (23)

for any u ∈ X with ‖u‖ > 1. This shows that the functional J is coercive and bounded from blow.
Now we prove J is weakly lower semicontinuous. Suppose {um} is a sequence such that um ⇀ u in

X. First, by (12), one has compact embeddings X ↪→ Lqi(x)(Ω) and X ↪→ Lri(x)(Ω), for 1 ≤ i ≤ k. Therefore
limm→∞ F (um) = F (u). Secondly, (see the proof of [23, Lemma 4.3]) the functional

u 7→
∫

Ω

Φ(|∇u|) + Φ(|u|)dx

is weakly lower semicontinuous, i.e.∫
Ω

Φ(|∇u|) + Φ(|u|)dx ≤ lim inf
m→∞

∫
Ω

Φ(|∇um|) + Φ(|um|)dx. (24)

From (24) and the continuity and monotonicity of the function
t 7→ ψ(t) = M̂(t), we have

lim inf
m→∞

M(um) = lim inf
m→∞

M̂
(∫

Ω

Φ(|∇um|) + Φ(|um|)dx
)

≥ M̂
(
lim inf

m→∞

∫
Ω

Φ(|∇um|) + Φ(|um|)dx
)

≥ M̂
(∫

Ω

Φ(|∇u|) + Φ(|u|)dx
)

≥ M(u). (25)
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Thus

J(u) =M(u) − λF (u) ≤ lim inf
m→∞

M(um) − λF (um) = lim inf
m→∞

J(um)

and the proof is complete.

We can show u1 is not trivial.

Lemma 2.5. There exists λ∗ > 0 such that infu∈X J(u) < 0 for any λ ≥ λ∗.

Proof. We recall that q−, r+ are given by (11) and one can choose a number t0 > 1 such that

tq−−r+

0 > 2
q+

r−
, (26)

since 1 < r+ < q−. Let Ω0 ⊂ Ω be a compact subset and large enough. Also, choose a function u0 ∈ C∞0 (Ω)
with u0(x) = t0 in Ω0, and 0 ≤ u0(x) ≤ t0 in Ω \Ω0. From (26) we get

tq(x)−r(x)
0 >

q(x)
r(x)

+
q+

r−
in Ω0,

or

1
q(x)

tq(x)
0 >

1
r(x)

tr(x)
0 +

q+tr(x)
0

r−q(x)
>

1
r(x)

tr(x)
0 +

1
r−

in Ω0. (27)

This shows that for Ω0 large enough,∫
Ω

∑k
i=1

(
1

qi(x) u
qi(x)
0 −

1
ri(x) u

ri(x)
0

)
dx

≥
∑k

i=1

(∫
Ω0

1
qi(x) u

qi(x)
0 dx −

∫
Ω0

1
ri(x) u

ri(x)
0 dx −

∫
Ω\Ω0

1
ri(x) u

ri(x)
0 dx

)
≥

∑k
i=1

(
1
r− |Ω0| −

tr+
0
r− |Ω \Ω0|

)
= k

(
1
r− |Ω0| −

tr+
0
r− |Ω \Ω0|

)
> 0.

Therefore

J(u0) = M̂
(∫

Ω
Φ(|∇u0|) + Φ(|u0|)dx

)
− λ

∑k
i=1

∫
Ω

(
1

qi(x) u
qi(x)
+ −

1
ri(x) u

ri(x)
+

)
dx

≤ C2 − λk
(

1
r− |Ω0| −

tr+
0
r− |Ω \Ω0|

)
,

where C2 > 0 is a constant. Hence, there exists λ∗ > 0 such that for any λ ∈ [λ∗,∞), J(u0) < 0. It shows
that infu∈X J(u) < 0, and then J(u1) < 0 for any λ ≥ λ∗, therefore, u1 is a non-negative and non-trivial weak
solution for problem (14).

