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Abstract. We determine all the commuting solutions of the quadratic matrix equation AXA = XAX,
which can be expressed in terms of projection matrices. All such solutions have special structures and their
building blocks satisfy a system of matrix equations, and our general result extends the previous ones in
J. Math. Anal. Appl. 402 (2013), 567-573, Applied Math. Lett. 35 (2014), 86-89, Applied Math. Lett. 64 (2017),
231-234, and Applied Math. Lett. 79 (2018), 155-161.

1. Introduction

Let A be an n× n complex matrix. We consider the following problem: Find all solutions of the form
X = AP to the Yang-Baxter-like matrix equation

AXA = XAX, (1)

where P is a projection matrix such that AP = PA. These solutions are called projection-based commuting
solutions or simply projection-based solutions.

The Yang-Baxter-like matrix equation (1) is a matrix equation analog of the classic Yang-Baxter equation
[1, 15] in format, and it was first studied in [3] via Brouwer’s fixed point theorem. Since then the nonlinear
matrix equation has been investigated for various classes of matrix A in the literature (see, e.g., [4, 5, 7, 13]
and the references therein). The Yang-Baxter equation has been a hot research topic in the past decades
because of its relation and applications to knot theory, quantum groups, and statistical mechanics [10, 16],
and the solutions of (1) have also found applications in those areas.

The projection-based solutions were first studied by [4], in which a so-called spectral solution of (1)
was constructed for each eigenvalue of A, based on the spectral projection [11] that maps all Cn onto
the generalized eigenspace associated with the eigenvalue along a special complementary subspace of
the generalized eigenspace. The matrix representation of the above spectral projection associated with
eigenvalue λ of A is Pλ = UλVH

λ , where VH
λ Uλ = I with the columns of Uλ and Vλ a basis of N((A − λI)ν(λ))

and N((AH
− λ̄I)ν(λ)), respectively. Here ν(λ) is the index of λ [11].
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The basic idea behind finding the spectral solutions in [4] is a simple fact that if P is a projection matrix
satisfying the commutativity equality AP = PA, then the matrix AP is a commuting solution of (1). The
technique of [4] was generalized in [6] to find more projection-based solutions when the eigenvalue λ of
A is semi-simple, that is, the corresponding generalized eigenspace is the same as the eigenspace, which
means that ν(λ) = 1. More specifically, it was proved that if the dimension of the eigenspace is m, then for
any m ×m projection matrix M, the matrix AUλMVH

λ is a projection-based commuting solution of (1). The
trick of using an arbitrary projection matrix of suitable size to construct more projection-based solutions
from [6] was followed by [7], extending the result of [6] to the case when the Jordan form of A has several
1 × 1 Jordan blocks associated with eigenvalue λ. Recently, the authors of [18] used the same approach of
[6] combined with the Jordan form decomposition of A, resulting in a unified expression of such special
projections that contain the previous ones under various sufficient conditions.

However, most projection-based commuting solutions still cannot be obtained via the results of [4, 6,
7, 18]. As a simple example, let A be a 2 × 2 diagonal matrix with its diagonal entries 1 and 2, so its
Jordan form is itself. Then the previous methods will only give two trivial projection-based solutions, that
is, the zero matrix and matrix A itself. On the other hand, a simple computation finds all the nontrivial
projection-based solutions[

1 0
0 0

]
and

[
0 0
0 2

]
.

A better example, which is 3× 3 in size, will be demonstrated in the next section and show how limited the
previous methods are.

It is worthwhile to point out that the problem of finding all commuting solutions (1) has been explored
in [9, 12]. The important paper [12] gave an extensive investigation and a detailed analysis of solving
the system AXA = XAX and AX = XA, and proposed a numerical scheme for solving all the solutions
of the above system for a general matrix A. An equivalent problem was obtained and the structure of
the commuting solutions was found in terms of some special Toeplitz matrices. The key point of this
method is to construct various intermediate matrices related to the commuting solutions, which transform
the complicated problem into simpler matrix equations. All commuting solutions can be obtained step
by step by recursively solving such matrix equations. On the other hand, following the idea of [8] for all
commuting solutions of (1) when A is a nilpotent matrix, the paper [9] gave an independent approach for
finding all the commuting solutions of (1) and obtained another equivalent system of matrix equations. But
in the above papers no attempt was given to find those commuting solutions that are projection-based ones.
It seems difficult to find all the projection-based commuting solutions from their methods for all general
commuting solutions. Therefore, a further exploration is in need to find such desired solution through a
careful structural analysis.

