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Abstract. Tridiagonal matrices with constant main diagonal and reciprocal pairs of off-diagonal entries
are considered. Conditions for such matrices with sizes up to 6-by-6 to have elliptical numerical ranges are
obtained.

1. Introduction

Let Mn stand for the algebra of all n-by-n matrices A with the entries ai j ∈ C, i, j = 1, . . .n. We will
identify A ∈ Mn with a linear operator acting on Cn, the latter being equipped with the standard scalar
product 〈·, ·〉 and the associated norm ‖x‖ := 〈x, x〉1/2. The numerical range of A is defined as

W(A) = {〈Ax, x〉 : ‖x‖ = 1}, (1.1)

see e.g. [10, Chapter 1] or more recent [6, Chapter 6] for the basic properties of W(A), in particular its
convexity (the Toeplitz-Hausdorff theorem) and invariance under unitary similarities.

For our purposes it is important that W(A) is the convex hull of a certain curve C(A) associated with the
matrix A, described as follows. Using the standard notation

Re A =
A + A∗

2
, Im A =

A − A∗

2i
,

let λ1(θ), . . . , λn(θ) be the spectrum of Re(eiθA), counting the multiplicities. Then the tangent lines of C(A)
with the slope cotθ are {e−iθ(λk(θ) + it) : t ∈ R}, k = 1, . . . ,n. We will thus call the characteristic polynomial
of Re(eiθA),

PA(λ, θ) = det
(
Re(eiθA) − λI

)
, (1.2)

the NR generating polynomial of A. The connection between C(A) and W(A) was established by Kippenhahn
[11] (see also the English translation [12]) and following [6, Chapter 13] we will call C(A) the Kippenhahn
curve of the matrix A.
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In algebraic-geometrical terms, C(A) is the dual of a curve of degree n, which makes it a curve of class
n. Class two curves are the same as curves of degree two, thus implying that for A ∈ M2 the Kippenhahn
curve is an ellipse, in the case of normal A degenerating into the doubleton of its foci.

A matrix A ∈ Mn is tridiagonal if ai j = 0 whenever
∣∣∣i − j

∣∣∣ > 1. We will be making use of the well known
(and easy to prove) recursive relation for the determinants ∆n of such matrices,

∆n = ann∆n−1 − an−1,nan,n−1∆n−2. (1.3)

In this paper, we are interested mostly in tridiagonal matrices with an additional property that their
main diagonal is constant: a j j := a, j = 1, . . . ,n. Let us standardize the notation as follows:

A(n; a, b, c) =


a b1 0 . . . 0
c1 a b2 . . . 0
...

. . .
. . .

. . .
...

0 0 cn−2 a bn−1
0 . . . 0 cn−1 a


. (1.4)

Since W(A − λI) = W(A) − λ for any A ∈Mn and λ ∈ C, it suffices to concentrate our attention on matrices
A(n; 0, b, c) with the zero main diagonal. For n > 3, we will restrict our attention further to what we will call
reciprocal matrices. Namely, in addition to A being of the form A(n; 0, b, c) we will also suppose that b jc j = 1
for all j = 1, . . . ,n − 1, writing this symbolically as

A = A(n; 0, b, b−1). (1.5)

Section 2 contains some properties of the NR generating polynomials and Kippenhahn curves of tridi-
agonal, in particular reciprocal, matrices. A necessary condition for ellipticity of the numerical range is
also established in this section, while its concrete implementations (along with the proof of sufficiency) for
4-by-4 and 5-by-5 reciprocal matrices are provided in Section 3. The last two sections are devoted to 6-by-6
reciprocal matrices. In Section 4 criteria for the Kippenhahn curve of such matrices to contain an elliptical
component are derived. By way of example it is also shown there that this component may be the exterior
one thus guaranteeing the ellipticity of W(A) without all the components of C(A) being ellipses. Section 5 in
turn is devoted to the case when C(A) consists of three ellipses and contains an example of a non-Toeplitz
reciprocal matrix with this property.

The authors are thankful to the anonymous referee for the valuable comments and suggestions, which
prompted in particular the inclusion of Proposition 5.

2. Preliminary results

We start with some basic observations concerning NR generating polynomials of matrices (1.4).

Proposition 1. The NR generating polynomial of A(n; 0, b, c) is an even/odd function of λ if n is even (resp., odd).

Proof. Matrices Re(eiθA) − λI are tridiagonal along with A = A(n; 0, b, c). More specifically,

Re(eiθA(n; 0, b, c)) − λI = A
(
n;−λ, (eiθb + e−iθc)/2, (e−iθb + e−iθc)/2

)
and so (1.3) implies

det
(
Re(eiθA(n; 0, b, c)) − λI

)
= −λdet

(
Re(eiθA(n − 1; 0, b, c)) − λI

)
−

∣∣∣eiθbn−1 + e−iθcn−1

∣∣∣2
4

det
(
Re(eiθA(n − 2; 0, b, c)) − λI

)
.
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Since det
(
Re(eiθA(1; 0, b, c)

)
= −λ and

det
(
Re(eiθA(2; 0, b, c)

)
= λ2

−

∣∣∣eiθb1 + e−iθc1

∣∣∣2/4,
the result follows by induction.

