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Its Applications to a System of Integral Equations
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Abstract. In this paper, we gain a new extension of well-known Darbo’s fixed point theorem in a Banach
space. Our results provide several expressions which all are generalizations of Darbo’s fixed point theorem.
As applications, we obtain some Prešić type extensions of Darbo fixed point theorem which help us in the
studying of the existence of solution for a system of functional integral equations in BC(R+). Finally, we
provided an example to demonstrate the efficacy of our results.

1. Introduction and preliminaries

The theory of integral equations is a crucial component of mathematical analysis, with numerous
applications in real-world problems. Noncompactness measures, on the other hand, are a powerful tool in
the field of functional analysis. Functional equations, ODEs, PDEs, fractional partial differential equations,
integral and integro-differential equations, and optimal control theory are all studied using them.

In reality, Kuratowski [14] proposed the intriguing concept of the measure of non compactness (MNC)
in 1930. For more information, see [3], [2], [5], [6], [7] and [22].

Measures of Noncompactness, their properties, and certain applications are discussed in Chapter 7 of
[15]. The authors offered various results from fixed point theory and compact operators, as well as an
axiomatic introduction to measures of noncompactness and their most well-known properties, such as
monotonicity and the generalized Cantor intersection property.

Malkowsky and V. Rakočević reviewed some of the conclusions in [16], including an axiomatic intro-
duction, a discussion of the Kuratowski, Hausdorff, inner Hausdorff, and separation measures of non-
compactness, as well as their roles in fixed-point theory and operator theory. The Hausdorff measure of
noncompactness of matrix operators and bounded linear operators was also determined in [16].

We propose various notations and definitions that will be used throughout this work. Let (Q, ‖ · ‖) be
a real Banach space. As well as, B(σ, r) marks the closed ball centered at σ with radius r. The symbol Br

subsists for the ball B(0, r). For ∆ ⊆ Q, let ∆ and Conv∆ be the closure and the closed convex hull of ∆,
respectively. As well as, let us denote byMQ the family of nonempty bounded subsets of Q and by NQ its
subfamily subtending of all relatively compact subsets of Q.
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Definition 1.1. [8] Let τ :MQ −→ R+ be a mapping. It is declared to be a measure of noncompactness in Q if:

1◦ The subset kerτ = {∆ ∈MQ : τ(∆) = 0} ofMQ is nonempty and kerτ ⊂ NQ;

2◦ ∆ ⊂ Λ =⇒ τ(∆) ≤ τ(Λ);

3◦ τ(∆) = τ(∆) = τ(Conv∆);

4◦ τ(η∆ + (1 − η)Λ) ≤ ητ(∆) + (1 − η)τ(Λ) for all η ∈ [0, 1];

5◦ If {∆n} ⊆ MQ is a sequence of closed sets such that ∆n+1 ⊂ ∆n for all n = 1, 2, · · · , and lim
n→∞

τ(∆n) = 0, then
∆∞ = ∩∞n=1∆n , ∅.

Now, we’ll look at two important theorems in fixed point theory.

Theorem 1.2. (Schauder fixed point theorem) ([1]) Having Ω as a nonempty, bounded, closed and convex subset of
a Banach space Q, a mapping Υ : Ω→ Ω admits at least one fixed point in the set Ω provided that Υ be continuous
and compact.

The Darbo fixed point theorem, which is described below, generalizes the aforementioned result.

Theorem 1.3. (Darbo[12]). Having R as a nonempty, bounded, closed and convex subset of a Banach space Q and
T : Ω → Ω as a continuous mapping, Υ possesses at least a fixed point in Ω provided that there exists a constant
K ∈ [0, 1) such that τ(T∆) ≤ Kτ(∆) for any nonempty subset ∆ of Ω, where τ is an MNC defined in Q.

Theorem 1.4. [13, Corollary 2.1] Let (W, d) be a complete metric space and let Γ :W→W be a given map and

θ(d(Γx, Γy)) ≤ θ(d(x, y))k,

for all x, y ∈ W so that d(Γx, Γy) , 0 where θ : (0,∞)→ (1,∞) is increasing, lim
n→∞

θ(tn) = 1 if and only if lim
n→∞

tn = 0,

for each sequence {tn} ⊆ (0,∞), and there exist r ∈ (0, 1) and ` ∈ (0,∞] such that lim
t→0+

θ(t)−1
tr = ` and k ∈ (0, 1). Then

there is a unique fixed point for Γ.

We use Jleli-Samet type contractions to achieve certain generalizations of Darbo’s fixed point theorem
in this study. The results of fixed points of the Prešić type are presented. As a result, we provide a program
for solving a system of functional integral equations. These findings generalize a number of similar ones
seen in the literature.

2. Main Results

Denote by Ξ the set of all functions Γ : (0,∞)→ (1,∞) so that:

(Υ1) Γ is continuous and increasing;

(Υ2) lim
n→∞

tn = 0 iff lim
n→∞

Γ(tn) = 1 for all {tn} ⊆ (0,∞),

The following are some examples of elements in Ξ:
(i) Γ1(t) = 1 + ln(1 + t),
(ii) Γ2(t) = 1 + ln(t + 1 − 1

t+1 + 1),
(iii) Γ3(t) = − 1

√
t+1

+ 2,

(iv) Γ4(t) = − 1
√

t+1
+ t + 2,

(v) Γ5(t) = − 1
t+1 + t + 2.

(vi) Γ6(t) = − 1
t+1 + 2.