So far to our knowledge, not all projection-based solutions of the Yang-Baxter-like matrix equation have
been found in the general case. The purpose of this paper is to determine all projection-based commuting
solutions of (1) for an arbitrary given matrix A.

In the next section we introduce some concepts and present an inspiring and motivating simple example
of size 3×3. The general construction of all required solutions and the main theorem will be given in Section
3. We illustrate our main result in Section 4 by analyzing a particular case, and we conclude in Section 5.

2. Preliminaries

To construct all projection-based commuting solutions of (1), as pointed out below, we need to study
the following closely related problem: Determine all projection matrices that commute with a given matrix
with only one eigenvalue.

Projection matrices are complex matrices whose squares equal themselves. An n × n projection matrix
P projects every n-dimensional complex vector to the range of P along the null space of P. If a projection
matrix commutes with A, that is, AP = PA, then

A(AP)A = A3P = (AP)A(AP),
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so the matrix AP solves (1). This is the basic idea that gave different sufficient conditions in [4, 6, 7, 18] for a
projection matrix to commute with A, resulting in the construction of various projection-based commuting
solutions in those papers.

Let λ1, . . . , λd be all the distinct eigenvalues of A, and let

J =


J1

J2
. . .

Jd


be the Jordan canonical form of A such that for i = 1, . . . , d, the ith diagonal block Ji of J is itself a block
diagonal matrix consisting of all the Jordan blocks associated with eigenvalue λi. The j × j Jordan block
J j(λ) associated with eigenvalue λ is

J j(λ) =



λ 1 0 0 · · · 0
0 λ 1 0 · · · 0
... 0

. . .
. . .

. . .
...

...
...

. . .
. . .

. . . 0
...

...
. . . λ 1

0 0 · · · · · · 0 λ


.

Suppose that U is the nonsingular matrix such that A = UJU−1. Let two matrices X and Y be related by
X = UYU−1. Then solving (1) is equivalent to solving the “simplified” Yang-Baxter-like matrix equation

JYJ = YJY, (2)

in the sense that X is a solution of (1) if and only if Y = U−1XU is a solution of (2). In addition, X is a
commuting solution of (1) if and only if Y is a commuting solution of (2). Furthermore, X is a projection-
based commuting solution of (1) if and only if Y is a projection-based commuting solution of (2). The last
assertion can be seen as follows: Suppose that X = AP = PA solves (1) for a projection matrix P. Then
Y ≡ U−1XU = U−1APU = JU−1PU. Denote P̂ = U−1PU. Then P̂2 = P̂ and JP̂ = JU−1PU = U−1APU =
U−1PAU = U−1PUJ = P̂J. The truth of the converse can also be proved in the same way. Therefore we
can focus on solving (2) for its projection-based commuting solutions Y and then get projection-based
commuting solutions X = UYU−1 of the original matrix equation (1).

Since the eigenvalue of each block Ji of J is different from that of another block J j, from a well known
result of matrix theory [2, 17], any matrix that commutes with J must be block diagonal with the same size
of the diagonal blocks (see also Lemma 2.3 of [5]). In other words, if Y is a commuting solution of (2),
then Y = diag(Y1, . . . ,Yd) in which Yi has the same size as Ji for all i. Thus, finding all projection-based
commuting solutions of (2) is equivalent to finding all projection-based commuting solutions of a system
of d mutually independent Yang-Baxter-like matrix equations:

JiYi Ji = Yi JiYi, i = 1, . . . , d.

Therefore, we just need to solve (2) with J being an n × n Jordan canonical form associated with only one
eigenvalue, which will be denoted as λ.

If P is a projection matrix such that JP = PJ, then Y = JP is a projection-based commuting solution of
(2). We want to find all projection matrices that commute with J. Before we solve this challenging problem
in the next section, we give a simple example to illustrate the difficulty for dealing with the general case.