2.2. Second solution
We prove the existence of the second solution. In fact, by applying Theorem 1.3 we obtain the second

weak solution u2 ∈ X. To this aim, first we show that the functional J has the geometry of the Mountain
Pass Theorem for all λ ≥ λ∗ through the following lemmas.

Lemma 2.6. There exist ρ ∈ (0, ‖u1‖) and a positive constant R such that J(u) ≥ R for all u ∈ X with ‖u‖ = ρ.

Proof. For fixed u ∈ X with ‖u‖ < 1, we have

k∑
i=1

1
qi(x)

tqi(x)
−

k∑
i=1

1
ri(x)

tri(x)
≤ 0 (28)
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for all t ∈ [0, 1] and x ∈ Ω, since q− > r+.
We define the following set for the above function u

Ωu := {x ∈ Ω : u(x) > 1}.

For x ∈ Ω \Ωu one has 0 ≤ u+ ≤ 1 then from (28) we get

F(x,u) =

k∑
i=1

1
qi(x)

uqi(x)
+ −

k∑
i=1

1
ri(x)

uri(x)
+ ≤ 0 for all x ∈ Ω. (29)

On the other hand, there exists a constant γ ∈ (ρϕ0,
Nϕ0

N−ϕ0
) such that

X ↪→ Lγ(Ω) since ρϕ0 < min{N, Nϕ0

N−ϕ0
}. Hence, there exists a constant C3 > 0 such that

|u|Lγ(Ω) ≤ C3‖u‖ for all u ∈ X. (30)

Now, combining (13), (29), (30) and Proposition 2.2, we have

J(u) = M̂
(∫

Ω

Φ(|∇u|) + Φ(|u|)dx
)
−

∫
Ω

F(x,u)dx

≥
k0

ρ

(∫
Ω

Φ(|∇u|) + Φ(|u|)dx
)
− λ

∫
Ωu

F(x,u)dx − λ
∫

Ω\Ωu

F(x,u)dx

≥
k0

ρ
‖u‖ρϕ

0
− λ

∫
Ωu

F(x,u)dx

=
k0

ρ
‖u‖ρϕ

0
− λ

k∑
i=1

∫
Ωu

(
1

qi(x)
uqi(x)

+ −
1

ri(x)
uri(x)

+

)
dx

≥
k0

ρ
‖u‖ρϕ

0
−
λ
q−

k∑
i=1

∫
Ωu

uqi(x)
+ dx

≥
k0

ρ
‖u‖ρϕ

0
−
λk
q−

∫
Ωu

uγ+dx

≥
k0

ρ
‖u‖ρϕ

0
−
λkCγ3

q−
‖u‖γ

=

k0

ρ
−
λkCγ3

q−
‖u‖γ−ρϕ

0

 ‖u‖ρϕ0

Since ρϕ0 < γ, there exists positive constant ρ small enough with ρ < ‖u1‖, such that for any u ∈ X with
‖u‖ = ρ, one has J(u) ≥ R > 0.

If the functional J satisfies the PS condition, then Mountain Pass Theorem 1.3 shows there exists u2 ∈ X
such that J′(u2)(v) = 0 for all v ∈ X. Thus u2 is the nontrivial second weak solution of (14). Thus it remains
the check the PS condition.

Lemma 2.7. The functional J satisfies the PS condition.

Proof. Let {um} be a sequence in X such that

J(um)→ c > 0, J′(um)→ 0 in X∗. (31)

It follows from (31) that {um} is bounded in X since the functional J is coercive. On the other hand, since the
Banach space X is reflexive, there exists u ∈ X such that passing to a subsequence, denoted by {um}, um ⇀ u
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in X. Therefore, {um} converges strongly to u in Lqi(x)(Ω) and Lri(x)(Ω), for 1 ≤ i ≤ k. Applying the Hölder
inequality (see [22]) we have

|F
′(um)(um − u)| ≤

k∑
i=1

∣∣∣∣∣∫
Ω

(
(um)qi(x)−1

+ − (um)ri(x)−1
+

)
(um − u)dx

∣∣∣∣∣
≤

k∑
i=1

(
‖|um|

qi(x)−1
‖

L
qi (x)

qi (x)−1
‖um − u‖Lqi (x)