Corollary 1. The Kippenhahn curve of A = A(n; 0, b, c) is central symmetric, for n odd having the origin as one of
its components.

In particular, the numerical range of A(n; 0, b, c) is central symmetric — a fact observed for the first time (to
the best of our knowledge) in [4, Theorem 1]. If n = 3, Corollary 1 implies that C(A) consists of an ellipse
centered at the origin and the origin itself. Thus, W(A) is an elliptical disk (degenerating into a line segment
if A is normal) centered at the origin. This fact also follows from [2, Theorem 4.2].

If A is a reciprocal matrix, then∣∣∣eiθb j + e−iθc j

∣∣∣2 =
∣∣∣b j

∣∣∣2 +
∣∣∣b j

∣∣∣−2
+ 2 cos(2θ) = 2(A j + τ), j = 1, . . . ,n − 1, (2.1)

where for notational convenience we relabeled∣∣∣b j

∣∣∣2 +
∣∣∣c j

∣∣∣2 := 2A j and cos(2θ) = τ. (2.2)

Note that A j ≥ 1, and the extremal case

A1 = . . . = An−1 = 1 (2.3)

is easy, due to the following:

Proposition 2. An n-by-n reciprocal matrix A is normal if and only if (2.3) holds. If this is the case, then A is in
fact hermitian, and W(A) is the real line segment with the endpoints ±2 cos π

n+1 .

Proof. If a tridiagonal matrix (1.4) is normal, the equalities
∣∣∣b j

∣∣∣ =
∣∣∣c j

∣∣∣ can be obtained via a direct verification,
or by applying the normality criterion from [2, Lemma 5.1]. For a reciprocal A from

∣∣∣b j

∣∣∣ =
∣∣∣c j

∣∣∣ it then follows
that b j = c j, thus making A hermitian. Moreover, such A is unitarily similar to a tridiagonal Toeplitz matrix
(1.4) with a = 0 and b j = c j = 1. The description of W(A) then follows from the well known formula

λ j = 2 cos
π j

n + 1
, j = 1, . . . ,n

for the eigenvalues of A (see e.g. [1, Theorem 2.4]).

In this case C(A) = σ(A).
On the other hand, the case

A1 = . . . = An−1 := A0 > 1 (2.4)

is covered by [2]. According to [2, Theorem 3.3], W(A) is then an elliptical disk. Following the proof of this
theorem more closely, as in [3, Section 5], reveals that in fact the “hidden” components of C(A) are also all
elliptical.

Theorem 3. Let (2.4) hold. Then C(A) = ∪dn/2ej=1 σ jE, where E is the ellipse with the foci ±1 and the axes having

lengths
√

2(A0 ± 1), while

σ j = 2 cos
jπ

n + 1
, j = 1, . . . , dn/2e. (2.5)
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Note that the number of non-degenerate ellipses constituting C(A) is bn/2c. Indeed, if n is odd, then
σdn/2e = 0, and the respective component degenerates into the point {0}.

The only difference in the statement of Theorem 3 from the material already contained in [3] is the
explicit formula (2.5) for the s-numbers σ j of the dn/2e × bn/2cmatrix X with the entries

xi j =

1 if i − j = 0, 1
0 otherwise.

This covers in particular tridiagonal Toeplitz matrices, for which the ellipticity of their numerical ranges
was established much earlier in [7].

In order to move beyond cases (2.3) and (2.4), we need to further analyze properties of NR generating
polynomials (1.2). Tracking the coefficients of PA(λ, θ) in the proof of Proposition 1 when matrices under
consideration are reciprocal yields the following, more precise, statement. For convenience of notation, in
addition to (2.2) we also introduce

ζ = λ2, k = bn/2c.

Proposition 4. Let A ∈Mn be a reciprocal matrix. Then its NR generating polynomial has the form

Pn(ζ, τ) = ζk +

k−1∑
j=0

p j(τ)ζ j, (2.6)

premultiplied by −λ in case n is odd. Here p j are polynomials in τ of degree k − j and coefficients depending only on
A1, . . .An−1.

In particular, NR generating polynomials of reciprocal matrices are invariant under the change θ 7→ −θ.
Combined with the central symmetry of C(A), this observation implies

Corollary 2. Let A be a reciprocal matrix. Then its Kippenhahn curve C(A), and thus also the numerical range
W(A), is symmetric about both coordinate axes.

For completeness, we include a result on (unitary) similarity properties of reciprocal matrices.

Proposition 5. Let A be a reciprocal matrix as in (1.5). Then:

(a) A is unitarily similar to A(n; 0, |b| , |b|−1), where |b| := (|b1| , . . . , |bn−1|);
(b) A and −A are unitarily similar;
(c) A is similar to A(n; 0, 1, 1) = Jn + J∗n, where Jn ∈Mn is the Jordan block corresponding to the zero eigenvalue.