Let

J = diag(1, J2(1)) =

 1 0 0
0 1 1
0 0 1

 = I3 +

 0 0 0
0 0 1
0 0 0

 ,
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where I3 is the 3 × 3 identity matrix. Denote by N the last matrix in the above, which is a nilpotent matrix
of order 2. Let P = [pi j] be a 3 × 3 projection matrix. Then JP = PJ if and only if NP = PN. Now

NP =

 0 0 0
0 0 1
0 0 0


 p11 p12 p13

p21 p22 p23
p31 p32 p33

 =

 0 0 0
p31 p32 p33
0 0 0


and

PN =

 p11 p12 p13
p21 p22 p23
p31 p32 p33


 0 0 0

0 0 1
0 0 0

 =

 0 0 p12
0 0 p22
0 0 p32

 .
So NP = PN if and only if p12 = 0, p31 = 0, p32 = 0, and p22 = p33. Thus the matrices P that commute with J
are

P =

 p11 0 p13
p21 p22 p23
0 0 p22

 .
Since P is a projection matrix, the additional condition P2 = P is equivalent to the system

p2
11 = p11,

p2
22 = p22,

p21(p11 + p22) = p21,
p13(p11 + p22) = p13,

p21p13 + 2p22p23 = p23.

(3)

The first two equations of (3) give four solutions for p11 and p22: (i) p11 = 0 and p22 = 0; (ii) p11 = 0 and
p22 = 1; (iii) p11 = 1 and p22 = 0; (iv) p11 = 1 and p22 = 1. Case (i) implies that P = 0 and case (iv) gives that
P = I, which provides the two trivial solutions Y = 0 and Y = J of (2). The system (3) for case (ii) is reduced
to one equation p21p13 + p23 = 0, so all projection matrices P with p11 = 0 and p22 = 1 such that PJ = JP are

P =

 0 0 p13
p21 1 −p21p13
0 0 1

 , ∀ p21, p13.

Similarly, In case (iii), (3) becomes p21p13 − p23 = 0, so all projection matrices P with p11 = 1 and p22 = 0 such
that PJ = JP are

P =

 1 0 p13
p21 0 p21p13
0 0 0

 , ∀ p21, p13.

Hence, we have found all the projection-based commuting solutions for this particular example, namely
(a = p13 and b = p21) 0 0 a

b 1 1 − ab
0 0 1

 and

 1 0 a
b 0 ab
0 0 0

 , ∀ a, b.

which form a two dimensional nonlinear manifold. Note that the past works on projection-based commut-
ing solutions could only find the two trivial solutions.

However, when J has a general structure, the above direct method will lead to complicated systems of
scalar equations, so we shall develop a unified approach below.

The following result will be used in the next section, whose proof is referred to the book [2] (Theorem
5.15).
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Lemma 2.1. Let t and s be two positive integers. Then all the solutions of the equation Jt(0)Z = ZJs(0) are

Z = [0 T] if t ≤ s or Z =

[
T
0

]
if t > s,

where T is an upper triangular Toeplitz matrix of the form

T =



t1 t2 · · · · · · tu−1 tu
0 t1 t2 · · · · · · tu−1

0 0
. . .

. . .
...

...
...

. . .
. . .

. . .
...

...
...

. . .
. . . t2

0 0 · · · · · · 0 t1


, u = min{t, s}

in which t1, . . . , tu are arbitrary complex numbers.

3. Projection-Based Commuting Solutions

Now we solve (2) to obtain all projection-based commuting solutions. As pointed out in the previous
section, we can assume that the matrix A is a Jordan canonical form J corresponding to only one eigenvalue
λ, and without loss of generality we can assume that its Jordan blocks are arranged in the order of increasing
size, so

J =


λIm

J2
. . .

Jk

 , J j =


J j(λ)

J j(λ)
. . .

J j(λ)

 , j = 2, . . . , k,

in which the j× j Jordan block J j(λ) appears r j times in J j. We note that the largest size k of the Jordan blocks
is exactly the index ν(λ) of eigenvalue λ, which is the smallest positive integer p such that N((A − λI)p) =
N((A − λI)p+1) [11].

Before we deal with the general situation, we first give an answer to the simplest case.

Proposition 3.1. For each j = 2, . . . , ν(λ), the only projection-based commuting solutions of the equation

J j(λ)Y j J j(λ) = Y j J j(λ)Y j

are Y j = 0 and Y j = J j(λ).

Proof Let P be a projection matrix that commutes with J j(λ). Since J j(λ) is an upper triangular Toeplitz
matrix, by a simple fact in linear algebra [2, 14], P is also an upper triangular Toeplitz matrix, so its common
diagonal element is the only eigenvalue of P. But P has only one eigenvalue if and only if it is either the
zero matrix or the identity matrix.

As mentioned in the previous section, all the projection-based commuting solutions of (2) are JP in
which the projection matrices P commute with J. Since J = λI + N, where the nilpotent matrix N of order k
is

N =


0m

N2
. . .

Nk

 , N j =


J j(0)

J j(0)
. . .

