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Efficient Projective Methods for the Split Feasibility Problem and its
Applications to Compressed Sensing and Image Debluring

Suparat Kesornproma, Nattawut Pholasaa, Prasit Cholamjiaka

aSchool of Science, University of Phayao, Phayao 56000, Thailand

Abstract. In this paper, new projective algorithms using linesearch technique are proposed to solve the
split feasibility problem. Weak convergence theorems are established, under suitable conditions, in a real
Hilbert space. Some numerical experiments in compressed sensing and image debluring are also provided
to show its implementation and efficiency. The main results improve the corresponding results in the
literature.

1. Introduction

Let C and Q be nonempty, closed and convex subsets of real Hilbert spaces H1 and H2, respectively.
In this work, we aim to study the split feasibility problem (SFP) which is to find

x∗ ∈ C such that Ax∗ ∈ Q (1)

where A : H1 → H2 is a bounded linear operator. This problem was introduced and studied by Censor and
Elfving [9] in Euclidean spaces. Censor et al. in Section 2 of [6] (see also [18]) introduced the prototypical
Split Inverse Problem (SIP). In this, there are given two vector spaces X and Y and a linear operator
A : X → Y. In addition, two inverse problems are involved. The first one, denoted by IP1, is formulated
in the space X and the second one, denoted by IP2, is formulated in the space Y. Given these data, the
Split Inverse Problem is formulated as follows: find a point x∗ ∈ X that solves IP1 and such that the point
y∗ = Ax∗ ∈ Y solves IP2.

In recent years the Nonlinear Split Feasibility Problem (NLSFP) gained a lot of interest, see e.g., [20, 24].
In addition, the non-convex case is also very attractive from the application point of view, see [22].

In what follows, we denote by A∗ the adjoint operator of A. Let

f (x) =
1
2
‖(I − PQ)A(x)‖2 (2)
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Research supported by National Research Council of Thailand (NRCT) and Thailand Science Research and Innovation.
Email addresses: suparat.ke@gmail.com (Suparat Kesornprom), nattawut_math@hotmail.com (Nattawut Pholasa),

prasitch2008@yahoo.com (Prasit Cholamjiak)



S. Kesornprom et al. / Filomat 35:10 (2021), 3241–3266 3242

be an objective function and consider the constrained convex minimization problem:

min
x∈C

f (x). (3)

The split feasibility problem (SFP) is equivalent to constrained convex minimization problem (3).
Since the function f in (2) is differentiable, it is known that ∇ f = A∗(I −PQ)A and x solves (3) if and only

if

x = PC(x − α∇ f (x)), α > 0. (4)

This suggests a simple iterative method which is called the projected gradient method for solving (3). It is
defined by

xk+1 = PC(xk − αk∇ f (xk)) (5)

where {αk} is a positive real sequence.
Korpelevich [17] and Antipin [1] proposed the following extragradient method for solving (3):

yk = PC(xk − αk∇ f (xk)),
xk+1 = PC(xk − αk∇ f (yk)), (6)

where {αk} is a real sequence in (0, 1
L ) and L is a Lipschitz constant of ∇ f .

In 2000, Tseng [32] introduced the following modified extragradient method:

yk = PC(xk − αk∇ f (xk)),
xk+1 = yk + αk(∇ f (xk) − ∇ f (yk)), (7)

where {αk} is a real sequence in (0, 1
L ) and L is a Lipschitz constant of ∇ f .

The SFP relates to various problems in applied sciences such as signal recovery, image restoration,
LASSO problem, linear equations and others. Due to its applications, there have been many algorithms
proposed for solving (1). See, for examples, [6, 7, 10, 14–16, 19, 30, 31].

Throughout this paper, we define F : H1 → H1 by

F(x) = A∗(I − PQ)A(x). (8)

We next recall some well-known algorithms that can be employed for solving (1). Byrne [4, 5] suggested
the CQ algorithm which is defined by the following way: x1 ∈ H1 and

xk+1 = PC(xk − αkF(xk)), (9)

where αk ∈ (0, 2/L) and L is the spectral radius of A∗A. The notations PC and PQ stand for the projections of
H1 onto C and H2 onto Q, respectively. In practice, the sets C and Q are usually defined by

C = {x ∈ H1 : c(x) ≤ 0}, (10)

where c : H1 → R is a convex and lower semicontinuous function and

Q = {y ∈ H2 : q(y) ≤ 0}, (11)

where q : H1 → R is a convex and lower semicontinuous function.
In 2004, Yang [35] established a relaxed CQ algorithm for solving the SFP. The idea of this method is to

replace PC and PQ by projections onto half spaces Ck and Qk. Here the sets Ck and Qk are defined by

Ck = {x ∈ H1 : c(xk) + 〈ξk, x − xk〉 ≤ 0}, (12)
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where ξk ∈ ∂c(xk), and

Qk = {y ∈ H2 : q(Axk) + 〈ηk, y − Axk〉 ≤ 0}, (13)

where ηk ∈ ∂q(Axk).
Define Fk : H1 → H1 by

Fk(x) = A∗(I − PQk )A(x). (14)

Precisely, Yang [35] introduced the following relaxed CQ algorithm.

Algorithm 1. Let x1 ∈ H1 and define

xk+1 = PCk (xk − αkF(xk)) (15)

where αk ∈ (0, 2/L).

