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Abstract. The main objective of present investigation is to obtain some Minkowski-type fractional integral
inequalities using generalised proportional Hadamard fractional integral operators which is introduced
by Rahman et al. in the paper (Certain inequalities via generalized proportional Hadamard fractional
integral operators), Advances in Differential Equations, 2019, 454(2019). In addition, we establish some
other fractional integral inequalities for positive and continuous functions.

1. Introduction

Fractional calculus is generalization of traditional calculus into non-integer differential and integral
order. Fractional calculus is very important due to it’s various application in field of science and technol-
ogy. Fractional integral inequalities play big role in obtaining uniqueness of solution of fractional ordinary
differential equations, fractional partial differential equations and fractional boundary value problems.
Recently, a number of researchers in the fields of fractional integral inequalities have established differ-
ent integral inequalities about fractional integral operators such as Riemann-Liouville, Hadamard, Saigo,
generalized Katugamapola, Erdélyi-Kober, Riemann-Liouville k-fractional, Hadamard k-fractional, (k,s)-
Riemann-Liouville and k-generalized (in terms hypergeometric function) fractional integral operators, see
[1, 6–9, 12–16, 19, 20, 23, 28–30, 36, 38, 40]. In [11], Dahmani investigated reverse Minkowski fractional
integral inequality by employing Riemann-Liouville fractional integral. Ahmed Anber and et al. [2] pre-
sented some fractional integral inequalities which is similar to Minkowski fractional integral inequality
using Riemann-Liouville fractional integral. V. L. Chinchane et al. [5] proposed fractional inequalities
similar to Minkowski type via Saigo fractional integral operator. In [27], S. K. Panchal et al. investigated
weighted fractional integral inequalities using generalized Katugampola fractional integral operator.
G. Rahman et al. [31–33] established Minkowski inequality and some other fractional inequalities for con-
vex functions by employing fractional proportional integral operators. In [10], V. L. Chinchane studied the
reverse Minkowski fractional integral inequality by considering generalized k-fractional integral operator
is in terms of the Gauss hypergeometric function. S. Mubeen and et al. [22] have introduced Minkowski in-
equality involving generalized k-fractional conformable integrals. Moreover, the several kind of fractional
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integral and derivative operators have been introduced. Atangana and Baleanu proposed a new fractional
derivative operator with the non-local and non-singular kernel, see [3]. In [18], F. Jarad et al. gave the frac-
tional conformable integral and derivative operators. In [17, 34, 35], F. Jarad et al. and G. Rahman presented
concepts of non-local fractional proportional and generalized Hadamard proportional integrals involving
exponential functions in their kernels. In [24–26, 39], authors investigated various integral inequalities by
employing conformable and generalized conformable fractional integrals. M. Caputo and M. Fabrizio [4]
introduced new fractional derivative and integral without singular kernel. Later on, Lasada and Niteto
proposed certain properties of fraction derivative without a singular kernel, see [21].
Motivated from [2, 10, 22, 32–35], our purpose in this paper is to propose some new results using generalized
Hadamard proportional integrals. The paper has been organized as follows, in Section 2, we recall basic
definitions, remarks and lemma related to generalized Hadamard proportional integrals. In Section 3, we
obtain reverse Minkowski fractional integral inequality using generalized Hadamard proportional inte-
grals, in Section 4, we present some other inequalities using generalized Hadamard proportional integrals.
In Section 5, we give the concluding remarks.

2. Preliminary

Here, we devoted some basic definitions, remarks and lemma about generalized Hadamard proportional
integrals which will be used later.

Definition 2.1. The left and right sided generalized proportional fractional integrals are respectively defined by

(aJ
α,βz)(x) =

1
βαΓ(α)

∫ x

a
e[ β−1

β (x−t)](x − t)α−1z(t)dt, a < x (1)

and

(Jα,βb z)(x) =
1

βαΓ(α)

∫ b

x
e[ β−1

β (t−x)](t − x)α−1z(t)dt, x < b, (2)

where the proportionality index β ∈ (0, 1] and α ∈ C and R(α) > 0..