Denote by Ψ the set of all functions ψ : (1,∞)→ (1,∞) so that:
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(ψ1) ψ is continuous and increasing;

(ψ2) lim
n→∞

ψn(t) = 1 for all t ∈ (1,∞),

Here are some examples of elements in Ψ:
(i) ψ1(t) = 1 + ln(t),
(ii) ψ2(t) = 1 + ln(t − 1

t + 1),
(iii) ψ3(t) = − 1

√
t
+ 2,

(iv) ψ4(t) = − 1
√

t
+ t + 1,

(v) ψ5(t) = − 1
t + t + 1.

(vi) ψ6(t) = − 1
t+1 + 1

2 + 1.
(vi) ψ7(t) = tk where k ∈ (0, 1).
Now we’ll present the study’s primary result, which expands and generalizes Darbo’s well-known fixed

point theorem.

Theorem 2.1. Having R as a nonempty, bounded, closed and convex subset of a Banach space Q and Υ : R→ R as
a continuous operator such that

Γ(τ(Υ∆)) ≤ ψ(Γ(τ(∆))) (1)

for all ∆ ⊆ R, where Γ ∈ Ξ, ψ ∈ Ψ and τ is an arbitrary MNC, then Υ possesses at least one fixed point in R.

Proof. Let {Rn} be such that R0 = R and Rn+1 = Conv(Υ(Rn)) for all n ∈N.
If for an integer N ∈ N one has τ(RN) = 0, then RN is relatively compact and so Schauder Theorem

guarantees the existence of a fixed point for Υ. So, let τ(Rn) > 0 for all n ∈N ∪ {0}.
Evidently, {Rn}n∈N is a sequence of nonempty, bounded, closed and convex subsets such that

R0 ⊇ R1 ⊇ · · · ⊇ Rn ⊇ Rn+1.

On the other hand

Γ(τ(Rn+1)) = Γ(τ(ΥRn)) ≤ ψ(Γ(τ(Rn))) ≤ · · · ≤ ψn+1(Γ(τ(R0))). (2)

Thus, {τ(Rn)}n∈N is a convergent sequence. Suppose that lim
n→∞

τ(Rn)) = r.
Now, we show that r = 0.
Passing to the limit through (2),

Γ(τ(Rn+1))→ 1.

Therefore, we have lim
n→∞

τ(Rn+1) = 0.

Axiom (5◦) of Definition 1.1 yields that the set R∞ =

∞⋂
n=1

Rn is a nonempty, closed and convex set and

it is stable under the operator Υ and is an element of Kerτ. Then according to the Schauder theorem Υ
possesses a fixed point.

Taking ψ(t) = tϕ(t) where ϕ : [0,∞) → [0, 1) so that lim
n→∞

(ϕ(t))n = 0 for all t ∈ [0,∞), in Theorem 2.1, we
have,

Corollary 2.2. Having R ⊆ Q as a nonempty, bounded, closed and convex subset and Υ : R → R as a continuous
operator such that

Γ(τ(Υ∆)) ≤ (Γ(τ(∆)))ϕ(τ(∆)) (3)

for all ∆ ⊆ R, and τ is an arbitrary MNC, then Υ admits at least one fixed point in R.
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Taking ψ(t) = tk, k ∈ (0, 1) in Theorem 2.1, we have,

Corollary 2.3. Having R ⊆ Q as a nonempty, bounded, closed and convex subset and Υ : R → R as a continuous
operator such that

Γ(τ(Υ∆)) ≤ (Γ(τ(∆)))k (4)

for all ∆ ⊆ R, and τ is an arbitrary MNC, then Υ admits at least one fixed point in R.

Taking Γ(t) = 1 + ln(1 + t) and ψ(t) = 1 + ln(t) in Theorem 2.1, we have,

Corollary 2.4. Let R ⊆ Q be a nonempty, bounded, closed and convex and let Υ : R→ R be continuous such that

1 + ln(1 + τ(Υ(∆)) ≤ 1 + ln(1 + ln(1 + τ(∆))) (5)

for all ∆ ⊆ R,D ∈ D and τ is an arbitrary MNC. Then Υ has at least one fixed point in R.

Remark 2.5. Obviously, the Darbo’s fixed point theorem is a special case of Corollary 2.3 if we take Γ(t) = et.

3. Presić type fixed point results

One of the most powerful results in nonlinear analysis is the Banach contraction principle (BCP) [4]. In
the background of ODE and PDE, it has numerous applications.

Theorem 3.1. [4] Let (∆, d) be a complete metric space and let Υ : ∆→ ∆ so that

d(Υι,Υκ) ≤ γd(ι, κ) for all ι, κ ∈ ∆,

where γ ∈ [0, 1). Then, there is a unique σ in ∆ such that σ = Υσ. Also, for each ζ0 ∈ ∆, the sequence ζn+1 = Υζn
converges to σ.

The BCP has been expanded and generalized in a variety of ways (see, for example, [18], [17] and [21]).
Prešić [20] came up with the following outcome.

Theorem 3.2. [20] Let (∆, d) be a complete metric space and let Υ : ∆k
→ ∆ (k is a positive integer). Suppose that

d(Υ(ζ1, ..., ζk),Υ(ζ2, ..., ζk+1)) ≤
k∑

i=1

λid(ζi, ζi+1) (6)

for all ζ1, ..., ζk+1 in ∆, where λi ≥ 0 and
k∑

i=1
λi ∈ [0, 1). Then Υ has a unique fixed point ζ∗ (that is, Υ(ζ∗, ..., ζ∗) = ζ∗).