J j(0)

 , j = 2, . . . , k,
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we see that JP = PJ if and only if NP = PN.
Our first task is to find all matrices P that commute with N. By partitioning P as

P =


P11 · · · P1k
...

...
...

Pk1 · · · Pkk

 (4)

that matches the block matrix structure of N, we see that

NP =


0 0 · · · 0

N2P21 N2P22 · · · N2P2k
...

...
...

...
NkPk1 NkPk2 · · · NkPkk

 , PN =


0 P12N2 · · · P1kNk
0 P22N2 · · · P2kNk
...

...
...

...
0 Pk2N2 · · · PkkNk

 .
So NP = PN is equivalent to the system

N2P21 = 0, . . . , NkPk1 = 0,
P12N2 = 0, . . . , P1kNk = 0,

N2P22 = P22N2, . . . , N2P2k = P2kNk,
...

...
...

NkPk2 = Pk2N2, . . . , NkPkk = PkkNk.

(5)

Note that P11 does not appear in the above system, so it can be any m ×m matrix.
To solve the first line equations of (5), NtPt1 = 0 for t = 2, . . . , k, we partition Pt1 into an rt×1 block matrix

with blocks P(1)
t1 , . . . ,P

(rt)
t1 of the same size t ×m, so the equations are

NtPt1 =


Jt(0)

. . .
Jt(0)




P(1)
t1
...

P(rt)
t1

 =


Jt(0)P(1)

t1
...

Jt(0)P(rt)
t1

 =


0
...
0

 .
Denote P(s)

t1 = [p(t,s)
i j ] for s = 1, . . . , rt. Then the sth equation in the above becomes

Jt(0)P(s)
t1 =


0 1

. . .
. . .
. . . 1

0




p(t,s)
11 · · · · · · p(t,s)

1m
p(t,s)

21 · · · · · · p(t,s)
2m

... · · · · · ·
...

p(t,s)
t1 · · · · · · p(t,s)

tm


=


p(t,s)

21 · · · · · · p(t,s)
2m

... · · · · · ·
...

p(t,s)
t1 · · · · · · p(t,s)

tm
0 · · · · · · 0

 =


0 · · · · · · 0
... · · · · · ·

...
0 · · · · · · 0
0 · · · · · · 0

 ,
so its solution is

P(s)
t1 =


p(t,s)

11 · · · · · · p(t,s)
1m

0 · · · · · · 0
... · · · · · ·

...
0 · · · · · · 0

 , ∀ p(t,s)
11 , . . . , p

(t,s)
1m ; s = 1, . . . , rt. (6)
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Similarly, the solutions of the second line equations of (5), P1tNt = 0 for t = 2, . . . , k are P1t = [P(1)
1t · · ·P

(rt)
1t ],

where the m × t blocks

P(s)
1t =


0 · · · 0 q(t,s)

1t
... · · ·

...
...

0 · · · 0 q(t,s)
mt

 , ∀ q(t,s)
1t , . . . , q

(t,s)
mt ; s = 1, . . . , rt. (7)

Now we solve the remaining equations (5), NiPi j = Pi jN j for i, j = 2, . . . , k. For this purpose, we partition
Pi j into an ri × r j block matrix

Pi j =


P(i, j)

11 · · · P(i, j)
1r j

... · · ·
...

P(i, j)
ri1

· · · P(i, j)
rir j


that matches the block structure of Ni and N j. Each block P(i, j)

uv is i× j for u = 1, . . . , ri and v = 1, . . . , r j. Then
NiPi j = Pi jN j if and only if

Ji(0)P(i, j)
uv = P(i, j)

uv J j(0), ∀ u = 1, . . . , ri, v = 1, . . . , r j.

By Lemma 2.1, the solutions of the above equations are

P(i, j)
uv =



p(i, j)
uv1 p(i, j)

uv2 · · · p(i, j)
uvj

0 p(i, j)
uv1

. . .
...

... 0
. . . p(i, j)

uv2
0 0 · · · p(i, j)

uv1
0 0 · · · 0
...

...
...

...
0 0 0 0


, ∀ p(i, j)

uv1, . . . , p
(i, j)
uvj (8)

if i > j or

P(i, j)
uv =


0 · · · 0 p(i, j)

uv1 p(i, j)
uv2 · · · p(i, j)

uvi
...

... 0 p(i, j)
uv1

. . .
...