Remark 2.2. If we consider β = 1 in (1) and (2), then we get the well known left and right Riemann-Liouville
integrals which are respectively defined by

(aJ
αz)(x) =

1
Γ(α)

∫ x

a
(x − t)α−1z(t)dt, a < x (3)

and

(Jαb z)(x) =
1

Γ(α)

∫ b

x
(t − x)α−1z(t)dt, x < b, (4)

where α ∈ C and R(α) > 0..

Recently, Rahman et al. [37] proposed the following generalized Hadamard proportional fractional inte-
grals.

Definition 2.3. The left sided generalized Hadamard proportional fractional integral of order α > 0 and proportional
index β ∈ (0, 1] is defined by

(aH
α,βz)(x) =

1
βαΓ(α)

∫ x

a
e[ β−1

β (ln x−ln t)](ln x − ln t)α−1 z(t)
t

dt, a < x. (5)
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Definition 2.4. The right sided generalized Hadamard proportional fractional integral of orderα > 0 and proportional
index β ∈ (0, 1] is defined by

(Hα,β
b z)(x) =

1
βαΓ(α)

∫ b

x
e[ β−1

β (ln t−ln x)](ln t − ln x)α−1 z(t)
t

dt, x < b. (6)

Definition 2.5. The one sided generalized Hadamard proportional fractional integral of order α > 0 and proportional
index β ∈ (0, 1] is defined by

(Hα,β
1,x z)(x) =

1
βαΓ(α)

∫ x

1
e[ β−1

β (ln x−ln t)](ln x − ln t)α−1 z(t)
t

dt, t > 1, (7)

where Γ(α) is the classical well known gamma function.

Remark 2.6. If we consider β = 1, then (5)-(7) will led to the following well known Hadamard fractional integrals

(aH
αz)(x) =

1
Γ(α)

∫ x

a
(ln x − ln t)α−1 z(t)

t
dt, a < x, (8)

(Hα
b z)(x) =

1
Γ(α)

∫ b

x
(ln t − ln x)α−1 z(t)

t
dt, x < b (9)

and

(Hα
1,xz)(x) =

1
Γ(α)

∫ x

1
(ln x − ln t)α−1 z(t)

t
dt, x > 1. (10)

One can easily prove the following results:

Lemma 2.7. If α, λ > 0 and proportional index β ∈ (0, 1], then following relation hold:

(Hα,β
1,x e[ β−1

β (ln x)](ln x)λ−1)(x) =
Γ(λ)

βαΓ(α + λ)
e[ β−1

β (ln x)](ln x)α+λ−1, (11)

and the semigroup property

(Hα,β
1,x )(Hλ,β

1,x )z(x) = (Hα+λ,β
1,x )z(x). (12)

Remark 2.8. If β = 1, then (11) will reduce to the result of [37] as defined by

(Hα
1,x(ln x)λ−1)(x) =

Γ(λ)
Γ(α + λ)

(ln x)α+λ−1. (13)

3. Reverse Minkowski fractional integral inequality

In this section, we establish reverse Minkowski fractional integral inequality involving generalized
proportional Hadamard fractional integral operators.

Theorem 3.1. Let p ≥ 1 and let f , 1 be two positive function on [1,∞), such that for all x > 0, Hα,β
1,x [ f p(x)] < ∞,

H
α,β
1,x [1q(x)] < ∞. If 0 < m ≤ f (τ)

1(τ) ≤M, τ ∈ (1, x), we have

[
H

α,β
1,x [ f p(x)]

] 1
p

+
[
H

α,β
1,x [1q(x)]

] 1
p
≤

1 + M(m + 2)
(m + 1)(M + 1)

[
H

α,β
1,x [( f + 1)p(x)]

] 1
p , (14)

where α > 0, β ∈ (0, 1] α ∈ C and R(α) > 0.
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Proof: Using the condition f (τ)
1(τ) ≤M, τ ∈ (1, x), x > 1, we can write

(M + 1)p f (τ) ≤Mp( f + 1)p(τ). (15)

