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Abstract. In the paper, we obtain the optimal integrability for positive solutions of the following integral
system involving Wolff potentials: u(x) = Wβ,γ(vq)(x), x ∈ Rn,

v(x) = Wβ,γ(up)(x), x ∈ Rn,

where p, q > 0, β > 0, γ > 1 and 0 < βγ < n.Ma, Chen and Li [Advances in Mathematics, 226(2011), 2676-2699]
developed the regularity lifting method and obtained the optimal integrability for p > 1, q > 1.Here, based
on some new observations, we overcome the difficulty there, and derive the optimal integrability for the
case of p > 0, q > 0 and pq > 1. This integrability plays a key role in estimating the asymptotic behavior of
positive solutions.

1. Introduction

The Wolff potential is defined for any non-negative Borel measure µ:

Wβ,γµ(x) =

∫
∞

0

[
µ(Bt(x))

tn−βγ

] 1
γ−1 dt

t
,

where 1 < γ < ∞, 0 < βγ < n and Bt(x) is the ball of radius t centered at point x.
If dµ = f dx with f > 0 and f ∈ L1

loc(R
n), we write(cf.[4]):

Wβ,γ( f )(x) =

∫
∞

0


∫

Bt(x) f (y)dy

tn−βγ


1
γ−1

dt
t
.

It is easy to verify that W1,2(·) is the well-know Newton potential and W α
2 ,2(·) is the Riesz potential.
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The Wolff potentials are helpful to well understand the nonlinear PDEs (cf.[7],[10],[13]). For example,
W1,γ(w) and W 2k

k+1 ,k+1(w) can be used to estimate the A-superhamonic functions involving solutions of the
γ-Laplace equation

−div(|∇u|γ−2
∇u) = w,

and the k-Hessian equation
FK[−u] = w, k = 1, 2, · · · ,n,

respectively. Here
FK[u] = Sk(λ(D2u)), λ(D2u) = (λ1, λ2, · · · , λn)

with λi being eigenvalues of the Hessian matrix (D2u), and Sk(·) is the k-th symmetric function:

Sk(λ) =
∑

1≤i1<···<ik≤n

λi1λi2 · · · λik .

Two special cases are F1[u] = 4u and Fn[u] = det(D2u).

In this paper, we consider the following system involving Wolff type u(x) = Wβ,γ(vq)(x), u > 0 in Rn,

v(x) = Wβ,γ(up)(x), v > 0 in Rn,
(1)

with p, q, β > 0, γ > 1, βγ < n, pq > 1 and

1
p + γ − 1

+
1

q + γ − 1
=

n − βγ
n(γ − 1)

. (2)

In particular, when β = α
2 and γ = 2, system (1) reduces to

u(x) =
∫

Rn
vq(y)
|x−y|n−α dy, v > 0 in Rn;

v(x) =
∫

Rn
up(y)
|x−y|n−α dy, u > 0 in Rn.

(3)

The solutions (u, v) of (3) are critical points of the functional associated with the well-known hardy-
Littlewood-Sobolev inequality (see [5])∫

Rn

∫
Rn

f (x)1(y)
|x − y|n−α

dxdy ≤ C(n, s, α)‖ f ‖r‖1‖s,

where f ∈ Lr(Rn), 1 ∈ Ls(Rn), 0 < α < n, s, r > 1 such that 1
r + 1

s = n+α
n , and the best constant is given by

C(n, s, α) = max
{∫

Rn

∫
Rn

f (x)1(y)
|x − y|n−α

dxdy : ‖ f ‖r = ‖1‖s = 1
}
.

Chen, Li and Ou [2] introduce the method of moving planes in integral forms to study the symmetry of
the solutions for the HLS system (3). Jin and Li [6] thoroughly discussed the regularity of the the solutions
of (3)(see also [3]). They found the optimal integrability intervals in the case of p > 1, q > 1 and established
the smoothness for the integrable solutions. Furthermore, Onodera [12] obtain the optimal integrability
intervals in the case of 0 < p, q < ∞. Based on the results, [9] gave the asymptotic behavior of the integrable
solutions when |x| → 0 and |x| → ∞.