Proof. Denote by x j the product b1 · · · b j and introduce diagonal matrices X = diag[1, x1, . . . , xn−1], U =

diag[1, ei arg x1 , . . . , ei arg xn−1 ], and V = diag[−1, 1, . . . , (−1)n]. Then UAU∗ = A(n; 0, |b| , |b|−1), VAV∗ = −A, and
XAX−1 = A(n; 0, 1, 1).

Note that parts (a) and (b) provide alternative explanations for C(A) being symmetric, respectively, across
the real line and the origin. Part (c), on the other hand, guarantees that the spectra of all reciprocal matrices
are the same and equal σ(A) = {2 cos( jπ/(n + 1)) : j = 1, . . . ,n}. Consequently, the foci of C(A) are also the
same for all reciprocal matrices, thus coinciding with those of the ellipses from Theorem 3.

We also need the following simple technical observation, which is a reformulation of a well known fact
repeatedly used in the numerical range related literature (see, e.g., [5] or [8]). It holds for all A ∈ Mn, not
just tridiagonal matrices.

Proposition 6. The Kippenhahn curve C(A) of A ∈ Mn contains an ellipse centered at the origin if and only if the
NR generating polynomial of A is divisible by

λ2
− (x cos(2θ) + y sin(2θ) + z) (2.7)

with x, y, z ∈ R such that z >
√

x2 + y2.
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Combining the results stated above, we arrive at a necessary condition for a reciprocal matrix to have
an elliptical numerical range.

Theorem 7. Let A be a reciprocal matrix with its numerical range being an elliptical disk. Then polynomial (2.6) is
divisible by ζ − (xτ + z), where

√
z ± x are the lengths of the half-axes of W(A). Equivalently,

Pn(xτ + z, τ) = 0 for all τ. (2.8)

Proof. According to Corollary 2, W(A) has to be axes-aligned and centered at the origin. Since its boundary
E is a component of C(A), Proposition 6 implies that Pn is divisible by (2.7) with some triple x, y, z. The
geometry of E means that y = 0 and the values of z ± x are as described in the statement. Finally, (2.8)
follows from the remainder theorem.

Treating Pn(xτ+z, τ) as a polynomial in τ, (2.8) can be rewritten as the system of k+1 algebraic equations
in x, z,A1, . . . ,An−1. So, the (n− 1)-tuples {A1, . . . ,An−1} for which this system is consistent form an algebraic
variety defined by k − 1 polynomial equations.

3. Reciprocal 4-by-4 and 5-by-5 matrices

In full agreement with Proposition 4, polynomials (2.6) for n = 4 and n = 5 are as follows:

P4(ζ, τ) = ζ2
−

1
2
ζ (A1 + A2 + A3 + 3τ) +

1
4

(A1 + τ)(A3 + τ) (3.1)

and

P5(ζ, τ) = ζ2
− ζ

(1
2

(A1 + A2 + A3 + A4) + 2τ
)

+
1
4

(
(A1 + τ)(A3 + τ) + (A1 + τ)(A4 + τ) + (A2 + τ)(A4 + τ)

)
. (3.2)

Using the explicit formulas (3.1),(3.2), in the next two theorems we restate the necessary condition of
Theorem 7 in a constructive way and show that it is also sufficient. The proofs of these results have a similar
outline, varying in computational details only.

Theorem 8. A reciprocal 4-by-4 matrix A has an elliptical numerical range if and only if

A2 = φA1 − φ
−1A3 or A2 = φA3 − φ

−1A1, (3.3)

where φ =
√

5+1
2 is the golden ratio, and at least one of the inequalities A j ≥ 1 ( j = 1, 2, 3) is strict. Moreover, in this

case C(A) is the union of two nested axis-aligned ellipses centered at the origin.

Proof. Necessity. Case (2.3) is excluded due to Proposition 2. When divided by ζ− (xτ+ z), polynomial (3.1)
yields the quotient ζ − (x1τ + z1), where

x1 =
3
2
− x, z1 =

1
2

(A1 + A2 + A3) − z,

while condition (2.8) takes the form of the system:
x
(
x − 3

2

)
+ 1

4 = 0
z
(
z − 1

2 (A1 + A2 + A3)
)

+ 1
4 A1A3 = 0

(x − 3
2 )z + x

(
z − 1

2 (A1 + A2 + A3)
)

+ 1
4 (A1 + A3) = 0.
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Solving the first two equations for x and z, respectively:

x =
3 ±
√

5
4

, z =
1
4

(A1 + A2 + A3 ±
√

(A1 + A2 + A3)2 − 4A1A3). (3.4)

Plugging these values of x and z into the last equation of the system reveals that it is consistent if and only
if the signs in (3.4) match, and√

(A1 + A2 + A3)2 − 4A1A3 =

√
5

5
(A1 + 3A2 + A3). (3.5)

Finally, solving (3.5) for A2 yields (3.3).
Sufficiency. Given (3.3) and choosing upper signs in (3.4), we arrive at the factorization of (3.1) as