Moreover, for all arbitrary points ζ1, ..., ζk+1 in ∆, the sequence {ζn} defined by ζn+k = Υ(ζn, ζn+1, ..., ζn+k−1), converges
to ζ∗.

It is obvious that for k = 1, Theorem 3.2 coincides with the BCP.
The above theorem generalized by Ćirić and Presić [11] as follows.

Theorem 3.3. [11] Let (∆, d) be a complete metric space and Υ : ∆k
→ ∆ (k is a positive integer). Suppose that

d(Υ(ζ1, ..., ζk),Υ(ζ2, ..., ζk+1)) ≤ λmax{d(ζi, ζi+1) : 1 ≤ i ≤ k}, (7)

for all ζ1, ..., ζk+1 in ∆, where λ ∈ [0, 1). Then Υ has a fixed point ζ∗ ∈ ∆. Also, for all points ζ1, ..., ζk+1 ∈ ∆, the
sequence {ζn} defined by ζn+k = Υ(ζn, ζn+1, ..., ζn+k−1), converges to ζ∗. The fixed point of Υ is unique if

d(Υ(ρ, ..., ρ),Υ(%, ..., %)) < d(ρ, %),

for all ρ, % ∈ ∆ with ρ , %.
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For more details on Presić type contractions, we refer the reader to [10, 18, 20].

Theorem 3.4. [7] Suppose that τ1, τ2, . . . , τn be some MNC in Banach spaces Q1,Q2, . . . ,Qn, respectively, and let
the function υ : [0,∞)n

−→ [0,∞) be convex and υ(σ1, . . . , σn) = 0 if and only if σi = 0 for i = 1, 2, . . . ,n. Then

τ̃(∆) = υ(τ1(∆1), τ2(∆2), . . . , τn(∆n)),

is a measure of noncompactness in Q1 × Q2 × . . . × Qn, where ∆i denotes the natural projection of ∆ into Qi, for
i = 1, 2, . . . ,n.

From now on, let Γ be a subadditive mapping.

Theorem 3.5. Having R ⊆ Q as a nonempty, bounded, closed and convex subset and Υ : Rn
→ R as a continuous

function such that

Γ
(
τ
(
Υ(∆1 × ... × ∆n)

))
≤

1
n
ψ
([

Γ
(
τ(∆1) + ... + τ(∆n)

)])
(8)

for all ∆1, ...,∆n ⊆ R, where Γ ∈ Ξ is a subadditiv mapping, ψ ∈ Ψ and τ is an arbitrary MNC, then Υ has at least a
Presić type fixed point.

Proof. We define the mapping Υ̃ : Rn
→ Rn by

Υ̃(σ1, ..., σn) = (Υ(σ1, ..., σn), ...,Υ(σ1, ..., σn)).

Clearly, Υ̃ is continuous. We demonstrate that Υ̃ satisfies all the conditions of Theorem 2.1. Let ∆ ⊂ Rn be a
nonempty subset. We know that τ̃(∆) = τ(∆1) + ...+τ(∆n) is a (MNC) [8], where ∆1, ...,∆n denote the natural
projections of ∆ into Q. From (8) we have

Γ
(̃
τ(Υ̃(∆))

)
= Γ

(̃
τ(Υ(∆1 × ... × ∆n) × ... × Υ(∆1 × ... × ∆n))

)
= Γ

(
nτ(Υ(∆1 × ... × ∆n))

)
≤ nΓ

(
τ(Υ(∆1 × ... × ∆n))

)
≤ ψ

(
Γ
(
τ(∆1) + ... + τ(∆n)

))
= ψ

(
Γ
(̃
τ(∆)

))
.

Now, according to Theorem 2.1 we deduce that Υ̃ admits at least a fixed point which implies that there
exists σ1, ..., σn such that Υ(σ1, ..., σn) = σ1 = ... = σn, that is, Υ possesses at least a Presić type fixed point.

Theorem 3.6. Having R ⊆ Q as a nonempty, bounded, closed and convex subset and Υ : Rn
→ R as a continuous

function so that

Γ
(
τ(Υ(∆1 × ... × ∆n))

)
≤ ψ

(
Γ(max{τ(∆1), ..., τ(∆n)}

))
(9)

for all subsets ∆1, ...,∆n ⊆ R, where Γ ∈ Ξ, ψ ∈ Ψ and τ is an arbitrary MNC, then Υ has at least a Presić type fixed
point.

Proof. Let Υ̃ : Rn
→ Rn be defined by

Υ̃(σ1, ..., σn) = (Υ(σ1, ..., σn), ...,Υ(σ1, ..., σn)).
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Evidently, Υ̃ is continuous. It will be demonstrated that Υ̃ satisfies all the conditions of Theorem 2.1. Clearly,
τ̃(∆) = max{τ(∆1), ..., τ(∆n)} is a (MNC)[8], where ∆1, ... and ∆n denote the natural projections of ∆ into Q.
Let ∆ ⊂ Rn be a nonempty subset. According to (12) we have

Γ
(̃
τ(Υ̃(∆))

)
= Γ

(̃
τ(Υ(∆1 × ... × ∆n) × ... × Υ(∆1 × ... × ∆n))

)
= Γ

(
max{τ(Υ(∆1 × ... × ∆n)), ..., τ(Υ(∆1 × ... × ∆n))}

)
= Γ

(
τ(Υ(∆1 × ... × ∆n))

)
≤ ψ

(
Γ
(

max{τ(∆1), ..., τ(∆n)}
))

= ψ
(
Γ
(̃
τ(∆)

))
.