However, the stepsizes in CQ algorithm (9) and relaxed CQ algorithm (15) depend on the spectral radius
of A∗A. We note that to compute the spectral radius is difficult in general and this usually results in slow
convergence.

Recently, Qu and Xiu [28] modified Yang’s relaxed CQ algorithm by using the Armijo-line searches in
Euclidean spaces. Later, Gibali et al. [19] proposed the relaxtion CQ algorithm in Hilbert spaces for solving
the SFP. It is defined by the following manner:

Algorithm 2. For any σ > 0, ρ ∈ (0, 1) and µ ∈ (0, 1). Let x1 ∈ H1 and define

yk = PCk (xk − αkFk(xk)) (16)

where αk = σρmk and mk is the smallest nonnegative integer such that

αk‖Fk(xk) − Fk(yk)‖ ≤ µ‖xk − yk‖. (17)

Define

xk+1 = PCk (xk − αkFk(yk)). (18)

Gibali et al. [19] proved that the sequence {xn} generated by Algorithm 2 converges weakly to a solution
of SFP.

In 2012, Zhao et al. [37] introduced the modified CQ algorithm to solve the SFP as follows:

Algorithm 3. Let x1 ∈ H1, σ0 > 0, ρ ∈ (0, 1), µ ∈ (0, 1), β ∈ (0, 1) and let

yk = PC(xk − αkF(xk)) (19)

where αk = σρmk and mk is the smallest nonnegative integer such that

αk‖F(xk) − F(yk)‖ ≤ µ‖xk − yk‖. (20)

Define

xk+1 = PC(yk − αk(F(yk) − F(xk))). (21)

If

αk‖F(xk+1) − F(xk)‖ ≤ β‖xk+1 − xk‖, (22)

then set σk = σ0, otherwise, set σk = αk.

Very recently, Dong et al. [12] proposed the modified projection and contraction methods and the
relaxation variants to solve the SFP as follows:
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Algorithm 4. For any σ > 0, ρ ∈ (0, 1) and µ ∈ (0, 1), take arbitrarily x1 ∈ H1 and let

yk = PC(xk − αkF(xk)) (23)

where αk = σρmk and mk is the smallest nonnegative integer such that

αk‖F(xk) − F(yk)‖ ≤ µ‖xk − yk‖. (24)

Define

xk+1 = xk − γδkd(xk, yk) (25)

where γ ∈ (0, 2)

d(xk, yk) = (xk − yk) − αk(F(xk) − F(yk)) (26)

and

δk =
〈xk − yk, d(xk, yk)〉 + αk‖(I − PQ)A(yk)‖2

‖d(xk, yk)‖2
. (27)

They also provided some numerical experiments that show the efficiency of the proposed algorithm.
In this paper, inspired by the previous works, we propose a modification of CQ algorithm and relaxed

CQ algorithm to solve the split feasibility problem. We then prove the weak convergence of this algorithm in
real Hilbert spaces. Our result mainly improves the results of Dong et al. [12] and others. Some preliminary
experiments are also given in compressed sensing and image debluring to show its implementation and
efficiency.

2. Preliminaries and lemmas

In this section, we give some definitions and lemmas which are used in the main results. Let H be
a real Hilbert space and C be a nonempty subset of H.

(1) A mapping T : C→ C is said to be firmly nonexpansive if, for all x, y ∈ C,

〈x − y,Tx − Ty〉 ≥ ‖Tx − Ty‖2. (28)

(2) A function f : H→ R is said to be convex if

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y) (29)

for all λ ∈ (0, 1) and x, y ∈ H.
(3) F is said to be monotone on C if

〈F(x) − F(y), x − y〉 ≥ 0, ∀x, y ∈ C. (30)

(4) F is said to be τn-inverse strongly monotone (shortly, τn-ism) with τn > 0 if

〈F(x) − F(y), x − y〉 ≥ τn‖F(x) − F(y)‖2, ∀x, y ∈ C. (31)

(5) F is said to be Lipschitz continuous on C with constant λ > 0 if

‖F(x) − F(y)‖ ≤ λ‖x − y‖, ∀x, y ∈ C. (32)

(6) A mapping f : C→ C is said to be a contraction if there exists a constant a ∈ (0, 1) such that

‖ f (x) − f (y)‖ ≤ a‖x − y‖, ∀x, y ∈ C. (33)
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(7) A differentiable function f is convex if and only if there holds the inequality:

f (z) ≥ f (x) + 〈∇ f (x), z − x〉 (34)

for all z ∈ H.
(8) An element 1 ∈ H is called a subgradient of f : H→ R at x if

f (z) ≥ f (x) + 〈1, z − x〉 (35)

for all z ∈ H, which is called the subdifferentiable inequality.
(9) A function f : H→ R is said to be subdifferentiable at x if it has at least one subgradient at x.
(10) The set of subgradients of f at the point x is called the subdifferentiable of f at x, which is denoted

by ∂ f (x).
(11) A function f is said to be subdifferentiable if it is subdifferentiable at all x ∈ H. If a function f is

differentiable and convex, then its gradient and subgradient coincide.
(12) A function f : H→ R is said to be weakly lower semi-continuous (shortly, w-lsc) at x if xn ⇀ x implies

f (x) ≤ lim inf
n→∞

f (xn). (36)

We know that the orthogonal projection PC from H onto a nonempty closed convex subset C ⊂ H is a
typical example of a firmly nonexpansive mapping, which is defined by

PCx := arg min
y∈C
‖x − y‖2 (37)

for all x ∈ H.