...
... 0 0

. . . p(i, j)
uv2

0 · · · 0 0 0 · · · p(i, j)
uv1


, ∀ p(i, j)

uv1, . . . , p
(i, j)
uvi (9)

if i ≤ j. This completes the task of finding all the solutions of JP = PJ.
Under the commuting condition satisfied by P so that its structure is given by (6), (7), (8), and (9), we

further require that P be a projection matrix. This means that we need to solve the additional equation
P2 = P, which can be written as

(Pii − Ini )Pi j +

k∑
s=1,s,i

PisPsj = 0, ∀ i, j = 1, . . . , k (10)

from the partition (4) of P. Here n1 = m and ni = iri for i = 2, . . . , k.
The remaining thing is to solve the above system of k× k equations with the blocks of P given by (6), (7),

(8), and (9). We need several lemmas to simplify (10).

Lemma 3.2. For s = 2, . . . , k, we have P1sPs1 = 0.
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Proof Suppose 2 ≤ s ≤ k. By (6) and (7),

P1sPs1 =

rs∑
u=1

P(u)
1s P(u)

s1 =

rs∑
u=1


0 · · · 0 q(s,u)

1s
... · · ·

...
...

0 · · · 0 q(s,u)
ms




p(s,u)
11 · · · · · · p(s,u)

1m
0 · · · · · · 0
... · · · · · ·

...
0 · · · · · · 0

 = 0.

Lemma 3.2 reduces the first equation of (10) to (P11 − Im)P11 = 0, so P11 is any m ×m projection matrix.

Lemma 3.3. If s > j ≥ 2, then P1sPsj = 0.

Proof By (7) and (8), the vth block of the 1 × r j block matrix of P1sPsj is

rs∑
u=1

P(u)
1s P(s, j)

uv =

rs∑
u=1


0 · · · 0 q(s,u)

1s
... · · ·

...
...

0 · · · 0 q(s,u)
ms





p(s, j)
uv1 p(s, j)

uv2 · · · p(s, j)
uvj

0 p(s, j)
uv1

. . .
...

... 0
. . . p(s, j)

uv2
0 0 · · · p(s, j)

uv1
0 0 · · · 0
...

...
...

...
0 0 0 0


= 0

for v = 1, . . . , r j, so P1sPsj = 0.

Lemma 3.3 simplifies the equations of (10) with i = 1 and j = 2, . . . k to

(P11 − Im)P1 j +

j∑
s=2

P1sPsj = 0.

Lemma 3.4. If s > i ≥ 2, then PisPs1 = 0.

Proof From (6) and (9), the vth block of the ri × 1 block matrix of PisPs1 is

rs∑
u=1

P(i,s)
vu P(u)

s1 =

rs∑
u=1


0 · · · 0 p(i,s)

vu1 p(i,s)
vu2 · · · p(i,s)

vui
...

... 0 p(i,s)
vu1

. . .
...

...
... 0 0

. . . p(i,s)
vu2

0 · · · 0 0 0 · · · p(i,s)
vu1




p(s,u)
11 · · · · · · p(s,u)

1m
0 · · · · · · 0
... · · · · · ·

...
0 · · · · · · 0

 = 0

for v = 1, . . . , r j, so PisPs1 = 0.

Lemma 3.4 reduces the equations of (10) with j = 1 and i = 2, . . . k to

(Pii − Ini )Pi1 +

i−1∑
s=1

PisPs1 = 0.

Lemma 3.5. If s ≥ i + j with i, j = 2, . . . , k, then PisPsj = 0.
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Proof From (8) and (9), the (u, v) entry of the ri × r j block matrix of PisPsj is

rs∑
w=1

P(i,s)
uw P(s, j)

wv =

rs∑
w=1


0 · · · 0 p(i,s)

uw1 p(i,s)
uw2 · · · p(i,s)

uwi
...

... 0 p(i,s)
uw1

. . .
...

...
... 0 0

. . . p(i,s)
uw2

0 · · · 0 0 0 · · · p(i,s)
uw1





p(s, j)
wv1 p(s, j)

wv2 · · · p(s, j)
wvj

0 p(s, j)
wv1

. . .
...

... 0
. . . p(s, j)

wv2
0 0 · · · p(s, j)

wv1
0 0 · · · 0
...

...
...

...
0 0 0 0


= 0

for u = 1, . . . , ri and v = 1, . . . , r j, so PisPsj = 0.

By Lemma 3.5, the equations of (10) with i, j = 2, . . . k are

(Pii − Ini )Pi j +

min{i+ j−1,k}∑
s=1,s,i

PisPsj = 0.

In summary, we have the following theorem.