So, from Theorem 2.1 we obtain that Υ̃ has at least a fixed point which implies that Υ has at least a Presić
type fixed point.

Corollary 3.7. Having R ⊆ Q as a nonempty, bounded, closed and convex subset and Υ : Rn
→ R as a continuous

function so that

Γ
(
τ(Υ(∆1 × ... × ∆n))

)
≤ ψ(Γ

( n∑
i=1

λiτ(∆i))) (10)

for all subsets ∆1, ...,∆n ⊆ R, where Γ ∈ Ξ, ψ ∈ Ψ, τ is an arbitrary MNC, λi ≥ 0 and
k∑

i=1
λi ∈ [0, 1) then Υ has at

least a Presić type fixed point.

Corollary 3.8. Having R ⊆ Q as a nonempty, bounded, closed and convex subset and Υ : Rn
→ R as a continuous

function so that

Γ
(
τ(Υ(∆1 × ... × ∆n))

)
≤ (Γ

( n∑
i=1

λiτ(∆i)))ϕ(
∑n

i=1 λiτ(∆i)) (11)

for all subsets ∆1, ...,∆n ⊆ R, where Γ ∈ Ξ, ϕ : [0,∞) → [0, 1) so that lim
n→∞

(ϕ(t))n = 0 for all t ∈ [0,∞), τ is an

arbitrary MNC, λi ≥ 0 and
k∑

i=1
λi ∈ [0, 1) then Υ has at least a Presić type fixed point.

Corollary 3.9. Having R ⊆ Q as a nonempty, bounded, closed and convex subset and Υ : Rn
→ R as a continuous

function so that

Γ
(
τ(Υ(∆1 × ... × ∆n))

)
≤ (Γ

( n∑
i=1

λiτ(∆i)))k (12)

for all subsets ∆1, ...,∆n ⊆ R, where Γ ∈ Ξ, k ∈ [0, 1), τ is an arbitrary MNC, λi ≥ 0 and
k∑

i=1
λi ∈ [0, 1) then Υ has at

least a Presić type fixed point.
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4. Application

Studying the existence of solutions for the following system is the aim of this section.

G1(t) = $
(
t, h(t,G1(α(t)), ...,Gn(α(t)),

∫ ζ(t)

0
π
(
t, s,G1(γ(s)), ...,Gn(γ(s))

)
ds

)
G2(t) = $

(
t, h(t,G1(α(t)), ...,Gn(α(t)),

∫ ζ(t)

0
π
(
t, s,G1(γ(s)), ...,Gn(γ(s))

)
ds

)
...

Gn(t) = $
(
t, h(t,G1(α(t)), ...,Gn(α(t)),

∫ ζ(t)

0
π
(
t, s,G1(γ(s)), ...,Gn(γ(s))

)
ds

)
(13)

in the space BC(R+) consisting of all bounded and continuous real functions onR+. Let$ : R3
→ R be such

that
$
(
t1, t2, t3

)
≥ 0,

for all t1, t2, t3 ∈ R+.
We will use a measure of noncompactness in the space BC(R+) which was constructed in the paper [9].
Let BC(R+) be endowed with the norm

‖G‖ = sup
{
|G(t)| : t ≥ 0

}
.

The modulus of continuity of a function G ∈ BC(R+) is defined by

ωT(G, ε) = sup
{
|G(t) − G(s)| : t, s ∈ [0,T], |t − s| ≤ ε

}
.

Let
ωT(∆, ε) = sup

{
ωT(G, ε) : G ∈ ∆

}
,

ωT
0 (∆) = lim

ε→0
ωT(∆, ε),

and
ω0(∆) = lim

T→∞
ωT

0 (∆).

Let
∆(t) =

{
G(t) : G ∈ ∆

}
,

and
diam∆(t) = sup

{
|G1(t) − G2(t)| : G1,G2 ∈ ∆

}
for a fixed number t ∈ R+.

Define
m(∆) = ω0(∆) + lim sup

t→∞
diam∆(t).

Banas [9] proved that the above function is a measure of noncompactness in the space BC(R+).

Theorem 4.1. Assume that

(i) α, ζ, γ : R+ −→ R+ are continuous functions and α(t)→∞ as t→∞.
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(ii) The function $ : R+ ×R2
−→ R is continuous and∣∣∣∣$(t1, σ1, σ2) − $(t2, ς1, ς2)

∣∣∣∣ ≤ Γ−1
(
ψ
(
Γ
(∣∣∣∣t1 − t2

∣∣∣∣ + max
{∣∣∣∣σ1 − ς1

∣∣∣∣, ∣∣∣∣σ2 − ς2

∣∣∣∣}))),
for all t1, t2 ∈ R+ and σ1, σ2, ς1, ς2 ∈ C(R).

(ii′) The function h : R+ ×Rn
−→ R is continuous so that∣∣∣∣h(t1, σ1, ..., σn) − h(t2, ς1, ..., ςn)

∣∣∣∣ ≤ ∣∣∣∣t1 − t2

∣∣∣∣ + max
{∣∣∣∣σ1 − ς1

∣∣∣∣, ..., ∣∣∣∣σn − ςn

∣∣∣∣},
for all t1, t2 ∈ R+ and σ1, ..., σn, ς1, ..., ςn ∈ BC(R+).