Lemma 1. [3] Let C be a nonempty closed convex subset of a real Hilbert space H. Then, for any x ∈ H, the following
assertions hold:

(1) 〈x − PCx, z − PCx〉 ≤ 0 for all z ∈ C;
(2) ‖PCx − PCy‖2 ≤ 〈PCx − PCy, x − y〉 for all x, y ∈ H;
(3) ‖PCx − z‖2 ≤ ‖x − z‖2 − ‖PCx − x‖2 for all z ∈ C.

From Lemma 1, the operator I − PC is also firmly nonexpansive, where I denotes the identity operator,
i.e., for any x, y ∈ H,

〈(I − PC)x − (I − PC)y, x − y〉 ≥ ‖(I − PC)x − (I − PC)y‖2. (38)

Lemma 2. [21] Let C be a nonempty subset of a real Hilbert space H and {xn} be a sequence in H that satisfies the
following properties:

(1) lim
n→∞
‖xn − x‖ exists for each x ∈ C;

(2) every sequential weak limit point of {xn} is in C.
Then {xn} converges weakly to a point in C.

3. The modified projection and contraction methods

In this section, we introduce a projection algorithm using linesearch and prove the weak convergence.
Assume that the SFP (1) is consistent, i.e. its solution set, denoted by S, is nonempty.

Algorithm 5. Set σ > 0, ρ ∈ (0, 1) and µ ∈ (0,
1
2

). Choose x1 ∈ H1 and define

yk = PC(xk − αkF(xk)) (39)
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where αk = σρmk and mk is the smallest nonnegative integer such that

αk‖F(xk) − F(yk)‖ ≤ µ‖xk − yk‖. (40)

Define

xk+1 = yk − γδkd(xk, yk) (41)

where γ ∈ (0, 2)

d(xk, yk) = (xk − yk) − αk(F(xk) − F(yk)) (42)

and

δk =
αk‖(I − PQ)Ayk‖

2

γ‖d(xk, yk)‖2
. (43)

Remark 1. If d(xk, yk) = 0, then

〈xk − yk − αk(F(xk) − F(yk)), xk − yk〉 = 0. (44)

From (44), it follows that

‖xk − yk‖
2 = αk〈F(xk) − F(yk), yk − xk〉

≤ αk‖F(xk) − F(yk)‖‖xk − yk‖

≤ µ‖xk − yk‖
2, (45)

which gives

xk = yk, ∀k ≥ 0 (46)

From definition of yk, we see that

xk = PC(xk − αkF(xk)) (47)

Hence, xk = yk is a solution.

Lemma 3. [36] The line rule (40) is well defined. Besides, α′ ≤ αk ≤ σ, where τ′ = min{σ, µρL }.

This lemma shows that the linesearch (40) has a finite number of iteration for αk.

Theorem 1. The sequence {xk} generated by Algorithm 5 weakly converges to a solution in S.

Proof. Let z ∈ S. Then z = PC(z) and Az = PQ(Az). It follows that

‖xk+1 − z‖2 = ‖yk − γδkd(xk, yk) − z‖2

= ‖yk − z‖2 − 2γδk〈yk − z, d(xk, yk)〉 + γ2δ2
k‖d(xk, yk)‖2. (48)

By the definitions of yk and d(xk, yk), we get

yk = PC(yk − (αkF(yk) − d(xk, yk))). (49)

From Lemma 1 (1), it follows that

〈x − yk, αkF(yk) − d(xk, yk)〉 ≥ 0,∀x ∈ C. (50)

Setting x = z in (56), we have

〈yk − z, d(xk, yk) − αkF(yk)〉 ≥ 0 (51)
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which implies that

〈yk − z, d(xk, yk)〉 ≥ αk〈yk − z,F(yk)〉. (52)

Since F(yk) = A∗(I − PQ)Ayk and Az = PQ(Az), it follows that

αk〈yk − z,F(yk)〉 = αk〈yk − z,A∗(I − PQ)Ayk〉

= αk〈Ayk − Az, (I − PQ)Ayk〉

= αk〈Ayk − Az, (I − PQ)Ayk − (I − PQ)Az〉
≥ αk‖(I − PQ)Ayk‖

2, (53)

where the last inequality follows by the firm nonexpansiveness of I − PQ. By Lemma 1(3), we have

‖yk − z‖2 = ‖PC(xk − αkF(xk)) − z‖2

≤ ‖xk − αkF(xk) − z‖2 − ‖yk − xk + αkF(xk)‖2

= ‖xk − z‖2 − 2αk〈xk − z,F(xk)〉 + α2
k‖F(xk)‖2 − ‖yk − xk‖

2

−2αk〈yk − xk,F(xk)〉 − α2
k‖F(xk)‖2

= ‖xk − z‖2 − 2αk〈xk − z,F(xk)〉 − ‖yk − xk‖
2
− 2αk〈yk − xk,F(xk)〉. (54)