Theorem 3.6. Let J be a Jordan matrix given by (4) with eigenvalue λ. Then all the projection-based commuting
solutions of the Yang-Baxter-like matrix equation JYJ = YJY are Y = JP, where P is partitioned as (4) the blocks of
which have the structure given by (6), (7), (8), (9) and solve the following equations

P2
11 = P11,

(P11 − Im)P1 j +
∑ j

s=2 P1sPsj = 0, j = 2, . . . , k,
(Pii − Ini )Pi1 +

∑i−1
s=1 PisPs1 = 0, i = 2, . . . , k,

(Pii − Ini )Pi j +
∑min{i+ j−1,k}

s=1,s,i PisPsj = 0, i, j = 2, . . . , k.

(11)

4. The Case of k = 2

When k = 2, the system (11) becomes
P2

11 = P11,
(P11 − Im)P12 + P12P22 = 0,
(P22 − In2 )P21 + P21P11 = 0,
(P22 − In2 )P22 + P21P12 = 0.

(12)

The first equation indicates that P11 is a projection matrix. So, after choosing it, we solve for P12,P21, and
P22 from the remaining equations as follows. For simplicity we let r = r2,

P21 =


P1
...

Pr

 ,Ps =

[
p(s)

1 · · · p(s)
m

0 · · · 0

]
,P12 = [Q1 · · ·Qr],Qs =


0 q(s)

1
...

...

0 q(s)
m

 , s = 1, . . . , r,

P22 =


R11 · · · R1r
...

...
...

Rr1 · · · Rrr

 , Ri j =

[
ai j bi j
0 ai j

]
, i, j = 1, . . . , r.
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Then

P12P22 =

 r∑
s=1

QsRs1

r∑
s=1

QsRs2 · · ·

r∑
s=1

QsRsr

 ,
in which

r∑
s=1

QsRsj =


0
∑r

s=1 q(s)
1 asj

...
...

0
∑r

s=1 q(s)
m asj

 , j = 1, . . . , r.

Similarly,

P22P21 =


∑r

s=1 R1sPs
...∑r

s=1 RrsPs

 ,
r∑

s=1

RisPs =

[ ∑r
s=1 aisp

(s)
1 · · ·

∑r
s=1 aisp

(s)
m

0 · · · 0

]
, i = 1, . . . , r,

P21P12 =


P1Q1 · · · P1Qr
...

...
...

PrQ1 · · · PrQr

 ,PiQ j =

[
0
∑m

s=1 p(i)
s q( j)

s
0 0

]
, i, j = 1, . . . , r,

and

P2
22 =


∑r

s=1 R1sRs1 · · ·
∑r

s=1 R1sRsr
...

...
...∑r

s=1 RrsRs1 · · ·
∑r

s=1 RrsRsr

 ,
where

r∑
s=1

RisRsj =

[ ∑r
s=1 aisasj

∑r
s=1(aisbsj + bisasj)

0
∑r

s=1 aisasj

]
, i, j = 1, . . . , r.

Let the m × m matrix projection matrix P11 = [pi j]. Denote the m × r matrix Q = [q( j)
i ], the r × r matrices

T = [ai j] and S = [bi j], the r × m matrix W = [p(i)
j ], and let Z = [zi j] = QT, C = [ci j] = TW, D = [di j] = WQ,

E = [ei j] = T2, F = [ fi j] = TS + ST, G = WP11, and H = P11Q. Then P21P12 = [di j J2(0)], P2
22 = [ei jI2 + fi j J2(0)],

and

P12P22 =


0 z11 · · · 0 z1r
0 z21 · · · 0 z2r
...

...
...

...
...

0 zm1 · · · 0 zmr

 , P22P21 =


c11 c12 · · · c1m
0 0 · · · 0
...

...
...

...
cr1 cr2 · · · crm
0 0 · · · 0


.

It follows that (P22 − In2 )P22 = [(ei j − ai j)I2 + ( fi j − bi j)J2(0)],

(P22 − In2 )P21 =



c11 − p(1)
1 c12 − p(1)

2 · · · c1m − p(1)
m

0 0 · · · 0
...

...
...

...

cr1 − p(r)
1 cr2 − p(r)

2 · · · crm − p(r)
m

0 0 · · · 0


,
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P11P12 =


0 h11 · · · 0 h1r
0 h21 · · · 0 h2r
...

...
...

...
...

0 hm1 · · · 0 hmr

 , P21P11 =


111 112 · · · 11m
0 0 · · · 0
...