(iii) M := sup
{∣∣∣∣$(

t, 0, 0)
∣∣∣∣ : t ∈ R+

}
and N := sup

{∣∣∣∣h(t, 0, ..., 0)
∣∣∣∣ : t ∈ R+

}
.

(iv) π : R+ ×R+ ×Rn
−→ R is continuous. Moreover, there exist continuous functions a, b : R+ → R+ such that

|π(t, s,G1, ...,Gn)| ≤ a(t)b(s)

and limt→∞
∫ ζ(t)

0 a(t)b(s)ds = 0 for all G1, ...,Gn ∈ BC(R+) and t, s ∈ R+.

(v) There exists a positive solution r0 to the inequality

Γ−1
(
ψ
(
Γ
(

max
{
r + N,Q

})))
+ M ≤ r,

where Q = supt≥0

{∣∣∣∣ ∫ ζ(t)

0 a(t)b(s)ds
∣∣∣∣}.

Then the system of integral equations (13) has at least one solution in the space (BC(R+))n.

Proof. Let Υ : BC(R+) × ... × BC(R+) −→ BC(R+) be defined by

Υ(G1, ...,Gn)(t) = $
(
t, h(t,G1(α(t)), ...,Gn(α(t)),

∫ ζ(t)

0
π
(
t, s,G1(γ(s)), ...,Gn(γ(s))

)
ds

)
. (14)

Let t > 0 be fixed and {tn} be a sequence such that tn → t as n → ∞. Without loss of generality, we can
choose tn ≥ t. Then∣∣∣∣Υ(G1, ...,Gn)(tn) − Υ(G1, ...,Gn)(t)

∣∣∣∣
≤

∣∣∣∣$(
tn, h(tn,G1(α(tn)), ...,Gn(α(tn)),

∫ ζ(tn)

0
π(tn, s,G1(γ(s)), ...,Gn(γ(s))ds

)
− $

(
t, h(t,G1(α(t)), ...,Gn(α(t)),

∫ ζ(t)

0
π(t, s,G1(γ(s)), ...,Gn(γ(s))ds

)∣∣∣∣
≤ Γ−1

(
ψ
(
Γ
(∣∣∣∣tn − t

∣∣∣∣ + max
{
|h(tn,G1(α(tn)), ...,Gn(α(tn)) − h(t,G1(α(t)),Gn(α(t))|,

|

∫ ζ(tn)

0
π
(
tn, s,G1(γ(s)), ...,Gn(γ(s))

)
ds −

∫ ζ(t)

0
π
(
t, s,G1(γ(s)), ...,Gn(γ(s))

)
ds|

})))
≤ Γ−1

(
ψ
(
Γ
(∣∣∣∣tn − t

∣∣∣∣ + max{|tn − t| + max{|G1(α(tn)) − G1(α(t))|, ..., |Gn(α(tn)) − Gn(α(t))|,

|

∫ ζ(tn)

0
π
(
tn, s,G1(γ(s)), ...,Gn(γ(s))

)
ds −

∫ ζ(t)

0
π
(
t, s,G1(γ(s)), ...,Gn(γ(s))

)
ds|

})))
≤ Γ−1

(
ψ
(
Γ
(∣∣∣∣tn − t

∣∣∣∣ + max{|tn − t| + max{|G1(α(tn)) − G1(α(t))|, ..., |Gn(α(tn)) − Gn(α(t))|,

|

∫ ζ(tn)

ζ(t)
π
(
tn, s,G1(γ(s)), ...,Gn(γ(s))

)
ds|

+ |

∫ ζ(t)

0

(
π
(
tn, s,G1(γ(s)), ...,Gn(γ(s))

)
ds − π

(
t, s,G1(γ(s)), ...,Gn(γ(s))

))
ds|

})))
.
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Since Gi (1 ≤ i ≤ n), α, ζ and π are continuous functions, therefore it is observed that the above inequality
tends to 0, as n→∞.

We observe that the function Υ is bounded. Applying the assumptions (i) − (iv) we have∣∣∣∣Υ(G1, ...,Gn)(t)
∣∣∣∣

≤

∣∣∣∣$(
t, h(t,G1(α(t)), ...,Gn(α(t)),

∫ ζ(t)

0
π(t, s,G1(γ(s)), ...,Gn(γ(s))ds

)
− $

(
t, 0, 0

)∣∣∣∣ +
∣∣∣∣$(

t, 0, 0
)∣∣∣∣

≤ Γ−1
(
ψ
(
Γ
(

max
{∣∣∣∣h(t,G1(α(t)), ...,Gn(α(t))

∣∣∣∣, ∣∣∣∣ ∫ ζ(t)

0
π(t, s,G1(γ(s)), ...,Gn(γ(s))ds

∣∣∣∣}))) +
∣∣∣∣$(

t, 0, 0
)∣∣∣∣

≤ Γ−1
(
ψ
(
Γ
(

max
{

max
{
|G1(α(t))|, ..., |Gn(α(t))|

}
+ |h(t, 0, ..., 0)|,Q

})))
+

∣∣∣∣$(
t, 0, 0

)∣∣∣∣
≤ Γ−1

(
ψ
(
Γ
(

max
{

max
{
||G1||, ..., ||Gn||

}
+ N,Q

})))
+ M.