Since F(z) = 0 and I − PQ is firmly nonexpansive, it also follows that

2αk〈xk − z,F(xk)〉 = 2αk〈xk − z,F(xk) − F(z)〉
= 2αk〈xk − z,A∗(I − PQ)Axk − A∗(I − PQ)Az〉
= 2αk〈Axk − Az, (I − PQ)Axk − (I − PQ)Az〉
≥ 2αk‖(I − PQ)Axk‖

2. (55)

On the other hand, using (34), we obtain

2αk〈yk − xk,F(xk)〉 = 2αk〈yk − xk,F(xk) − F(yk) + F(yk)〉
= 2αk〈yk − xk,F(xk) − F(yk)〉 + 2αk〈yk − xk,F(yk)〉
≥ −2αk‖yk − xk‖‖F(xk) − F(yk)‖

+2αk
1
2

(‖(I − PQ)Ayk‖
2
− ‖(I − PQ)Axk‖

2)

= −2αk‖yk − xk‖‖F(xk) − F(yk)‖
+αk‖(I − PQ)Ayk‖

2
− αk‖(I − PQ)Axk‖

2. (56)

Combining (54)-(56), we obtain

‖yk − z‖2 ≤ ‖xk − z‖2 − 2αk‖(I − PQ)Axk‖
2
− ‖yk − xk‖

2 + 2αk‖yk − xk‖‖F(xk) − F(yk)‖
−αk‖(I − PQ)Ayk‖

2 + αk‖(I − PQ)Axk‖
2. (57)



S. Kesornprom et al. / Filomat 35:10 (2021), 3241–3266 3248

From (40), (48) and Lemma 3, we have

‖xk+1 − z‖2 ≤ ‖xk − z‖2 − 2αk‖(I − PQ)Axk‖
2
− ‖yk − xk‖

2 + 2µ‖yk − xk‖
2

−αk‖(I − PQ)Ayk‖
2 + αk‖(I − PQ)Axk‖

2
− 2γδkαk‖(I − PQ)Ayk‖

2

+γ2δ2
k‖d(xk.yk)‖2

= ‖xk − z‖2 − αk‖(I − PQ)Axk‖
2
− (1 − 2µ)‖yk − xk‖

2
− αk‖(I − PQ)Ayk‖

2

−2γδkαk‖(I − PQ)Ayk‖
2 + γ2δ2

k‖d(xk.yk)‖2

= ‖xk − z‖2 − αk‖(I − PQ)Axk‖
2
− (1 − 2µ)‖yk − xk‖

2

−
αk‖(I − PQ)Ayk‖

2γ‖d(xk, yk)‖2

γ‖d(xk, yk)‖2
− 2γδkαk‖(I − PQ)Ayk‖

2

+γ2δ2
k‖d(xk, yk)‖2

= ‖xk − z‖2 − αk‖(I − PQ)Axk‖
2
− (1 − 2µ)‖yk − xk‖

2
− δkγ‖d(xk, yk)‖2

−2γδkαk‖(I − PQ)Ayk‖
2 + γ2δk‖d(xk, yk)‖2

= ‖xk − z‖2 − αk‖(I − PQ)Axk‖
2
− (1 − 2µ)‖yk − xk‖

2

−γ(1 − γ)δk‖d(xk, yk)‖2 − 2γδkαk‖(I − PQ)Ayk‖
2

≤ ‖xk − z‖2 −
µ`

L
‖(I − PQ)Axk‖

2
− (1 − 2µ)‖yk − xk‖

2

−2γδk
µ`

L
‖(I − PQ)Ayk‖

2

≤ ‖xk − z‖2 −
µ`

L
‖(I − PQ)Axk‖

2
− (1 − 2µ)‖yk − xk‖

2. (58)

This shows that the sequence {‖xk − z‖} is decreasing and thus converges to a point in H1. Hence {xk} is
bounded. From (58), we see that

lim
k→∞
‖yk − xk‖ = 0 (59)

and

lim
k→∞
‖(I − PQ)Axk‖ = 0. (60)

Since the sequence {xk} is bounded, there is a cluster point x∗ of {xk} with a subsequence {xki } weakly
converging to x∗. From (59), it follows that {xki } also weakly converges to x∗.

Next, we show that x∗ is in S. From (60) and the boundedness of {xki }, it implies that Ax∗ ∈ Q. From (8)
and (60), it is easy to see that lim

i→∞
‖F(xki )‖ = 0. By (39) and (59), we also have

‖xki − PC(xki )‖ ≤ ‖xki − yki‖ + ‖yki − PC(xki )‖
≤ ‖xki − yki‖ + αki‖F(xki )‖
→ 0, as i→∞, (61)

which implies x∗ ∈ C. So x∗ is in S. Hence, we can conclude that the sequence {xk} weakly converges to a
point in S. This completes the proof.

4. The modified relaxation projection and contraction methods

In this section, we introduce the modified relaxation projection and contraction methods.
To this end, we assume that the sets C and Q satisfy the following conditions:
The set C is given by

C = {x ∈ H1 : c(x) ≤ 0}, (62)
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where c : H1 → R is a convex and lower semicontinuous function and C is a nonempty set. The set Q is
given by

Q = {y ∈ H2 : q(y) ≤ 0}, (63)

where q : H2 → R is a convex and lower semicontinuous function and Q is a nonempty set. Assume that c
and q are subdifferentiable on C and Q, respectively, and c and q are bounded on bounded sets. Note that
this condition is automatically satisfied in finite dimensional spaces.