(ζ − (xτ + z)) (ζ − (x1τ + z1)). Condition A1 + A2 + A3 > 3 guarantees that (0 <) x < z. From here and the
relation 4(xτ + z)(x1τ + z1) = (A1 + τ)(A3 + τ) we conclude that C(A) consists of a non-degenerate ellipse
E and an ellipse E1, degenerating into the doubleton of its foci if A1 = 1 or A3 = 1. Furthermore, E1 lies
completely inside E. Indeed,

z − z1 = 2z −
1
2

(A1 + A2 + A3) =
1
2

√
(A1 + A2 + A3)2 − 4A1A3

is bigger than
√

5
2 due to (3.5) while x − x1 = 2x − 3

2 =
√

5
2 , implying that xτ + z > x1τ + z1 for all τ ∈ [−1, 1].

So, W(A) is the elliptical disk bounded by E, both E and E1 are centered at the origin due to the central
symmetry of C(A), and their major axes are horizontal because x, x1 > 0.

Visualizing reciprocal 4-by-4 matrices as points {A1,A2,A3} in R3
+ we see that those with elliptical

numerical ranges form a 2-dimensional manifold M4 described by (3.3). These equations show that M4
contains the ray (2.4), as it should according to Theorem 3. The same equations imply the following

Corollary 3. The intersection ofM4 with any of the bisector planes Ai = A j (i , j) consists only of the ray (2.4).

It is worth mentioning that the ray A2 = 1,A1 = A3 > 1 corresponds to matrices with so called bi-elliptical
numerical ranges, i.e. convex hulls of two non-concentric ellipses (see [9, Theorem 7]).

Theorem 9. A reciprocal 5-by-5 matrix A has an elliptical numerical range if and only if

A1 = A4 or A1 − A4 = 2(A3 − A2) (3.6)

and at least one of the inequalities A j ≥ 1 ( j = 1, . . . , 4) is strict. Moreover, in this case C(A) is the union of the origin
and two nested axis-aligned ellipses centered there.

So, in contrast with the case n = 4, a reciprocal matrix A ∈M5 can have an elliptical numerical range while
some but not all of its parameters A j coincide.

Proof. The factor −λ of the NR generating polynomial of A corresponds to {0} as a component of C(A).
Having duly noted that, we proceed by using (3.2) in place of (3.1) but otherwise basically along the same
lines as in the proof of Theorem 8, with the computations surprisingly being even simpler.

Necessity. Case (2.3) is excluded due to Proposition 2. When divided by ζ − (xτ + z), polynomial (3.2)
yields the quotient ζ − (x1τ + z1), where

x1 = 2 − x, z1 =
1
2

(A1 + A2 + A3 + A4) − z,

while condition (2.8) takes form of the system
x(x − 2) + 3

4 = 0
z
(
z − 1

2 (A1 + A2 + A3 + A4)
)

+ 1
4 (A1A3 + A1A4 + A2A4) = 0

(x − 2)z + x
(
z − 1

2 (A1 + A2 + A3 + A4)
)

+ 1
4 (2A1 + A2 + A3 + 2A4) = 0.
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Solving the first two equations for x and z, respectively:

x = 1 ±
1
2
, z =

1
4

(A1 + A2 + A3 + A4 ±D), (3.7)

where

D =
√

(A1 + A2 + A3 + A4)2 − 4(A1A3 + A1A4 + A2A4).

Plugging the value of z from (3.7) into the last equation of the system yields

±2(x − 1)D = A2 + A3.

So, the system is consistent if and only if the signs in (3.7) match, and D = A2 + A3. The latter condition is
equivalent to (3.6).

Sufficiency. Given (3.6) and choosing upper signs in (3.7), we arrive at the factorization of (3.2) as

P5(ζ, τ) = (ζ − (xτ + z)) (ζ − (x1τ + z1)) . (3.8)

Conditions D = A2 + A3 ≥ 2 and A1 + A2 + A3 + A4 > 4 guarantee that (0 <) x < z. From here and the relation

4(xτ + z)(x1τ + z1) = (A1 + τ)(A3 + τ) + (A1 + τ)(A4 + τ) + (A2 + τ)(A3 + τ)

we conclude that C(A) consists of {0}, a non-degenerate ellipse E and a (possibly degenerating into a
doubleton) ellipse E1. Furthermore, E1 lies inside E, with a non-empty intersection occurring only if
A2 = A3 = 1. Indeed,

z − z1 = 2z −
1
2

(A1 + A2 + A3 + A4) =
1
2

D =
1
2

(A2 + A3) ≥ 1

while x − x1 = 2x − 2 = 1.

For convenience of future use, let us provide the explicit form of factorization (3.8) when (3.6) holds:

P5(ζ, τ) =


(
ζ − A1+A2+A3+3τ

2

) (
ζ − A1+τ

2

)(
ζ − 2A3+A4+3τ

2

) (
ζ − A3+A4−A2+τ

2

) (3.9)

if A1 − A4 equals zero or 2(A3 − A2), respectively.