Consider

ψ(x, τ) =
1

βαΓ(α)τ
e[ β−1

β (ln x−ln τ)](ln x − ln τ)α−1. (16)

Clearly, we can say that the function ψ(x, τ) remain positive because for all τ ∈ (1, x), (x > 1), α, β > 0.
Multiplying both side of (15) by ψ(x, τ), then integrating resulting identity with respect to τ from 1 to x, we
get

(M + 1)p

βαΓ(α)

∫ x

1
e[ β−1

β (ln x−ln τ)](ln x − ln τ)α−1 f p(τ)
dτ
τ

≤
Mp

βαΓ(α)

∫ x

1
e[ β−1

β (ln x−ln τ)](ln x − ln τ)α−1( f + 1)p(τ)
dτ
τ
,

(17)

which is equivalent to

H
α,β
1,x [ f p(x)] ≤

Mp

(M + 1)p

[
H

α,β
1,x [( f + 1)p(x)]

]
, (18)

hence, we can write[
H

α,β
1,x [ f p(x)]

] 1
p
≤

M
(M + 1)

[
H

α,β
1,x [( f + 1)p(x)]

] 1
p . (19)

On other hand, using condition m ≤ f (τ)
1(τ) , we obtain(

1 +
1
m

)
1(τ) ≤

1
m

(
f (τ) + 1(τ)

)
, (20)

therefore,(
1 +

1
m

)p

1p(τ) ≤
( 1

m

)p(
f (τ) + 1(τ)

)p

. (21)

Now, multiplying both side of (21) by ψ(x, τ), (τ ∈ (1, x), x > 1), where ψ(x, τ) is defined by (16). Then
integrating resulting identity with respect to τ from 1 to x, we have[

H
α,β
1,x [1p(x)]

] 1
p
≤

( 1
m + 1

) [
H

α,β
1,x [( f + 1)p(x)]

] 1
p . (22)

The inequalities (14) follows on adding the inequalities (19) and (22).
Our second result is as follows.

Theorem 3.2. Let p ≥ 1 and f , 1 be two positive function on [1,∞), such that for all x > 0, Hα,β
1,x [ f p(x)] < ∞,

H
α,β
1,x [1q(x)] < ∞. If 0 < m ≤ f (τ)

1(τ) ≤M, we have

[
H

α,β
1,x [ f p(x)]

] 2
p

+
[
H

α,β
1,x [1q(x)]

] 2
p
≥

( (M + 1)(m + 1)
M

− 2
) [
H

α,β
1,x [ f p(x)]

] 1
p

+[
Iα,β,η0,x [1q(x)]

] 1
p ,

(23)

where α > 0, β ∈ (0, 1] α ∈ C and R(α) > 0.
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Proof: Multiplying the inequalities (19)and (22), we obtain( (M + 1)(m + 1)
M

) [
H

α,β
1,x [ f p(x)]

] 1
p
[
H

α,β
1,x [1q(x)]

] 1
p
≤

(
[Hα,β

1,x [( f (x) + 1(x))p]]
1
p
)2
. (24)

Applying Minkowski inequalities to the right hand side of (24), we have( [
H

α,β
1,x [( f (x) + 1(x))p]

] 1
p
)2

≤

( [
H

α,β
1,x [ f p(x)]

] 1
p

+
[
H

α,β
1,x [1q(x)]

] 1
p
)2

, (25)

which implies that[
H

α,β
1,x [( f (x) + 1(x))p]

] 2
p
≤

[
H

α,β
1,x [ f p(x)]

] 2
p

+
[
H

α,β
1,x [1q(x)]

] 2
p

+ 2
[
H

α,β
1,x [ f p(x)]

] 1
p
[
H

α,β
1,x [1q(x)]

] 1
p .

(26)

using (24) and (26) we obtain (23). Theorem 3.2 is thus proved.

4. Some other fractional integral inequalities

Here, we establish some new integral inequalities using generalized proportional Hadamard fractional
integral operators.