For any x ∈ H1 , at least one subgradient ξ ∈ ∂c(x) can be calculated, where ∂c(x) is defined as follows:

∂c(x) = {z ∈ H1 : c(u) ≥ c(x) + 〈u − x, z〉,∀u ∈ H1}. (64)

For any y ∈ H2, at least one subgradient η ∈ ∂q(y) can be calculated, where

∂q(x) = {w ∈ H2 : q(u) ≥ q(y) + 〈v − y,w〉,∀v ∈ H2}. (65)

Define the sets Ck and Qk by the following half-spaces:

Ck = {x ∈ H1 : c(xk) + 〈ξk, x − xk〉 ≤ 0}, (66)

where ξk ∈ ∂c(xk), and

Qk = {y ∈ H2 : q(Axk) + 〈ηk, y − Axk〉 ≤ 0}, (67)

where ηk ∈ ∂q(Axk).
By the definition of the subgradient, it is clear that C ⊆ Ck and Q ⊆ Qk. The projections onto Ck and Qk

are easy to compute since Ck and Qk are two half-spaces.

Algorithm 6. For any constants σ > 0, ρ ∈ (0, 1) and µ ∈ (0, 1
2 ), let x1 be arbitrarily in H1 and define

yk = PCk (xk − αkFk(xk)) (68)

where αk = σρmk and mk is the smallest nonnegative integer such that

αk‖Fk(xk) − Fk(yk)‖ ≤ µ‖xk − yk‖. (69)

Define

xk+1 = yk − γδkd(xk, yk) (70)

where γ ∈ (0, 2),

d(xk, yk) = (xk − yk) − αk(Fk(xk) − Fk(yk)) (71)

and

δk =
αk‖(I − PQk )Ayk‖

2

γ‖d(xk, yk)‖2
. (72)

Theorem 2. The sequence {xk} generated by Algorithm 6 weakly converges to a solution in S.

Proof. Following the lines of the proof of Theorem 1, we can show that

‖xk+1 − z‖2

≤ ‖xk − z‖2 −
µ`

L
‖(I − PQ)Axk‖

2
− (1 − 2µ)‖yk − xk‖

2
− 2γδk

µ`

L
‖(I − PQ)Ayk‖

2

≤ ‖xk − z‖2 −
µ`

L
‖(I − PQ)Axk‖

2
− (1 − 2µ)‖yk − xk‖

2. (73)
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Moreover, we also have

lim
k→∞
‖yk − xk‖ = 0 (74)

and

lim
k→∞
‖(I − PQk )Axk‖ = 0. (75)

Let x∗ be a cluster point of {xk} with {xki } converging to x∗. From (74), it follows that {xki } also weakly
converges to x∗.

Next, we show that x∗ is in S. In fact, since yki ∈ Cki , by the definition of Cki , we have

c(xki ) + 〈ξki , yki − xki〉 ≤ 0, (76)

where ξki ∈ ∂c(xki ). By the assumption that ξki is bounded and (74), we have

c(xki ) ≤ −〈ξki , yki − xki〉

≤ ‖ξki‖‖yki − xki‖

→ 0 as i→∞, (77)

which implies c(x∗) ≤ 0 by the lower semicontinuity of C. Hence x∗ ∈ C. Since PQki
(Axki ) ∈ Qki , we also have

q(Axki ) + 〈ηki ,PQki
(Axki ) − Axki〉 ≤ 0, (78)

where ηki ∈ ∂q(Axki ). From the boundedness of {ηki } and (75), it follows that

q(Axki ) ≤ ‖ηki‖‖PQki
(Axki ) − Axki‖ → 0 (79)

as i→∞. So we obtain q(Ax∗) ≤ 0, i.e., Ax∗ ∈ Q. Thus x∗ is in S. By Lemma 2, we conclude that {xk} weakly
converges to a point in S. We thus complete the proof.

5. Application to signal recovery

In this section, we test our algorithm to show the efficiency in compressed sensing in frequency
domain.

In signal processing, compressed sensing can be modeled as the following under determinated linear
equation system:

y = Ax + ε, (80)

where x ∈ RN is a vector with m nonzero components to be recovered, y ∈ RM is the observed or measured
data with noisy ε, and A : RN

→ RM (M < N) is a bounded linear observation operator. Finding the
solutions of (80) can be seen as solving the LASSO problem [33]

min
x∈RN

1
2
‖y − Ax‖22 subject to ‖x‖1 ≤ t, (81)

where t > 0 is a given constant. In particular, if C = {x ∈ RN : ‖x‖1 ≤ t} and Q = {y}, then the LASSO
problem can be considered as the SFP.