+‖|um|
ri(x)−1

‖
L

ri(x)
ri (x)−1
‖um − u‖Lri (x)

)
(32)

which leads to 0 as m→∞.
The relation (31) shows

lim
m→∞

J′(um)(um − u) = 0. (33)

Also (31)-(33) imply

lim
m→∞

M
′(um)(um − u) = 0. (34)

Since {um} is bounded in X, by Proposition 2.2, passing to a subsequence, we have∫
Ω

Φ(|∇um|) + Φ(|um|)dx→ t1 ≥ 0 as m→∞

If t1 = 0 then um → 0 in X and the proof is complete.
If t1 > 0 then

M
(∫

Ω

Φ(|∇um|) + Φ(|um|)dx
)
→M(t1) as m→∞.

For sufficiently large m and (13)

M
(∫

Ω

Φ(|∇um|) + Φ(|um|)dx
)
≥ C4 > 0. (35)

Finally (34) and (35) imply

lim
m→∞

∫
Ω

(a(|∇um|)∇(∇um − ∇u) + a(|um|)um(um − u))dx = 0.

Thus {um} converges strongly to u in X and J satisfies the PS condition (see [24, Lemma 5]).

3. Some problems

Here, we introduce some interesting problems. These problems are the existence of multiple solutions
for the following model problems.

(I) One can study the existence of solutions for{
−M

(∫ ∑n
i=1 (|∇u|pi + |u|pi ) dx

) (
∆pi u + |u|pi−2u

)
= λ f (x,u) in Ω,

∂u
∂ν = 0 on ∂Ω,

(36)
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where f : Ω × R → R is a Carathéodory function which may change sign, M : R+
→ R is a continuous

function, λ is a positive real parameter, Ω is a bounded domain in RN (N ≥ 3) with smooth boundary ∂Ω
and ν is the outward unit normal to ∂Ω.

(II) One can study the existence of solutions for
−M

(∫
(Φ (|∇u|) + Φ (|u|)) dx

)
(div(a(|∇u|)∇u) + a(|u|)u)

= λ f (x,u, v) in Ω,

−M
(∫

(Φ (|∇v|) + Φ (|v|)) dx
)

(div(a(|∇v|)∇u) + a(|v|)v)
= λ1(x,u, v) in Ω,

∂u
∂ν = ∂v

∂ν = 0 on ∂Ω,

(37)

where f , 1 : Ω×Ω×R→ R are two Carathéodory function which change sign, M : R+
→ R is a continuous

function, λ is a positive real parameter, Ω is a bounded domain in RN (N ≥ 3) with smooth boundary ∂Ω
and ν is the outward unit normal to ∂Ω.

(III) One can study the existence of solutions for
−M

(∫ ∑n
i=1 (|∇u|pi + |u|pi ) dx

) (
∆pi u + |u|pi−2u

)
= λ f (x, v) in Ω,

−M
(∫ ∑n

i=1 (|∇v|pi + |v|pi ) dx
) (

∆pi v + |v|pi−2u
)

= λ f (x,u) in Ω,
∂u
∂ν = ∂u

∂ν = 0 on ∂Ω,

(38)

where M : R+
→ R is a continuous function, λ is a positive real parameter, Ω is a bounded domain in RN

(N ≥ 3) with smooth boundary ∂Ω and ν is the outward unit normal to ∂Ω. Suppose function f (x, t) is given
by

f (x, t) =


∑k

i=1

(
tqi(x)−1

− tri(x)−1
)

t ≥ 0,
0 t < 0,

for x ∈ Ω.
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[23] M. Mihǎilescu and V. Rǎdulescu, Neumann problems associated to non-homogeneous differential operators in Orlicz-Sobolev

spaces, Annales de l’institut Fourier 6 (2008) 2087–2111.
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