Theorem 4.1. Let p > 1, 1
p + 1

q = 1 and f , 1 be two positive function on [1,∞), such that Hα,β
1,x [ f (x)] < ∞,

H
α,β
1,x [1(x)] < ∞. If 0 < m ≤ f (τ)

1(τ) ≤M < ∞, τ ∈ (1, x), we have

[
H

α,β
1,x [ f (x)]

] 1
p
[
H

α,β
1,x [1(x)]

] 1
q
≤

(M
m

) 1
pq [
H

α,β
1,x [[ f (x)]

1
p [1(t)]

1
q ]
]
, (27)

hold, where α > 0, β ∈ (0, 1] α ∈ C and R(α) > 0.

Proof:- Since f (τ)
1(τ) ≤M, τ ∈ [1, x] x > 1, therefore

[1(τ)]
1
q ≥M

−1
q [ f (τ)]

1
q , (28)

and also,

[ f (τ)]
1
p [1(τ)]

1
q ≥M

−1
q [ f (τ)]

1
p [ f (τ)]

1
q

≥M
−1
q [ f (τ)]

1
p + 1

q

≥M
−1
q [ f (τ)].

(29)

Multiplying both side of (29) by ψ(x, τ), (τ ∈ (1, x), x > 1), where ψ(x, τ) is defined by (16). Then integrating
resulting identity with respect to τ from 1 to x, we have

1
βαΓ(α)

∫ x

1
e[ β−1

β (ln x−ln τ)](ln x − ln τ)α−1 f (τ)
1
p 1(τ)

1
q (τ)

dτ
τ

≥
M

−1
q

βαΓ(α)

∫ x

1
e[ β−1

β (ln x−ln τ)](ln x − ln τ)α−1 f (τ))
dτ
τ
,

(30)

which implies that,

H
α,β
1,x

[
[ f (x)]

1
p [1(x)]

1
q
]
≥M

−1
q
[
H

α,β
1,x f (x)

]
. (31)
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Consequently,

(
H

α,β
1,x

[
[ f (x)]

1
p [1(x)]

1
q
]) 1

p
≥M

−1
pq

[
H

α,β
1,x f (x)

] 1
p . (32)

On other hand, since m1(τ) ≤ f (τ), τ ∈ [1, x), x > 1, then we have

[ f (τ)]
1
p ≥ m

1
p [1(τ)]

1
p , (33)

multiplying equation (33) by [1(τ)]
1
q , we have

[ f (τ)]
1
p [1(τ)]

1
q ≥ m

1
p [1(τ)]

1
q [1(τ)]

1
p = m

1
p [1(τ)]. (34)

Multiplying both side of (34) by ψ(x, τ), (τ ∈ (1, x), x > 1), where ψ(x, τ) is defined by (16). Then integrating
resulting identity with respect to τ from 1 to x, we have

1
βαΓ(α)

∫ x

1
e[ β−1

β (ln x−ln τ)](ln x − ln τ)α−1 f (τ)
1
p 1(τ)

1
q (τ)

dτ
τ

≥
m

1
p

βαΓ(α)

∫ x

1
e[ β−1

β (ln x−ln τ)](ln x − ln τ)α−1[1(τ)]
dτ
τ
.

(35)

that is,

H
α,β
1,x

[
[ f (x)]

1
p [1(x)]

1
q
]
≥ m

1
p
[
H

α,β
1,x 1(x)

]
. (36)

Hence we can write,(
H

α,β
1,x

[
[ f (x)]

1
p [1(x)]

1
q
]) 1

q
≥ m

1
pq

[
H

α,β
1,x 1(x)

] 1
q , (37)

multiplying equation (32) and (37) we get the result (27).

Theorem 4.2. Let f and 1 be two positive function on [1,∞[, such that
H

α,β
1,x [ f p(x)] < ∞,Hα,β

1,x [1q(x)] < ∞, x > 0. If 0 < m ≤ f (τ)p

1(τ)q ≤M < ∞, τ ∈ [1, x]. Then we have

[
H

α,β
1,x f p(x)

] 1
p
[
H

α,β
1,x 1

q(x)
] 1

q
≤ (

M
m

)
1
pq

[
H

α,β
1,x ( f (x)1(x))

]
, (38)

hold. Where p > 1, 1
p + 1

q = 1, α > 0, β ∈ (0, 1] α ∈ C and R(α) > 0.