In this experiment, the sparse vector x ∈ RN is generated by the uniform distribution in the interval
[−2, 2] with m nonzero elements. The matrix A ∈ RM×N is generated by the normal distribution with mean
zero and variance one. The observation y is generated by white Gaussian noise with signal-to-noise ratio
SNR=40. The process is started with t = m and initial point x1 = is picked randomly.
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The restoration accuracy is measured by the mean squared error as follows:

Ek =
1
N
‖xk − x‖22 < ε, (82)

where xk is an estimated signal of x and ε is a given error.
We give some numerical results of Algorithms 1, 2, 4 and 6 . Let σ = 3, ρ = 0.9, γ = 1.8 and µ = 0.4. In

this numerical experiment, we use Matlab R2018b to write all codes.
We test four cases as follow:

Case 1: N = 512, M = 256 and m = 10;
Case 2: N = 1024, M = 512 and m = 30;
Case 3: N = 2048, M = 1024 and m = 50;
Case 4: N = 4096, M = 2048 and m = 100.

The numerical results are reported as follows.

Table 1: Computational results to recover the signal

Methods ε = 10−3 ε = 10−4

Iter CPU Iter CPU

Case 1 Algorithm 1 28 0.3973 84 1.3127
Algorithm 2 30 0.5643 86 1.4148
Algorithm 4 27 0.5813 36 0.6383
Algorithm 6 17 0.3389 29 0.6335

Case 2 Algorithm 1 49 3.7598 95 7.7859
Algorithm 2 51 7.2222 99 14.9803
Algorithm 4 32 4.6847 47 8.0774
Algorithm 6 22 3.6419 34 5.8058

Case 3 Algorithm 1 41 30.0557 94 115.8860
Algorithm 2 43 36.1808 94 93.0088
Algorithm 4 30 25.3104 37 37.1473
Algorithm 6 20 17.0654 29 29.5174

Case 4 Algorithm 1 39 248.8680 71 465.5332
Algorithm 2 41 147.2881 74 264.2121
Algorithm 4 32 118.6846 60 215.0726
Algorithm 6 19 74.8502 34 122.7263

In Table 1, we see that our Algorithm 6 has a less number of iterations and CPU time than Algorithms
1, 2 and 4 do in each cases.

Next, we show the graphs of original signal and recovered signal by Algorithms 1, 2,4 and 6 when
N = 512, M = 256, m = 10 and ε = 10−4. The number of iterations and CPU time are reported in the figures.
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Figure 1: From top to bottom: original signal, observation data, recovered signal by Algorithms 1, 2, 4 and
6 in Case 1, respectively.
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We next show the graphs of signal recovery by Algorithms 1, 2, 4 and 6 when N = 4096, M = 2048,
m = 100 and ε = 10−4.

Figure 2: From top to bottom: original signal, observation data, recovered signal by Algorithms 1, 2, 4 and
6 in Case 4, respectively.
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We next show the error plotting of Algorithms 1, 2, 4 and 6 in Case 1 and Case 4.

Figure 3: Ek versus number of iterations in Case 1

Figure 4: Ek versus number of iterations in Case 4

From Figure 3 and 4, we observe that Algorithms 1, 2, 4 and 6 can be applied to signal recovery problem.
Also, we note that Algorithm 6 has a good performance for this problem. It requires a small number of
iterations and CPU time in numerical comparison.

6. Application to image restoration

As mentioned earlier that SFP can apply to many real-world problems. In this section, we present an
application to image restoration problems using our main result. We provide some comparisons to other
algorithms.

For a RGB scale image of M pixels wide by N pixels height, each pixel value is known to range from 0 to
255. Let D = M × N. Then the underlying real Hilbert space is RD equipped with the standard Euclidean
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norm ‖ · ‖2, and let C = [0, 255]D. In order to estimate an approximation of the vector x, which represents
the image of the original image scene, we consider the convex minimization model:

min
x∈C
‖Ax − y‖2. (83)

By choosing Q = {y}, the problem (83) can be seen as SFP (1). Therefore, we can apply our algorithm to
solve image restoration problem.

In this numerical experiment, we use Matlab R2018b to write all codes. To determine the efficiency of
algorithms, we need an image quality measure of restored images. We define the Peak Signal-to-Noise
Ration (SNR) in decibel (dB) as follows:

PSNR = 20 log10
‖x̄‖2
‖x − x̄‖2

, (84)

where x̄ is an original image and x is a restored image. It can be observed that the larger PSNR values, the
better restored images. To begin, set the initial point x0 to be 0 ∈ RD. Set all parameters by σ = 0.1, ρ = 0.3,
µ = 0.01 and γ = 0.3. Each image is degraded by a motion blur with a motion length 15, 30, 45, 60 and an
angle 180. Then the numerical results are reported in Tables 2-4.
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Table 2: Numerical comparison for Algorithms 3, 4 and 5 of Cat image (size=384 × 512) for each motion
length.