Example 1. For the 5 × 5 reciprocal matrix (1.5) with the superdiagonal string b = (1.5, 2, 2.5, 1.5) we have

A1 = A4 = 1.3472, A2 = 2.125, A3 = 3.205,

and according to the upper line of (3.9)

P5(ζ, τ) =
(
ζ −

6.67722 + 3τ
2

) (
ζ −

1.34722 + τ
2

)
.

The Kippenhahn curve of this matrix, consisting of two ellipses and the origin, is shown in Figure 1.
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-2 -1 1 2

-1.0

-0.5

0.5

1.0

Figure 1: b1 = 1.5, b2 = 2, b3 = 2.5, b4 = 1.5. The curves are exactly elliptical.

Now let A be a reciprocal matrix (1.5) with b = (1.5, 2, 2, 3). Then A1 − A4 ≈ −3.2, A3 − A2 = 0, and so (3.6)
does not hold. The Kippenhahn curve of this matrix is shown in Figure 2. Its components are non-elliptical; the best
fitting ellipses are pictured as dotted curves.

-2 -1 1 2

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 2: b1 = 1.5, b2 = 2, b3 = 2, b4 = 3. The curves look elliptical but they are not exactly elliptical.
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4. Reciprocal 6-by-6 matrices with C(A) containing an ellipse

When n increases, things get more complicated. It may become impossible to state the divisibility
condition from Proposition 6 in exact arithmetic. Besides, this condition does not any longer guarantee the
ellipticity of W(A). We will illustrate these phenomena for n = 6.

Formula (2.6) then takes the form:

P6(ζ, τ) = ζ3
−

1
2
ζ2 (A1 + A2 + A3 + A4 + A5 + 5τ)

+
1
4
ζ (A1 (A3 + A4 + A5) + A2 (A4 + A5) + A3A5 + (3(A1 + A5)

+ 2 (A2 + A3 + A4)) τ + 6τ2
)
−

1
8

(A1 + τ) (A3 + τ) (A5 + τ) . (4.1)

Consequently,

P6(xτ + z, τ) =
1
8
τ3

(
8x3
− 20x2 + 12x − 1

)
+ τ2Q1(x, z) + τQ2(x, z) + Q3(x, z).

Here

Q1 = q11z + q10, Q2 = q22z2 + q21z + q20, Q3 = z3 + q32z2 + q31z + q30 (4.2)

with qi j given by

q11 =3x2
− 5x +

3
2
, q22 = 3x −

5
2
,

q10 = −
1
2

(A1 + A2 + A3 + A4 + A5) x2

+
1
4

(3A1 + 2A2 + 2A3 + 2A4 + 3A5) x −
1
8

(A1 + A3 + A5) ,

q21 = − (A1 + A2 + A3 + A4 + A5) x +
1
4

(3A1 + 2A2 + 2A3 + 2A4 + 3A5) ,

q20 =
1
4

(A1A3 + A5A3 + A1A4 + A2A4 + A1A5 + A2A5) x

−
1
8

(A1A3 + A5A3 + A1A5) ,

q32 = −
1
2

(A1 + A2 + A3 + A4 + A5) ,

q31 =
1
4

(A1A3 + A5A3 + A1A4 + A2A4 + A1A5 + A2A5) ,

q30 = −
1
8

A1A3A5.

Condition (2.8) therefore is nothing but the requirement for all three Q j from (4.2) to vanish at the same root
of the cubic equation

8x3
− 20x2 + 12x − 1 = 0. (4.3)

In turn, this happens if and only if the resultant R1 of Q1 and Q2, as well as the resultant R2 of Q1 and Q3,
are equal to zero. A somewhat lengthy but straightforward computation, with the repeated use of (4.3),
reveals that R1,R2 can be treated as quadratic polynomials in x. Namely,

R j(x) = r j2x2 + r j1x + r j0, j = 1, 2, (4.4)
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where

r12 = − 8(A2
1 + A2A3 + A3A4 + A2

5) − 28(A1A2 − A1A4 − A2A5 + A4A5)

+ 4(A1A3 + A3A5 + A2
3) − 12(A2

2 + A2
4 − A1A5) + 32A2A4,

r11 =12(A2
2 + A2

4) + 18(A1A2 − A2A4 + A3A5) − 24(A1A4 + A2A5)

+ 6(A1A3 − A2
3 + A3A5),

r10 =4(A2
1 − A2

2 − A2
4 + A2

5 + A2A3 + A3A4) − (A1A2 + A2A4 + A4A5)

− 7(A1A3 + A3A5) + 6(A1A4 − A1A5 + A2A5) + 3A2
3

and

r22 = − 12(A3
1 + A3

5) − 48(A2
1A2 + A4A2

5) − 60(A1A2
2 + A2

4A5) − 16(A3
2 + A3

4)

+ 44(A1A2
3 − A1A2A3 + A1A2A5 + A2

3A5 + A1A4A5 − A3A4A5)