In the special case where p = q = n+α
n−α and u(x) = v(x), system (3) becomes the single integral equation

u(x) =

∫
Rn

u
n+α
n−α (y)

|x − y|n−α
dy, u > 0 in Rn.
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and the equivalent PDE is the well-known family of semi-linear equations

(−∆)α/2u = u
n+α
n−α , u > 0 in Rn. (4)

The classification of the solutions of (4) has provided an important ingredient in the study of the well-
known Yamabe problem and the prescribing scalar curvature problem. It is also essential in deriving a
priori estimates in many related nonlinear elliptic equations.

For the system of (1), Chen and Li [1] proved that the solutions u and v are radial symmetry and
decreasing about some point x0. Furthermore, Ma, Chen and Li thoroughly discussed the regularity of the
solutions to (1) and obtained some nice results. Namely, in the case of p > 1 and q > 1, they found the
optimal integrability intervals of the solutions, which is important to estimate the asymptotic rates of the
solutions. Based on these results, Lei [8] obtained the decay rates of the integrable solutions when |x| → ∞.

Proposition 1. ([1], Theorem 1.) Let 1 < γ ≤ 2. Assume that (u, v) is a pair of positive solutions of (1) with (2) and

u ∈ Lp+γ−1(Rn), v ∈ Lq+γ−1(Rn).

Then (u, v) must be radially symmetric and monotone decreasing about some point in Rn.

Proposition 2. ([11], Theorem 2.1.) Let (u, v) ∈ Lp+γ−1(Rn) × Lq+γ−1(Rn) be a pair of positive solutions for system
(1) in the case (2). Further assume p > 1, q > 1, and 1 < γ ≤ 2. Without loss of generality, assume p ≤ q. Then
(u, v) ∈ Lr(Rn) × Ls(Rn) when ever r and s are in the following rang:(1

r
,

1
s

)
∈

(
0,

n − βγ
n(γ − 1)

)
×

(
0,min

{
n − βγ

n(γ − 1)
,

1
γ − 1

p + γ − 1
q + γ − 1

})
.

The right end values are optimal in the sense that if 1
r or 1

s exceed the right end values, ‖u‖r = ‖v‖s = ∞.

For the case of p, q > 0, pq > 1 except p > 1, q > 1, there are some technical difficulty to derive the
optimal integrability using the method in [11]. Roughly speaking, since one of the equations in (1) cannot
use the smallness condition to obtain a contraction mapping which is essential for the regularity lifting
method developed in [11]. In this paper, we find a way to deal with these problems and hence prove that
Propositions 2 still hold for the cases p = 1, q > 1 or q = 1, p > 1, and 0 < p < 1, q > 1 or 0 < q < 1, p > 1.
Together with the results in [11], we now know the optimal integrability for all cases pq > 1.

The following proposition will be used to derive the integrability intervals. The proof can be found in
[11].

Let V be a topological vector space. Suppose there are two extended norms (i.e. the norm of an element
in V might be infinity) defined on V ,

‖ · ‖X, ‖ · ‖Y : V → [0,∞].

Let
X := {v ∈ V : ‖v‖X < ∞} and Y := {v ∈ V : ‖v‖Y < ∞}.

Proposition 3. (Regularity lifting lemma) Let T be a contraction map from X into itself and from Y into itself.
Assume that f ∈ X, and that there exists a function 1 ∈ Z := X ∩ Y such that f = T f + 1 in X. Then f also belongs
to Z.

Proposition 4. ([11], Corollary 2.1.) Let p, q > 1, β > 0, γ > 1 and βγ < n, then there exists some positive constant
C such that

‖Wβ,γ( f )‖q ≤ C‖ f ‖
1
γ−1
p , f ∈ Lp(Rn),

where 1
p −

γ−1
q =

βγ
n and q > γ − 1.
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Finally, we state the main result of this paper.