Proof:- Replacing f (τ) and 1(τ) by f (τ)p and 1(τ)q, τ ∈ [1, x], x > 1 in Theorem 4.1, we obtain (38).

. Now, here we present fractional integral inequality related to Minkowsky inequality as follows

Theorem 4.3. Let f and 1 be two integrable functions on [1,∞] such that 1
p + 1

q = 1, p > 1, and 0 < m <
f (τ)
1(τ) < M,

τ ∈ (1, x), x > 1. Then we have

H
α,β
1,x [ f (x)1(x)] ≤

2p−1Mp

p(M + 1)p

(
H

α,β
1,x [ f p + 1p](x)

)
+

2q−1

q(m + 1)q

(
H

α,β
1,x [ f q + 1q](x)

)
, (39)

where α > 0, β ∈ (0, 1] α ∈ C and R(α) > 0.
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Proof:- Since, f (τ)
1(τ) < M, τ ∈ (1, x), x > 1, we have(

M + 1
)

f (τ) ≤M
(

f + 1
)
(τ). (40)

Taking pth power on both side of (40) and multiplying resulting identity by ψ(x, τ), (τ ∈ (1, x), x > 1), where
ψ(x, τ) is defined by (16), then integrate the resulting identity with respect to τ from 1 to x, we have

(M + 1)p

βαΓ(α)

∫ x

1
e[ β−1

β (ln x−ln τ)](ln x − ln τ)α−1 f (τ)p dτ
τ

≤
Mp

βαΓ(α)

∫ x

1
e[ β−1

β (ln x−ln τ)](ln x − ln τ)α−1[( f + 1)p(τ)]
dτ
τ
,

(41)

therefore,

H
α,β
1,x [ f p(x)] ≤

Mp

(M + 1)pH
α,β
1,x [( f + 1)p(x)]. (42)

On other hand, 0 < m <
f (τ)
1(τ) , τ ∈ (1, x), x > 1, we can write

(m + 1)1(τ) ≤ ( f + 1)(τ). (43)

Taking qth power on both side (43) and multiplying resulting identity by ψ(x, τ), (τ ∈ (1, x), x > 1), where
ψ(x, τ) is defined by (16), then integrate the resulting identity with respect to τ from 1 to x, we have

(m + 1)q

βαΓ(α)

∫ x

1
e[ β−1

β (ln x−ln τ)](ln x − ln τ)α−11q(τ)
dτ
τ

≤
1

βαΓ(α)

∫ x

1
e[ β−1

β (ln x−ln τ)](ln x − ln τ)α−1[( f + 1)q(τ)]
dτ
τ
,

(44)

consequently, we have

H
α,β
1,x [1q(x)] ≤

1
(m + 1)qH

α,β
1,x [( f + 1)q(x)]. (45)

Now, using Young inequality

[ f (τ)1(τ)] ≤
f p(τ)

p
+
1q(τ)

q
. (46)

Multiplying both side of (46) by ψ(x, τ), (τ ∈ (1, x), x > 1), where ψ(x, τ) is defined by (16), then integrate the
resulting identity with respect to τ from 1 to x, we get

H
α,β
1,x [ f (x)1(x)] ≤

1
p
H

α,β
1,x [ f p(x)] +

1
q
H

α,β
1,x [1q(x)], (47)

from equation (42), (45) and (47), we have

H
α,β
1,x [ f (x)1(x)] ≤

Mp

p(M + 1)p H
α,β
1,x [( f + 1)p(x)] +

1
q(m + 1)q H

α,β
1,x [( f + 1)q(x)], (48)

now using the inequality (a + b)r
≤ 2r−1(ar + br), r > 1, a, b ≥ 0, we have

H
α,β
1,x [( f + 1)p(x)] ≤ 2p−1

H
α,β
1,x [( f p + 1p)(x)] (49)

and

H
α,β
1,x [( f + 1)q(x)] ≤ 2q−1

H
α,β
1,x [( f q + 1q)(x)]. (50)