PSNR (dB)

motion length Iter Algorithm 3 Algorithm 4 Algorithm 5

15 Red 500 16.3829 21.8416 28.4803
15.2780 1500 18.8747 28.0628 31.0661

2500 20.3751 29.4057 33.3359

Green 500 16.6123 22.2360 30.0804
15.5079 1500 19.0836 28.5551 34.9486

2500 20.5847 29.8299 39.6045

Blue 500 16.3846 22.1783 30.0731
15.2867 1500 18.8649 28.2531 32.8363

2500 20.3506 29.6004 36.1965

30 Red 500 14.3873 18.5316 23.2017
13.5449 1500 16.2169 23.1547 25.4769

2500 17.2081 24.3563 27.1030

Green 500 14.5810 18.8749 24.1111
13.7345 1500 16.4350 23.4089 27.8878

2500 17.4299 24.6307 31.2110

Blue 500 14.3615 18.7789 24.3106
13.5187 1500 16.1906 23.1145 30.3329

2500 17.1750 24.2868 34.9843

45 Red 500 13.3905 17.0191 23.3165
12.6151 1500 15.0767 22.9588 27.3520

2500 15.9724 24.6974 29.6749

Green 500 13.5494 17.4840 24.8367
12.7687 1500 15.2525 23.7401 30.4577

2500 16.1504 25.6345 33.1714

Blue 500 13.3591 17.5345 26.0984
12.5863 1500 15.0876 23.8176 30.0078

2500 15.9923 25.6284 31.9806

60 Red 500 12.7475 16.6084 20.9304
11.9738 1500 14.3126 20.6654 23.8163

2500 15.1075 22.0668 25.6994

Green 500 12.8991 17.0952 21.6524
12.1172 1500 14.4934 21.1951 25.7100

2500 15.3059 22.6414 28.7144

Blue 500 12.7236 16.9615 22.7128
11.9738 1500 14.2535 21.1349 27.0384

2500 15.0523 22.5753 29.3498
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Table 3: Numerical comparison for Algorithms 3, 4 and 5 of Flower image (size=436× 581) for each motion
length.

PSNR (dB)

motion length Iter Algorithm 3 Algorithm 4 Algorithm 5

15 Red 500 15.8800 20.9102 28.3568
14.5043 1500 18.8107 27.8765 31.1837

2500 20.3663 29.9398 32.7696

Green 500 14.7885 22.2360 27.7529
13.5214 1500 17.6993 28.5551 30.7161

2500 19.2332 29.8299 34.6631

Blue 500 11.5805 22.1783 25.8711
14.5043 1500 14.7687 28.2531 28.7938

2500 16.3425 29.6004 30.4692

30 Red 500 12.6945 17.5511 23.9708
11.6408 1500 15.0474 23.6652 27.2366

2500 16.2712 25.7113 28.5671

Green 500 11.9130 17.2443 23.7777
10.8898 1500 14.2947 23.0851 27.8288

2500 15.5008 25.1728 29.8185

Blue 500 9.0205 14.2360 21.0311
7.9578 1500 11.3884 20.4351 23.9368

2500 12.6548 22.6984 25.3762

45 Red 500 11.2232 16.2864 21.6577
10.0959 1500 13.8158 20.6374 24.1833

2500 14.9816 22.4024 26.4041

Green 500 10.6243 15.9176 20.4077
9.6107 1500 12.9926 20.1874 25.7436

2500 14.1141 21.5196 33.2497

Blue 500 8.0913 12.6382 18.4416
7.2346 1500 10.1583 18.0640 21.2062

2500 11.2730 19.7364 23.0863

60 Red 500 10.1365 14.8332 21.3515
9.1517 1500 12.0693 20.8865 24.0216

2500 13.1579 22.6918 25.3246

Green 500 9.6996 15.1557 20.2725
8.8377 1500 11.6472 20.4646 23.5771

2500 12.6518 21.9962 25.3317

Blue 500 7.5010 11.6169 17.3878
6.8093 1500 9.0997 17.1928 20.1489

2500 10.0391 19.0494 21.4323
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Table 4: Numerical comparison of PSNR values of Temple image (size=581 × 432) each motion length.

PSNR (dB)

motion length Iter Algorithm 3 Algorithm 4 Algorithm 5

15 Red 500 15.2004 19.0802 27.8120
14.2357 1500 17.3632 26.5228 31.0685

2500 18.7359 28.6759 32.9181

Green 500 16.5184 20.3138 29.3533
15.5075 1500 18.7597 27.7870 32.3749

2500 20.1512 29.7041 34.0459

Blue 500 17.8056 22.4030 30.2959
16.7618 1500 20.1113 29.3933 33.5506

2500 21.5074 31.1807 35.2786

30 Red 500 13.4104 16.1524 22.1375
12.6488 1500 15.0103 20.9424 24.6278

2500 15.8666 22.9244 25.7783

Green 500 14.5928 17.4967 23.5112
13.7762 1500 16.2930 22.4206 26.0190

2500 17.2013 24.3866 27.2886

Blue 500 15.6445 18.9835 24.8991
14.7636 1500 17.4787 24.4009 27.2539

2500 18.4356 26.0283 28.4147

45 Red 500 12.4420 15.6032 21.9892
11.6720 1500 14.0749 21.0037 25.4849

2500 14.8852 23.2634 27.3369

Green 500 13.5300 16.8465 23.2119
12.6974 1500 15.3078 22.4460 25.3298

2500 16.1652 24.8112 28.5828

500 14.4353 18.1228 24.5189
Blue 1500 16.4149 24.0860 28.0582

13.5125 2500 17.3238 26.1620 29.8786

60 Red 500 11.7898 14.5487 19.5199
10.9888 1500 13.2249 18.9835 21.7620

2500 13.9734 20.5929 22.8371

Green 500 12.7634 15.6730 21.0301
11.9196 1500 14.3215 20.3644 23.2214

2500 15.1202 22.0877 24.3413

Blue 500 13.5083 16.7875 22.4595
12.6183 1500 15.2758 21.8304 24.6498

2500 16.1448 23.4691 25.7597

From Tables 2-4, the reports show that PSNR of Algorithm 5 is higher than Algorithm 3 and Algorithm
4 in each motion lengths. From this point of view, we conclude that our proposed Algorithm 5 has a better
convergence behavior than Algorithm 3 defined by Zhao et al. [37] and Algorithm 4 defined by Dong et al.
[12].