Therefore,

‖Υ(G1, ...,Gn)‖ ≤ Γ−1
(
ψ
(
Γ
(

max
{

max
{
||G1||, ..., ||Gn||

}
+ N,Q

})))
+ M. (15)

From (15) and by (v), it can be shown that Υ brings (B̄r0 )n into (B̄r0 ).
Now we prove that the operator Υ is a continuous operator on (B̄r0 )n. Let us fix arbitrarily ε > 0.
Take (u1, ...,un), (v1, ..., vn) ∈ (B̄r0 )n such that ‖u1 − v1‖ + ‖un − vn‖ < ε. Then for all t ∈ R+, we have∣∣∣∣Υ(u1, ...,un)(t) − Υ(v1, vn)(t)

∣∣∣∣
=

∣∣∣∣$(
t, h(t,u1(α(t)), ...,un(α(t)),

∫ ζ(t)

0 π(t, s,u1(γ(s)), ...,un(γ(s))ds
)

−$
(
t, h(t, v1(α(t)), ..., vn(α(t)),

∫ ζ(t)

0 π(t, s, v1(γ(s)), ..., vn(γ(s))ds
)∣∣∣∣

≤ Γ−1
(
ψ
(
Γ
(

max
{
|h(t,u1(α(t)), ...,un(α(t)) − h(t, v1(α(t)), ..., vn(α(t))|,∫ ζ(t)

0 π(t, s,u1(γ(s)), ...,un(γ(s))ds −
∫ ζ(t)

0 π(t, s, v1(γ(s)), ..., vn(γ(s))ds|
})))

≤ Γ−1
(
ψ
(
Γ
(

max
{

max{|u1(α(t)) − v1(α(t))|, ..., |un(α(t)) − vn(α(t))|},

|

∫ ζ(t)

0 π(t, s,u1(γ(s)), ...,un(γ(s))ds −
∫ ζ(t)

0 π(t, s, v1(γ(s)), ..., vn(γ(s))ds|
})))

.

Let

ωr0 (π, ε)

= sup
{
|π(t, s,u1, ...,un) − π(t, s, v1, ..., vn)| : t ∈ [0,T], s ∈ [0, ζT],u1, ...,un, v1, ..., vn ∈ [−r0, r0],

‖u1 − v1‖ + ... + ‖un − vn‖ < ε
}

where

ζT = sup
{
ζ(t) : t ∈ [0,T]

}
.

Therefore, for an arbitrary fixed t ∈ [0,T] we have∣∣∣∣Υ(u1, ...,un)(t) − Υ(v1, ..., vn)(t)
∣∣∣∣ ≤ Γ−1

(
ψ
(
Γ
(

max
{

max
{
‖u1 − v1‖, ..., ‖un − vn‖

}
, ζTωr0 (π, ε)

})))
.

Applying the continuity of π on [0,T] × [0, ζT] × [−r0, r0]n, we have ωr0 (π, ε) → 0 as ε → 0. Thus, Υ is a
continuous function on (B̄r0 )n.
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Now, we prove that Υ satisfies all conditions of Theorem 3.6. So, let ∆1, ...,∆n are nonempty and bounded
subsets of B̄r0 , and assume that T > 0 and ε > 0 are arbitrary constants. Let t1, t2 ∈ [0,T], with |t1 − t2| ≤ ε,
ζ(t1) ≤ ζ(t2) and (G1, ...,Gn) ∈ ∆1 × ... × ∆n. Then we have∣∣∣∣Υ(G1, ...,Gn)(t2) − Υ(G1, ...,Gn)(t1)

∣∣∣∣
≤ Γ−1

(
ψ
(
Γ
(∣∣∣∣$(

t2, h(t2,G1(α(t2)), ...,Gn(α(t2)),
∫ ζ(t2)

0 π(t2, s,G1(α(s)), ...,Gn(α(s))ds)

−$
(
t1, h(t2,G1(α(t2)), ...,Gn(α(t2)),

∫ ζ(t2)

0 π(t2, s,G1(α(s)), ...,Gn(α(s))ds)
∣∣∣∣

+
∣∣∣∣$(

t1, h(t2,G1(α(t2)), ...,Gn(α(t2)),
∫ ζ(t2)

0 π(t2, s,G1(α(s)), ...,Gn(α(s))ds)

−$
(
t1, h(t1,G1(α(t1)), ...,Gn(α(t1)),

∫ ζ(t2)

0 π(t2, s,G1(α(s)), ...,Gn(α(s))ds)
∣∣∣∣

+
∣∣∣∣$(

t1, h(t1,G1(α(t1)), ...,Gn(α(t1)),
∫ ζ(t2)

0 π(t2, s,G1(α(s)), ...,Gn(α(s))ds)

−$
(
t1, h(t1,G1(α(t1)), ...,Gn(α(t1)),

∫ ζ(t1)

0 π(t2, s,G1(α(s)), ...,Gn(α(s))ds)
∣∣∣∣

+
∣∣∣∣$(

t1, h(t1,G1(α(t1)), ...,Gn(α(t1)),
∫ ζ(t1)

0 π(t2, s,G1(α(s)), ...,Gn(α(s))ds)

−$
(
t1, h(t1,G1(α(t1)), ...,Gn(α(t1)),

∫ ζ(t1)

0 π(t1, s,G1(α(s)), ...,Gn(α(s))ds)
∣∣∣∣)))