− 36(A2
2A3 − A2

2A4 − A2A2
4 + A3A2

4) − 24(A2A2
3 + A2

3A4 − A1A2
4 − A2

2A5)

+ 8(A2
1A4 + A2A2

5) + 20(−A1A2A4 + A2
1A5 + A2A4A5 + A1A2

5)

+ 68(A1A3A4 + A2A3A5) − 4A3
3 + 40A2A3A4 − 84(A1A3A5),

r21 =14(A3
1A3

5 − A1A2
4 − A2

2A5) + 56(A1A2
2 + A2

4A5) + 16(A3
2 + A3

4)

− 12(A2
1A3 + A3A2

5) + 30(A2
2A3 + A3A2

4) − 50(A1A2
3 + A2

3A5)

+ 20(A2A2
3 + A2

3A4) − 22(A2
1 + A2

2A4 + A2A2
4 + A2A2

5)

− 28(A1A2A4 + A2
1A5 + A2A4A5 + A1A2

5) − 66(A1A3A4 + A2A3A5)

− 44(A1A2A5 + A1A4A5) + 48(A2
1A2 + A4A2

5) + 46(A1A2A3 + A3A4A5)

+ 6A3
3 + 158A1A3A5 − 52A2A3A4,

r20 = − 2(A3
1 + A3

2 + A3
3 + A3

4 + A3
5 + A2A2

3 + A2
3A4)

− 4(A2
1A2 + A1A2

2 + A1A2
4 + A2

2A5 + A2
4A5 + A4A2

5)

+ 6(A2
1A3 + A1A2A4 − A2

2A4 − A2A2
4 + A1A2A5 + A1A4A5 + A2A4A5 + A3A2

5)

− 10(A1A2A3 + A3A4A5 − A2
1A4 − A2A2

5) − (A2
2A3 + A3A2

4)

+ 12(A1A2
3 + A2

3A5) + 11(A1A3A4 + A2A3A5) + 8(A2
1A5 + A1A2

5)
+ 19A2A3A4 − 65A1A3A5.

We thus arrive at the following

Theorem 10. A reciprocal 6-by-6 matrix A has an elliptical component in its Kippenhahn curve C(A) if and only if
both polynomials (4.4) share a common root with equation (4.3).

Note that the requirement on the elliptical component of C(A) to be centered at the origin is not included
in the statement of Theorem 10. It holds automatically for the following reason: if C(A) contains an ellipse
E not centered at the origin, then due to the symmetry it also contains −E which is different from E. But
them the third component of C(A) also has to be elliptical and, since there cannot be four, this one is then
centered at the origin.

Plugging in the approximate values

x1 ≈ 0.0990311, x2 ≈ 0.777479, x3 ≈ 1.62349

for the roots of (4.3) into (4.4) thus delivers the numerical tests for C(A) to contain an elliptical component.
Due to the structure of ri j, these are systems of two homogeneous polynomial equations (one quadratic
and one cubic) in five unknowns A1, . . . ,A5. Fixing any three of A j (or otherwise reducing the number of
free parameters to two) and solving for the other two yields the specific examples of matrices satisfying
Theorem 10.
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Example 2. Under additional constraints A1 = A5 := uA3, A2 = A4 := vA3 the polynomials (4.4) both have the
root x = x3 if and only if the pairs (u, v) are as follows: (1, 1), (8.84369,−2.49077), (−1.80414, 2.24796), and

(1.7724359313231006, 0.6562336702811362). (4.5)

The first solution corresponds to the situation (2.4) in which all three components of C(A) are elliptical; the next
two are irrelevant because of non-positivity. The remaining pair (4.5) delivers a non-trivial example in which one
component of C(A) is an ellipse while two others are not (the latter fact follows from Theorem 12 below). The respective
C(A) is shown in Figure 3. Only the outer component is an exact ellipse, though deviations of two others from being
elliptical are almost negligent.

-3 -2 -1 1 2 3

-2

-1

1

2

Figure 3: C(A) for A1 = A5 = 3.28117, A2 = A4 = 6.5623367, A3 = 5.

5. Reciprocal 6-by-6 matrices with C(A) consisting of three ellipses

From Theorem 10 it follows that a reciprocal matrix A ∈ M6 has C(A) consisting of three concentric
ellipses (and thus an elliptical numerical range) if and only if R1(x j) = R2(x j) = 0 for all three roots of (4.3).
This means exactly that r jk = 0 for all j = 1, 2; k = 0, 1, 2.