Next, we show the original images for Cat image (size= 384 × 512), Flower image (size=436 × 581) and
Temple image (size=581 × 432).
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(a) Cat (b) Flower (c) Temple

Figure 5: Original images

We next demonstrate the blurred images for each motion length.

(a) motion length 15 (b) motion length 30 (c) motion length 45 (d) motion length 60

(e) motion length 15 (f) motion length 30 (g) motion length 45 (h) motion length 60

(i) motion length 15 (j) motion length 30 (k) motion length 45 (l) motion length 60

Figure 6: Blurred images
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Next, we demonstrate the recovered images by using Algorithms 3, 4 and 5 for the motion length 15
and the number of iterations is 2500.

(a) Algorithm 3 (b) Algorithm 4 (c) Algorithm 5

(d) Algorithm 3 (e) Algorithm 4 (f) Algorithm 5

(g) Algorithm 3 (h) Algorithm 4 (i) Algorithm 5

Figure 7: Recovered images with the motion length 15.
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We demonstrate the recovered images by using Algorithms 3, 4 and 5 for the motion length 30 and the
number of iterations is 2500.

(a) Algorithm 3 (b) Algorithm 4 (c) Algorithm 5

(d) Algorithm 3 (e) Algorithm 4 (f) Algorithm 5

(g) Algorithm 3 (h) Algorithm 4 (i) Algorithm 5

Figure 8: Recovered images with the motion length 30.
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We demonstrate the recovered images by using Algorithms 3, 4 and 5 for the motion length 45 and the
number of iterations is 2500.

(a) Algorithm 3 (b) Algorithm 4 (c) Algorithm 5

(d) Algorithm 3 (e) Algorithm 4 (f) Algorithm 5

(g) Algorithm 3 (h) Algorithm 4 (i) Algorithm 5

Figure 9: Recovered images with the motion length 45.
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We demonstrate the recovered images by using Algorithms 3, 4 and 5 for the motion length 60 and the
number of iterations is 2500.

(a) Algorithm 3 (b) Algorithm 4 (c) Algorithm 5

(d) Algorithm 3 (e) Algorithm 4 (f) Algorithm 5

(g) Algorithm 3 (h) Algorithm 4 (i) Algorithm 5

Figure 10: Recovered images with the motion length 60.
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We next provide the PSNR plotting of Algorithms 3, 4 and 5.

(a) PSNR (Red) (b) PSNR (Green) (c) PSNR (Blue)

Figure 11: Graphs of PSNR for red, green and blue for Algorithms 3, 4 and 5 of Cat image with motion
length 45.

(a) PSNR (Red) (b) PSNR (Green) (c) PSNR (Blue)

Figure 12: Graphs of PSNR for red, green and blue for Algorithms 3, 4 and 5 of Flower image with motion
length 45.

(a) PSNR (Red) (b) PSNR (Green) (c) PSNR (Blue)

Figure 13: Graphs of PSNR for red, green and blue for Algorithms 3, 4 and 5 of Temple image with motion
length 45.

From Figures 11-13, it is observed that the PSNR of red, green and blue of Algorithm 5 is higher than
Algorithms 3 and 4 in comparison. It shows the applicability and efficiency the proposed method for
solving the image deblurring problem which is the application of the SFP.

7. Conclusions

In this work, we proposed new and efficient algorithms for the split feasibility problem. We show
that the sequence generated by the proposed method converges weakly to a solution of the SFP. The
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numerical experiments reveal that our algorithms outperform algorithms defined by Zhao et al. [37] and
Dong et al. [12].
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[20] A. Gibali, K.H. Küfer, P. Süss, Successive linear programing approach for solving the nonlinear split feasibility

problem, Journal of Nonlinear and Convex Analysis, 15, (2014)345-353.
[21] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull Am

Math Soc. 73(4), (1967)591-597.
[22] S. Penfold, R. Zalas, M. Casiraghi, M. Brooke, Y. Censor, R. Schulte, Sparsity constrained split feasibility for dose-

volume constraints in inverse planning of intensity-modulated photon or proton therapy, Physics in Medicine and
Biology 62, (2017)3599-3618.

[23] L. Landweber, An iterative formula for Fredholm integral equations of the first kind, Am. J.Math. 73(3), (1951)615-
624.

[24] Z. Li, D. Han, W. Zhang, A self-adaptive projection-type method for nonlinear multiple-sets split feasibility
problem, Inverse Problems in Science and Engineering iFirst,(2012) 1-16.



S. Kesornprom et al. / Filomat 35:10 (2021), 3241–3266 3266

[25] G. López, V. Martı́n-Márquez, F.H. Wang, H.K. Xu, Solving the split feasibility problem without prior knowledge
of matrix norms, Inverse Prob. 2012. doi:10.1088/0266-5611/28/8/085004.
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