≤ Γ−1
(
ψ
(
Γ
(
|t2 − t1| +

∣∣∣∣h(t2,G1(α(t2)), ...,Gn(α(t2))) − h(t1,G1(α(t1)), ...,Gn(α(t1)))
∣∣∣∣

+
∣∣∣∣ ∫ ζ(t2)

ζ(t1) π(t2, s,G1(α(s)), ...,Gn(α(s))ds
∣∣∣∣ + ζ(T)ωT

r0,G
(π, ε)

)))
≤ Γ−1

(
ψ
(
Γ
(
|t2 − t1| + |t2 − t1| + max

{
|G1(α(t2)) − G1(α(t1))|, ..., |Gn(α(t2)) − Gn(α(t1))|

}
+(ζ(t2) − ζ(t1))Ur0 (π, ε) + ζ(T)ωT

r0
(π, ε)

)))
where

ωT(ρ, ε) = sup
{
|ρ(t2) − ρ(t1)| : t1, t2 ∈ [0,T], |t2 − t1| ≤ ε

}
,

ωT(%, ωT(ρ, ε)) = sup
{
|%(t2) − %(t1)| : t1, t2 ∈ [0,T], |t2 − t1| ≤ ω

T(ρ, ε)
}
,

ζ(T) = sup
{
ζ(t) : t ∈ [0,T]

}
,

Ur0 = sup
{
|π(t, ς,G1, ...,Gn)| : t ∈ [0,T], ς ∈ [0, ζ(T)],G1, ...,Gn ∈ [−r0, r0]

}
,

and

ωT
r0

(π, ε) = sup
{
|π(t2, ς,G1, ...,Gn) − π(t1, ς,G1, ...,Gn)| : t1, t2 ∈ [0,T],

|t2 − t1| ≤ ε,G1, ...,Gn) ∈ [−r0, r0], ς ∈ [0, ζ(T)]
}
,

Since (G1, ...,Gn) was arbitrary elements of ∆1 × ... × ∆n in the above inequality, we have

ωT(Υ(∆1 × ... × ∆n), ε) (16)

≤ Γ−1(ψ(Γ(2|t2 − t1| + max{ωT(G1, ω
T(α, ε)), ..., ωT(Gn, ω

T(α, ε))} + (ζ(t2) − ζ(t1))Ur0 (π, ε) + ζ(T)ωT
r0

(π, ε)))).

Moreover, in the light of the uniform continuity of the functions π and ζ on

[0,T] × [0, ζ(T)] × [−r0, r0]n,

and
[0,T]
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respectively, ωT
r0

(π, ε) −→ 0 and (ζ(t2) − ζ(t1))Ur0 (π, ε) −→ 0 as ε −→ 0.

Also, because of the uniform continuity of α and ζ on [0,T], ωT(α, ε) −→ 0 as ε −→ 0.

Now, this remarks and the inequality 16 via tending ε→ 0 imply that

ωT
0 (Υ(∆1 × ... × ∆n)) ≤ Γ−1

(
ψ
(
Γ
(

max
{
ωT

0 (∆1), ..., ωT
0 (∆n)

})))
. (17)

Furthermore, taking T→∞, we obtain that

ω0(Υ(∆1 × ... × ∆n)) ≤ Γ−1
(
ψ
(
Γ
(

max
{
ω0(∆1), ..., ω0(∆n)

})))
. (18)

Now, for arbitrary elements (G1, ...,Gn), (U1, ...,Un) ∈ ∆1 × ... × ∆n and for all t ∈ R+, we have

∣∣∣∣Υ(G1, ...,Gn)(t) − Υ(U1, ...,Un)(t)
∣∣∣∣

≤ Γ−1
(
ψ
(
Γ
(

max
{

max
{
G1(α(t)) −U1(α(t))|, ..., |Gn(α(t)) −Un(α(t))|

}
, 2a(t)

∫ ζ(t)

0 b(s)ds
})))

.
(19)

Now, using the above inequality and the notion of diameter of a set, we have

diam(Υ(∆1 × ... × ∆n)(t))
≤ Γ−1

(
ψ
(
Γ
(

max
{

max
{
diam∆1(α(t)), ..., diam∆n(α(t))

}
, 2a(t)

∫ ζ(t)

0 b(s)ds
}))) (20)

and hence

lim supt→∞ diam(Υ(∆1 × ... × ∆n)(t))
≤ Γ−1

(
ψ
(
Γ
(

max
{

lim supt→∞ diam∆1(t), ..., lim supt→∞ diam∆n(t)
})))

.
(21)

Adding inequalities 18 and 21 and by assuming that the combination function Γ−1
(
ψ
(
Γ
))

is super-additive,
we obtain that

m(Υ(∆1 × ... × ∆n))
= ω0(Υ(∆1 × ... × ∆n)) + lim supt→∞ diam(Υ(∆1 × ... × ∆n)(t))
≤ Γ−1

(
ψ
(
Γ
(

max
{
ω0(∆1), ..., ω0(∆n)

})))
+Γ−1

(
ψ
(
Γ
(

max
{

lim supt→∞ diam∆1(t), ..., lim supt→∞ diam∆n(t)
})))

≤ Γ−1
(
ψ
(
Γ
(

max
{
m(∆1), ...,m(∆n

})))
.