We have arrived at the system of six polynomial equations in five variables A1, . . . ,A5, which therefore
seems overdetermined. As was already observed in Section 4, the ellipticity of two components of C(A)
automatically implies that the third one is an ellipse, centered at the origin. So, the number of equations can
be easily reduced to four. An alternative approach shows, however, that in fact reciprocal 6-by-6 matrices
with C(A) consisting of three ellipses are characterized by just three equations, and so form a two-parameter
set.
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To describe this approach, observe that (4.1) factors as
∏3

j=1

(
ζ − (x jτ + z j)

)
if and only if

z1 + z2 + z3 = 1
2 (A1 + A2 + A3 + A4 + A5)

z1z2z3 = 1
8 A1A3A5

z1z2 + z1z3 + z2z3 = 1
4 (A1A3 + A1A4 + A1A5 + A2A4 + A2A5 + A3A5)

x1 + x2 + x3 = 5
2

x1x2x3 = 1
8

x1x2 + x1x3 + x2x3 = 3
2

z1x2x3 + z2x1x3 + z3x1x2 = 1
8 (A1 + A3 + A5)

z1z2x3 + z1z3x2 + z2z3x1 = 1
8 (A1A5 + A1A3 + A3A5)

z1(x2 + x3) + z2(x1 + x3) + z3(x1 + x2) = 3
4 (A1 + A5) + 1

2 (A2 + A3 + A4).

The three equations of this system not containing variables z j mean exactly that x1, x2, x3 are the roots of
(4.3). The three equations linear in z j can be rewritten as

 1 1 1
x2 + x3 x1 + x3 x1 + x2

x2x3 x1x3 x1x2


z1
z2
z3

 =


1
2 (A1 + A2 + A3 + A4 + A5)

3
4 (A1 + A5) + 1

2 (A2 + A3 + A4)
1
8 (A1 + A3 + A5)

 .
Solving this system:

z j =
R(x j)

8(x j − xi)(x j − xk)
, j = 1, 2, 3, (5.1)

where {i, k} = {1, 2, 3} \ { j} and R(x) = r2x2 + r1x + r0 with

r2 = 4(A1 + A2 + A3 + A4 + A5), r1 = 4(A2 + A3 + A4) − 6(A1 + A5), r0 = A1 + A3 + A5. (5.2)

Finally, the remaining three nonlinear equations in z j yield the following:

16r2
0 + 24 (r1 + r2) r0 + 12r2

1 + 15r2
2 + 28r1r2

+ 112 (A1A3 + A5A3 + A1A4 + A2A4 + A1A5 + A2A5) = 0;

32r2
0 + 8 (3r1 + r2) r0 + 4r2

1 + 3r2
2 + 6r1r2 + 112 (A1A3 + A5A3 + A1A5) = 0;

1
64

(
64r3

0 + 16(10r1 + 13r2)r2
0 + 8(12r2

1 + 27r2r1 + 13r2
2)r0 + 8r3

1 + r3
2

+ 12r1r2
2 + 20r2

1r2

)
+ 49A1A3A5 = 0

or, plugging in the values of r j from (5.2):

− (A2
2 + A2

4) − 2(A2
1 + A2

5) + 2A3(A1 − A2 − A4 + A5)
+ 3(A1A4 + A1A5 + A2A5) − 4(A1A2 + A4A5) + 5A2A4 = 0,

(5.3)

A2
2 − A2

3 + A2
4 + 3(A1A3 + A1A5 + A3A5)

− 2(A2
1 + A2

5 + A2A3 − A2A4 + A3A4) − (A1 + A5)(A2 + A4) = 0,
(5.4)

and

− A3
1 + A3

2 + A3
3 + A3

4 − A3
5 + (A1 − A3 + A5)(A2

2 + A2
4)

− 2(A2 + A4)(A2
1 + A2

3 + A2
5) + 2A2A4(A1 − A3 + A5)

− 3(A2 + A4) (A3(A1 + A5) − A2A4) − 3(A1 + A5)(A2
3 + A1A5)

− 4(A2
1A3 + A3A2

5 + A1A2A5 + A1A4A5) + 41A1A3A5 = 0,

(5.5)
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respectively.
We have thus reached the conclusion.

Theorem 11. A reciprocal 6-by-6 matrix A has its Kippenhahn curve consisting of three concentric ellipses if and
only if A j defined by (2.2) satisfy (5.3)–(5.5), and in addition A1 + · · · + A5 > 5.

Note that the difference of (5.3) and (5.4),

A2
3 − A3(A1 + A5) − 2(A2

2 + A2
4) − 3(A1A2 + A4A5) + 3A2A4 + 4(A1A4 + A2A5) = 0, (5.6)

is somewhat simpler than either of these conditions, and for computational purposes it thus might be useful
to replace (5.3) or (5.4) (but not both) with (5.6).

The semialgebraic subsetM6 of R5
+ defined by the system (5.3)–(5.5) is of a more complicated structure

than the pairs of hyperplanes (3.3),(3.6) corresponding to n = 4, 5 cases. Even though we do not have an
explicit description of M6, a direct verification confirms that it contains the ray A1 = . . . = A5 > 0 — as it
should, in order to agree with Theorem 3. Our next result, somewhat analogous to Corollary 3, shows that
this ray is in fact the intersection ofM6 with either of the hyperplanes A2 = A4 and A1 = A5.

Theorem 12. If (A1, . . . ,A5) ∈M6 and A2 = A4 or A1 = A5, then all A j coincide.