Injecting (49), (50) in (48), we get required inequality (39).
This complete the proof.
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Theorem 4.4. Let f , 1 be two positive functions defined on [1,∞), such that 1 is non-decreasing. If

H
α,β
1,x f (x) ≥ Hα,β

1,x 1(x), x > 1, (51)

then for all α > 0, β ∈ (0, 1] α ∈ C and R(α) > 0,

H
α,β
1,x f γ−δ(x) ≤ Hα,β

1,x f γ(x)1−δ(x), (52)

hold.

Proof:- We use arithmetic-geometric inequality, for γ > 0, δ > 0, we have

γ

γ − δ
f γ−δ(τ) −

δ
γ − δ

1γ−δ(τ) ≤ f γ(τ)1−δ(τ), τ ∈ (1, x), x > 1. (53)

Now, multiplying both side of (53) by ψ(x, τ), (τ ∈ (1, x), x > 1), where ψ(x, τ) is defined by (16), then
integrate the resulting identity with respect to τ from 1 to x, we get

γ

γ − δβαΓ(α)

∫ x

1
e[ β−1

β (ln x−ln τ)](ln x − ln τ)α−1 f γ−δ(τ)
dτ
τ

−
δ

γ − δβαΓ(α)

∫ x

1
e[ β−1

β (ln x−ln τ)](ln x − ln τ)α−11γ−δ(τ)
dτ
τ

≤
1

βαΓ(α)

∫ x

1
e[ β−1

β (ln x−ln τ)](ln x − ln τ)α−1 f γ(τ)1−δ(τ)
dτ
τ
,

(54)

consequently,

γ

γ − δ
H

α,β
1,x [ f γ−δ(x)] −

δ
γ − δ

H
α,β
1,x [1γ−δ(x)] ≤ Hα,β

1,x [ f γ(x)1−δ(x)], (55)

which implies that,

γ

γ − δ
H

α,β
1,x [ f γ−δ(x)] ≤ Hα,β

1,x [ f γ(x)1−δ(x)] +
δ

γ − δ
H

α,β
1,x [1γ−δ(x)], (56)

that is

H
α,β
1,x [ f γ−δ(x)] ≤

γ − δ

γ
H

α,β
1,x [ f γ(t)1−δ(x)] +

δ
γ
H

α,β
1,x [ f γ−δ(x)], (57)

thus we get the result (52).

Theorem 4.5. Suppose that f , 1 and h be positive and continuous functions on [1,∞), such that(
1(τ) − 1(σ)

)( f (σ)
h(σ)

−
f (τ)
h(τ)

)
≥ 0; τ, σ ∈ [1, x) x > 1, (58)

then for all α > 0, β ∈ (0, 1] α ∈ C and R(α) > 0,

H
α,β
1,x [ f (x)]

H
α,β
1,x [h(x)]

≥

H
α,β
1,x [(1 f )(x)]

H
α,β
1,x [(1h)(x)]

, (59)

hold.
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Proof: Since f , 1 and h be three positive and continuous functions on [1,∞) by (58), we can write

1(τ)
f (σ)
h(σ)

+ 1(σ)
f (τ)
h(τ)

− 1(σ)
f (σ)
h(σ)

− 1(τ)
f (τ)
h(τ)

≥ 0; τ, σ ∈ (1, x), x > 1. (60)

Now, multiplying equation (60) by h(σ)h(τ), on both side, we have

1(τ) f (σ)h(τ) − 1(τ) f (τ)h(σ) − 1(σ) f (σ)h(τ) + 1(σ) f (τ)h(σ) ≥ 0. (61)

Now multiplying equation (61) by ψ(x, τ), (τ ∈ (1, x), x > 1), where ψ(x, τ) is defined by (16), then integrate
the resulting identity with respect to τ from 1 to x, we get

f (σ)
βαΓ(α)