...
...

...
1r1 1r2 · · · 1rm
0 0 · · · 0


.

So the last three equations of (12) are respectively

(P11 − Im)P12 + P12P22 =


0 z11 + h11 − q(1)

1 · · · 0 z1r + h1r − q(r)
1

0 z21 + h21 − q(1)
2 · · · 0 z2r + h2r − q(r)

2
...

...
...

...
...

0 zm1 + hm1 − q(1)
m · · · 0 zmr + hmr − q(r)

m

 = 0,

(P22 − In2 )P21 + P21P11 =



c11 − p(1)
1 + 111 c12 − p(1)

2 + 112 · · · c1m − p(1)
m + 11m

0 0 · · · 0
...

...
...

...

cr1 − p(r)
1 + 1r1 cr2 − p(r)

2 + 1r2 · · · crm − p(r)
m + 1rm

0 0 · · · 0


= 0,

and (P22 − In2 )P22 + P21P12 = [(ei j − ai j)I2 + (di j + fi j − bi j)J2(0)] = 0.
The above equations can be written as

zi j + hi j = q( j)
i , i = 1, . . . ,m, j = 1, . . . , r,

ci j + 1i j = p( j)
i , i = 1, . . . , r, j = 1, . . . ,m,

ai j = ei j, i = 1, . . . , r, j = 1, . . . , r,
di j + fi j = bi j, i = 1, . . . , r, j = 1, . . . , r.

,

which is equivalent to the system of four matrix equations
QT = (I − P11)Q,
TW = W(I − P11),
T = T2,
WQ = S(I − T) − TS.

(13)

We give a simple example to illustrate the above system. Let A be a 3× 3 matrix that is exactly the same
as its Jordan form J = diag(0, J2(0)). Then λ = 0,m = 1, k = 2, and r = 1. The 1 × 1 projection sub-matrix P11
is either [1] or [0], and all the other matrices in (13) are also 1 × 1. Denote

Q = [p], T = [a], S = [b], W = [q].

Then in the case that P11 = [1], the system (13) becomes
pa = 0,
qa = 0,
a = a2,
qp = b(1 − a) − ab.

Hence a = 0 or a = 1. If a = 0, then

P =

 1 0 q
p 0 pq
0 0 0

 , ∀ p, q,
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so Y = JP = 0. When a = 1, we have P = I and thus Y = JP = J.
For the other case that P11 = 0, the corresponding system is

pa = p,
aq = q,
a = a2,
qp = b(1 − a) − ab.

If a = 0, then p = q = b = 0, so P = 0 and thus Y = 0. If a = 1, then

P =

 0 0 q
p 1 −pq
0 0 1

 , ∀ p, q,

and so Y = JP = J. In summary, the only projection-based solutions of (2) are the trivial ones Y = 0 and
Y = J, which can be verified directly from the example in Section 2.

Now we consider A = J = diag(J2(0), J2(0)). For this example, m = 0, k = 2 and r = 2. Also there are no
P11,P12, and P21, so P = P22. The system (12) is then reduced to P22 = P2

22, where

P22 =

[
R11 R12
R21 R22

]
, Ri j =

[
ai j bi j
0 ai j

]
, i, j = 1, 2.

Since P11,Q, and W disappear, the corresponding system (13) is nothing but

T = T2 and TS − S(I − T) = 0, T =

[
a11 a12
a21 a22

]
, S =

[
b11 b12
b21 b22

]
.

The first equation above means that T is a projection matrix, so given any such matrix, we can solve the
second linear equation for S, which is of Sylvester’s type. From the theory of Sylvester’s equation (see, e.g.,
[2, 11]), the homogeneous equation TS − S(I − T) = 0 has a solution S , 0 if and only if T and I − T have
a common eigenvalue. So when T = 0 or T = I, the only solution is S = 0, resulting in P = 0 or P = I that
give rise to the trivial solutions Y = 0 or Y = J. On the other hand, if T is any other projection matrix so
that 0 and 1 are both the eigenvalues of T, then there are nonzero solutions S, since 0 and 1 are also the
eigenvalues of the projection matrix I − T. Now we solve them out.

For this purpose, denote a11 = a, a12 = b, a21 = c, a22 = d, b11 = x, b12 = y, b21 = z, b22 = w. Then
a + d = 0 + 1 = 1 and ad − bc = 0 · 1 = 0, from which we have the general expression of all 2 × 2 projection
matrices T , 0 or I:

T =

 1±
√

1−4bc
2 b
c 1∓

√
1−4bc
2

 , ∀ b, c.