Proof. Equations (5.3)–(5.6) are homogeneous, so by scaling without loss of generality we may set A3 = 1.
Case 1. A2 = A4 := s. Relabeling also for convenience of notation A1 = x,A5 = y, we may rewrite (5.6) as

(s − 1)(x + y − (s + 1)) = 0,

and conclude from there that s = 1 or x + y = s + 1.
In turn, (5.4) in our abbreviated notation amounts to

4s2
− 4s − 1 + (3 − 2s)(x + y) − 2(x2 + y2) + 3xy = 0. (5.7)

If s = 1, (5.7) simplifies further to

2(x2 + y2) − 3xy − (x + y) + 1 = 0,

which for x, y > 0 is possible only when x = y = 1.
On the other hand, plugging x + y = s + 1 into (5.7) yields xy = s, so that

x = s, y = 1, or x = 1, y = s. (5.8)

Since (5.5) in our setting is nothing but

8s3
− 4s2

− 4s + 1 − (x + y)3
− 4s(x + y)2 + (4s2

− 6s − 3)(x + y) − 4(x2 + y2) + 41xy = 0,

in view of (5.8) it amounts to 7(s − 1)3 = 0, thus implying s = 1. According to (5.8), then also x = y = 1.
Case 2. A1 = A5 := s. Letting now A2 = x,A4 = y, rewrite (5.4) as(

x + y − (s + 1)
)2
− 2(s − 1)2 = 0.

So,

x + y = s + 1 ±
√

2(s − 1). (5.9)

On the other hand, in our abbreviated notation, (5.5) is nothing but

(x + y)3 + (2s − 1)(x + y)2
− (8s2 + 6s + 2)(x + y) − 8s3 + 33s2

− 6s + 1 = 0



N. Bebiano et al. / Filomat 35:9 (2021), 3047–3061 3060

or, plugging in the expression for x + y from (5.9):

− 1 − 10s + 25s2
− 8s3

− (s ±
√

2(−1 + s)) − 2s(s ±
√

2(−1 + s)) − 8s2(s ±
√

2(−1 + s))

+ 2(s ±
√

2(−1 + s))2 + 2s(s ±
√

2(−1 + s))2 + (s ±
√

2(−1 + s))3 = 0.

The left hand side of the latter equation is simply (3±
√

2)(s−1)3, and therefore s = 1. Equation(5.6) therefore
takes the form

−1 − 2(x + y)2 + x + y + 7xy = 0.

Observing that x + y = 2 due to (5.9) and s = 1, we conclude that xy = 1, and so in fact x = y = 1.

Non-trivial elements ofM6 can be constructed as follows. Fix two of the parameters A1,A2,A4,A5 (making
sure to avoid the A1 = A5 or A2 = A4 situations), and solve (5.3)–(5.4) for the other two, expressing the
solutions as function of A3. Then find A3 as a solution to (5.5).

Example 3. Set A1 = 20,A5 = 40. Then

A2 = 64.9396, A3 = 36.9387548, A4 = 28.9008

deliver a solution to (5.3)–(5.5) The respective C(A) curve is plotted in Figure 4.
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Figure 4: C(A) for A1 = 10, A2 = 32.4698, A3 = 18.4693774, A4 = 14.4004, A5 = 20.
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[1] A. Böttcher and S. M. Grudsky, Spectral properties of banded Toeplitz matrices, SIAM, Philadelphia, 2005.
[2] E. Brown and I. Spitkovsky, On matrices with elliptical numerical ranges, Linear Multilinear Algebra 52 (2004), 177–193.
[3] K. A. Camenga, L. Deaett, P. X. Rault, T. Sendova, I. M. Spitkovsky, and R. B. J. Yates, Singularities of base polynomials and Gau-Wu

numbers, Linear Algebra Appl. 581 (2019), 112–127.
[4] M. T. Chien, On the numerical range of tridiagonal operators, Linear Algebra Appl. 246 (1996), 203–214.
[5] M. T. Chien and K.-C. Hung, Elliptical numerical ranges of bordered matrices, Taiwanese J. Math. 16 (2012), no. 3, 1007–1016.
[6] U. Daepp, P. Gorkin, A. Shaffer, and K. Voss, Finding ellipses What Blaschke products, Poncelet’s theorem, and the numerical range know

about each other, Carus Mathematical Monographs, vol. 34, MAA Press, Providence, RI, 2018.
[7] M. Eiermann, Fields of values and iterative methods, Linear Algebra Appl. 201 (1993), 167–197.
[8] H.-L. Gau, Elliptic numerical ranges of 4 × 4 matrices, Taiwanese J. Math. 10 (2006), no. 1, 117–128.
[9] T. Geryba and I. M. Spitkovsky, On some 4-by-4 matrices with bi-elliptical numerical ranges, Linear Multilinear Algebra 69 (2021),

no. 5, 855–870.
[10] R. A. Horn and C. R. Johnson, Topics in matrix analysis, Cambridge University Press, Cambridge, 1994, Corrected reprint of the

1991 original.
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