∫ x

1
e[ β−1

β (ln x−ln τ)](ln x − ln τ)α−1[1(τ)h(τ)]
dτ
τ

−
h(σ)
βαΓ(α)

∫ x

1
e[ β−1

β (ln x−ln τ)](ln x − ln τ)α−1[ f (τ)1(τ)]
dτ
τ

−
f (σ)1(σ)
βαΓ(α)

∫ x

1
e[ β−1

β (ln x−ln τ)](ln x − ln τ)α−1[h(τ)]
dτ
τ

+
1(σ)h(σ)
βαΓ(α)

∫ x

1
e[ β−1

β (ln x−ln τ)](ln x − ln τ)α−1[ f (τ)]
dτ
τ
≥ 0,

(62)

we get

f (σ)Hα,β
1,x [(1h)(x)] + 1(σ)h(σ)Hα,β

1,x [ f (x)]

−1(σ) f (ρ)Hα,β
1,x [h(x)] − h(σ)Hα,β

1,x [(1 f )(x)] ≥ 0.
(63)

Again multiplying (63) by ψ(x, σ), in view of equation (16) and which is positive because σ ∈ (1, x), x > 1,
then integrate the resulting identity with respect to σ from 1 to x, we have

H
α,β
1,x [ f (x)]Hα,β

1,x [(1h)(x)] −Hα,β
1,x [h(x)]Hα,β

1,x [(1 f )(x)]

−H
α,β
1,x [(1 f )(x)]Hα,β

1,x [h(x)]

+H
α,β
1,x [(1h)(x)]Hα,β

1,x [ f (x)] ≥ 0,

(64)

which completes the proof.

Theorem 4.6. Suppose that f , 1 and h be positive and continuous functions on [1,∞), such that

(1(τ) − 1(σ))
(

f (σ)
h(σ)

−
f (τ)
h(τ)

)
≥ 0, τ, σ ∈ (1, x), x > 0, (65)

then for all α > 0, β ∈ (0, 1], α, φ ∈ C and R(α) > 0 R(ϕ) > 0,

H
α,β
1,x [ f (x)]Hφ,ϕ

1,x [(1h)(x)] +H
φ,ϕ
1,x [ f (x)]Hα,β

1,x [(1h)(x)]

H
α,β
1,x [h(x)]Hφ,ϕ

1,x [(1 f )(x)] +H
φ,ϕ
1,x [h(x)]Hα,β

1,x [(1 f )(x)]
≥ 1, (66)

hold.

Proof: Multiplying equation (63) by 1
ϕφΓ(φ)σ e[ ϕ−1

ϕ (lnx−lnσ)](lnx − lnσ)φ−1, which remain positive because
σ ∈ (1, x), (x > 1), φ, ϕ > 0. Then integrating resulting identity with respect to σ from 1 to x, we have

H
φ,ϕ
1,x [ f (x)]Hα,β

1,x [(1h)(x)] −Hφ,ϕ
1,x [h(x)]Hα,β

1,x [(1 f )(x)]

−H
φ,ϕ
1,x [(1 f )(x)]Hα,β

1,x [h(x)]

+H
φ,ϕ
1,x [(1h)(x)]Hα,β

1,x [ f (x)] ≥ 0,

(67)

this gives the required inequality (66).
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Theorem 4.7. Suppose that f and h are two positive continuous functions such that f ≤ h on [1,∞). If f
h is

decreasing and f is increasing on [1,∞), then for any p ≥ 0, for all x > 1, α > 0, β ∈ (0, 1] α ∈ C and R(α) > 0, we
have

H
α,β
1,x [ f (x)]

H
α,β
1,x [h(x)]

≥

H
α,β
1,x [ f p(x)]

H
α,β
1,x [hp(x)]

. (68)

Proof: We take 1 = f p−1 in Theorem 4.5,

H
α,β
1,x [ f (x)]

H
α,β
1,x [h(x)]

≥

H
α,β
1,x [( f f p−1)(x)]

H
α,β
1,x [(h f p−1)(x)]

. (69)