For a given T as above, the equation TS − S(I − T) = 0 can be rewritten as
2a − 1 c b 0

b 0 0 b
c 0 0 c
0 c b 2d − 1




x
y
z
w

 =


0
0
0
0

 . (14)

We solve (14) for different cases. First assume that b , 0 and c , 0. Then applying the Gaussian
elimination to (14) gives

b 0 0 b
0 c b 2d − 1
c 0 0 c
0 c 0 0




x
y
z
w

 =


0
0
0
0

 ,
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whose solutions are x = −w, y = [(1 − 2d)w − bz]/c with z and w arbitrary numbers, so under the condition
b , 0 and c , 0, all the solutions of TS − S(I − T) = 0, where T is a projection matrix and T , 0 or I, are

S =

[
−w (1−2d)w−bz

c
z w

]
=

[
−w ±

√
1−4bc·w−bz

c
z w

]
, ∀ z,w.

Now suppose b , 0 and c = 0. Then
b 0 0 b
0 0 b 1 − 2a
c 0 0 c
0 c 0 0




x
y
z
w

 =


0
0
0
0

 ,
the solutions of which are x = −w and z = (2a − 1)w/b with arbitrary numbers y and w, so under the
condition b , 0 and c = 0, all the solutions of TS − S(I − T) = 0, where T is a projection matrix and T , 0 or
I, are

S =

[
−w y

(2a−1)w
b w

]
=

[
−w y
±

w
b w

]
, ∀ y,w.

if b = 0 and c , 0, then
c 0 0 c
0 c 0 1 − 2a
c 0 0 c
0 c 0 0




x
y
z
w

 =


0
0
0
0

 .
Thus x = −w and y = (2a − 1)w/c, and the resulting solutions are

S =

[
−w (2a−1)w

c
z w

]
=

[
−w ±

w
c

z w

]
, ∀ z,w.

Finally, when b = c = 0, then
2a − 1 0 0 0

0 c 0 2a − 1
c 0 0 0
0 0 0 0




x
y
z
w

 =


0
0
0
0

 ,
so x = 0 and w = 0 with y and z arbitrary. Hence,

S =

[
0 y
z 0

]
, ∀ y, z.

In summary, we have the following conclusions:
(i) b , 0 and c , 0. Then

P =


1±
√

1−4bc
2 −w b ±

√
1−4bc·w−bz

c

0 1±
√

1−4bc
2 0 b

c z 1∓
√

1−4bc
2 w

0 c 0 1∓
√

1−4bc
2

 , ∀ z,w.

(ii) b , 0 and c = 0. Then

P =


1±1

2 −w b y
0 1±1

2 0 b
0 ±

w
b

1∓1
2 w

0 0 0 1∓1
2

 , ∀ y,w.
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(iii) b = 0 and c , 0. Then

P =


1±1

2 −w 0 ±
w
c

0 1±1
2 0 0

c z 1∓1
2 w

0 c 0 1∓1
2

 , ∀ z,w.

(iv) b = 0 and c = 0. Then

P =


1±1

2 0 0 y
0 1±1

2 0 0
0 z 1∓1

2 0
0 0 0 1∓1

2

 , ∀ y, z.

Proposition 4.1. Let J = diag(J2(0), J2(0)). Then all the projection-based solutions of (2) are Y = 0, J, and

Y =


0 1±

√
1−4bc
2 0 b

0 0 0 0
0 c 0 1∓

√
1−4bc
2

0 0 0 0

 , ∀ b, c. (15)

Proof. All projection-based solutions of (2) are Y = JP with P = 0, I, and the those projection matrices from
(i)-(iv) above for the different cases of b and c. After a direct computation, all the obtained solutions Y have
the single expression (15).

Remark: For the above example, the methods of [4, 18] can only find the two trivial projection-based
solutions, 0 and diag(J2(0), J2(0)), while the results of [6, 7] are not applicable here. But our method finds all
projection-based commuting solutions, which constitute a two dimensional manifold.

5. Conclusions

Among all commuting solutions of the Yang-Baxter-like matrix equation (1), we have characterized
those that can be expressed as the product of the given matrix A and a projection matrix P that commutes
with A. Our general result gives all the projection-based commuting solutions and extends previous ones
that only provide special projection-based commuting solutions for various classes of matrices, such as
the spectral solutions for general matrices and projection-based solutions for matrices with special Jordan
canonical forms.
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