(22)

So, we get

Γ(m(Υ(∆1 × ... × ∆n))) ≤ ψ
(
Γ
(

max
{
m(∆1), ...,m(∆n)

}))
. (23)

Thus, from Theorem 3.6 we obtain that the operator Υ has a Presić type fixed point. Thus, the system of
functional integral equations (13) has at least one solution in (BC(R+))n.
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5. Example

Example 5.1. Let:

G1(ι) = 1
7 e−ι2 + 1

2

e−ι
2 +

(
∑n

i=1 Gi(ι))
2+ι

1 + e−ι
2 +

(
∑n

i=1 Gi(ι))
2+ι

+
1
2

∫ ι2
0

e−(ι+κ) sin2(
∑n

i=1G
i
i(κ))

cosh(2
∑n

i=1G
i
i(κ))

dκ

1 +
∫ ι2

0

e−(ι+κ) sin2(
∑n

i=1G
i
i(κ))

cosh(2
∑n

i=1G
i
i(κ))

dκ

...

Gn(ι) = 1
7 e−ι2 + 1

2

e−ι
2 +

(
∑n

i=1 Gi(ι))
2+ι

1 + e−ι
2 +

(
∑n

i=1 Gi(ι))
2+ι

+
1
2

∫ ι2
0

e−(ι+κ) sin2(
∑n

i=1G
i
i(κ))

cosh(2
∑n

i=1G
i
i(κ))

dκ

1 +
∫ ι2

0

e−(ι+κ) sin2(
∑n

i=1G
i
i(κ))

cosh(2
∑n

i=1G
i
i(κ))

dκ

.

(24)

The above system is a special case of (13) with

α(ι) = γ(ι) = ι, ζ(ι) = ι2, ι ∈ [0,∞),

$(ι,G1,G2) =
1
7

e−ι
2
+

1
2
G1

1 +G1
+

1
2
G2

1 +G2
,

π(ι, κ,G1, ...,Gn) =
e−(ι+κ) sin2(

∑n
i=1G

i
i(κ))

cosh(2
∑n

i=1G
i
i(κ))

,

and

h(ι,G1, ...,Gn) =
e−ι

2
+

(
∑n

i=1Gi(ι))
2 + ι

.

Also, takeD(ι) = 2
3 . To prove the existence of a solution for this system, we should interrogate the conditions (i)-(v)

of 1heorem 4.1.
Condition (i) is clearly evident. Now

|h(ι1,G1, ...,Gn) − h(ι2,U1, ...,Un)| ≤ |
e−ι1

2
−

e−ι2

2
| + |

(
∑n

i=1Gi(ι1))
n + ι1

−
(
∑n

i=1Ui(ι2))
n + ι2

| (25)

≤ |ι1 − ι2| +
1
n

(|G1 −U1| + ... + |Gn −Un|)

≤ |ι1 − ι2| + max{|G1 −U1|, ..., |Gn −Un|},

and ∣∣∣$(ι1,G1,G2) − $(ι2,U1,U2)
∣∣∣ ≤ ln [e

1
7 |ι1−ι2 |+

1
2 |
G1

1+G1
+
G2

1+G2
−
U1

1+U1
−
U2

1+U2
|

]
1
3

2

≤ ln [e
1
7 |ι1−ι2 |+

1
2 (

|G1−U1 |
(1+G1)(1+U1) +

|G2−U2 |
(1+G2)(1+U2) )

]
1
3

2

≤ ln [e
1
7 |ι1−ι2 |+

1
2 (|G1−U1 |+|G2−U2 |)]

1
3

2

≤ ln [e1+|ι1−ι2 |+max{|G1−U1 |,|G2−U2 |}]
1
3

2 .
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Therefore, we have∣∣∣$(ι1,G1,G2) − $(ι2,U1,U2)
∣∣∣ ≤ Γ−1

(
ψ
(
Γ
(
|t1 − t2| + max{|G1 −U1|, |G2 −U2|}

)))
where Γ(x) = ex and ψ(x) = x

1
3

2 .
We can find that $ satisfies condition (ii) of Theorem 4.1. Also,

M = sup{|$(ι, 0, 0)| : ι ∈ [0,∞)} = sup{
1
7

e−ι
2

: ι ∈ [0,∞)} ' 0.14285714285

and
N = sup{|h(ι, 0, ..., 0)| : ι ∈ [0,∞)} = sup{

1
2

e−ι : ι ∈ [0,∞)} =
1
2
.

Moreover, π is continuous on R+ ×R+ ×R2 and

|π(ι, κ,G1, ...,Gn)| = |
e−(ι+κ) sin2(

∑n
i=1G

i
i(κ))

cosh(2
∑n

i=1G
i
i(κ))

| ≤ e−(ι+κ).

Therefore, a(ι) = e−ι, b(κ) = e−κ.
On the other hand,

Q = sup{|
∫ ι2

0
a(ι)b(κ)dκ| : ι, κ ∈ [0,∞)}

= sup{|
∫ ι2

0
e−(ι+κ)dκ| : ι, κ ∈ [0,∞)}

= sup{|e−ι(1 − e−ι
2
)| : ι, κ ∈ [0,∞)} ' 0.23384.

Furthermore, for every r ≥ 0,

Γ−1
(
ψ
(
Γ
(

max
{
r + N,Q

})))
+ M

= ln( (e
max

{
r+ 1

2 ,0.23384

}
)

1
3

2 ) + 1/7

= ln( e
r
3 + 1

6

2 ) + 1/7 ≤ r.

Consequently, all the reservations of Theorem 4.1 are fulfilled. Hence, the system of integral equations (24) has at
least one solution which belongs to the space (BC(R+))n.
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