Since f ≤ h on [1,∞), then we can write

h f p−1
≤ hp. (70)

Multiplying equation (70) by ψ(x, τ), (τ ∈ (1, x), x > 1), where ψ(x, τ) is defined by (16), then integrate the
resulting identity with respect to τ from 1 to x, we get

H
α,β
1,x [h f p−1(x)] ≤ Hα,β

1,x [hp(x)], (71)

and so, we have

H
α,β
1,x [( f f p−1)(x)]

H
α,β
1,x [(h f p−1)(x)]

≥

H
α,β
1,x [ f p(x)]

H
α,β
1,x [hp(x)]

, (72)

then from equation (69)and (72), we obtain (68).

Theorem 4.8. Suppose that f and h are two positive continuous functions such that f ≤ h on [1,∞). If f
h is

decreasing and f is increasing on [1,∞), then for any p ≥ 1, for all x > 1, α, φ > 0, β, ϕ ∈ (0, 1], α, φ ∈ C and
R(α) > 0 R(ϕ) > 0,

H
α,β
1,x [ f (x)]Hφ,ϕ

1,x hp[(x)] +H
φ,ϕ
1,x [ f (x)]Hα,β

1,x [hp(x)]

H
α,β
1,x [h(x)]Hφ,ϕ

1,x [ f p(x)] +H
φ,ϕ
1,x [h(x)]Hα,β

1,x [ f p(x)]
≥ 1. (73)

Proof: We take 1 = f p−1 in Theorem 4.6, then we obtain

H
α,β
1,x [ f (x)]Hφ,ϕ

1,x [h f p−1(x)] +H
φ,ϕ
1,x [ f (x)]Hα,β

1,x [h f p−1(x)]

H
α,β
1,x [h(x)]Hφ,ϕ

1,x [ f p(x)] +H
φ,ϕ
1,x [h(x)]Hα,β

1,x [ f p(x)]
≥ 1, (74)

then by hypothesis, f ≤ h on [1,∞), which implies that

h f p−1
≤ hp. (75)

Now, multiplying both side of (75) by 1
ϕφΓ(φ)σ e[ ϕ−1

ϕ (ln x−ln σ)](ln x − ln σ)φ−1, which remain positive because
σ ∈ (1, x), (x > 1), φ > 0, ϕ ∈ (0, 1]. Then integrating resulting identity with respect to σ from 1 to x, we have

H
φ,ϕ
1,x [h f p−1(x)] ≤ Hφ,ϕ

1,x [hp(x)], (76)

multiplying on both side of (76) byHα,β
1,x [ f (x)], we obtain

H
α,β
1,x [ f (x)]Hφ,ϕ

1,x [h f p−1(x)] ≤ Hα,β
1,x [ f (x)]Hφ,ϕ

1,x [hp(x)], (77)
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hence by (71) and (77), we obtain

H
α,β
1,x [ f (x)]Hφ,ϕ

1,x [h f p−1(x)] +H
φ,ϕ
1,x [ f (x)]Hα,β

1,x [h f p−1(x)]

≤ H
α,β
1,x [ f (x)]Hφ,ϕ

1,x [hp(x)] +H
φ,ϕ
1,x [ f (x)]Hα,β

1,x [hp(x)].
(78)

By (74) and (78), we complete the proof of this Theorem.

5. Concluding Remarks

Rahaman et al. [35] investigated some integral inequalities by considering generalized proportional
Hadamard fractional integral operator. In [34] Rahaman et al. studied certain new weighted fractional
integral inequalities involving a family of n (n ∈ N) positive function by using generalized proportional
Hadamard fractional integral operators. Motivated by the above work, here we studied reverse Minkowski
fractional integral inequalities and other fractional inequalities by employing generalized proportional
Hadamard fractional integral operator. The inequalities investigated in this paper give some contribution
in the fields of fractional calculus and generalized proportional Hadamard fractional integral operators. By
the help of this study we establish more general inequalities than in the classical cases. Moreover, they are
expected to led to some application for finding uniqueness of solutions in fractional differential equations.
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