Theorem 1. Let (u, v) ∈ Lp+γ−1(Rn)× Lq+γ−1(Rn) be a pair of positive solutions for system (1) in the case (2). Further
assume p, q > 0, pq > 1, and 1 < γ ≤ 2. Then (u, v) ∈ Lr(Rn) × Ls(Rn) when ever r and s are in the following rang:
(i) when p ≤ q, (1

r
,

1
s

)
∈

(
0,

n − βγ
n(γ − 1)

)
×

(
0,min

{
n − βγ

n(γ − 1)
,

1
γ − 1

p + γ − 1
q + γ − 1

})
;

(ii) when p > q, (1
r
,

1
s

)
∈

(
0,min

{
n − βγ

n(γ − 1)
,

1
γ − 1

q + γ − 1
p + γ − 1

})
×

(
0,

n − βγ
n(γ − 1)

)
.

The right end values are optimal in the sense that if 1
r or 1

s exceed the right end values, ‖u‖r = ‖v‖s = ∞.

2. Proof of Theorem 1.

From Proposition 2, we can see that the case of p > 1, q > 1 is proved by Ma, Chen and Li. Therefore, in
this section, we derive our result in two cases: the first step proves the case of p = 1, q > 1 and q = 1, p > 1,
the second step proves the case of 0 < p < 1, q > 1 and 0 < q < 1, p > 1.

Case I. We prove the case of p = 1, q > 1 and q = 1, p > 1. Without loss of generality, we assume that
p = 1, q > 1.

Step i. Estimate of v.
Set r0 = p + γ − 1 = γ, s0 = q + γ − 1, and let s satisfy

1
s
∈

(
0,

2
s0

)
. (5)

Define

T11 :=
∫
∞

0


∫

Bt(x) vqdy

tn−βγ


2−γ
γ−1


∫

Bt(x) vq−1
A 1dy

tn−βγ

 dt
t
,

and

T2 f :=
∫
∞

0


∫

Bt(x) udy

tn−βγ


2−γ
γ−1


∫

Bt(x) f dy

tn−βγ

 dt
t
,

where

vA(x) =

 v(x), i f v(x) ≥ A or |x| ≥ A;

0, otherwise.
(6)

For any 1 ∈ Ls(Rn), we define
TA1 = T2(T11), F = T2(F0),

with

F0 :=
∫
∞

0


∫

Bt(x) vqdy

tn−βγ


2−γ
γ−1


∫

Bt(x)(v − vA)qdy

tn−βγ

 dt
t
.

Next, we estimate T11 and T2 f .
By the Hölder inequality, we have

|T2 f | ≤ v2−γ(T0
2 f )γ−1,
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where

T0
2 f =

∫
∞

0


∫

Bt(x) f (y)dy

tn−βγ


1
γ−1

dt
t
.

Consequently,
‖T2 f ‖s ≤ C‖v‖2−γs0

‖T0
2 f ‖γ−1

s ,

with 1
s =

γ−1
s +

2−γ
s0
. Using Proposition 4, we obtain

‖T2 f ‖s ≤ C‖v‖2−γs0
‖ f ‖ ns

n(γ−1)+βγs
. (7)

Write

r =
ns

n(γ − 1) + βγs
. (8)

Similarly, we have
|T11| ≤ u2−γ(T0

11)
γ−1,

where

T0
11 =

∫
∞

0


∫

Bt(x) vq−1
A 1dy

tn−βγ


1
γ−1

dt
t
.

Therefore,
‖T11‖r ≤ C‖u‖2−γr0

‖T0
11‖

γ−1
r ,

with 1
r =

γ−1
r +

2−γ
r0
. Using Proposition 4, we obtain

‖T11‖r ≤C‖u‖2−γr0
‖vq−1

A 1‖ nr
n(γ−1)+βγr

≤C‖u‖2−γr0
‖vA‖

q−1
s0
‖1‖s,

(9)

where γ−1
r +

βγ
n =

q−1
s0

+ 1
s and γ−1

r < 1 − βγ
n .

Combining (7) with (9), we derive

‖TA1‖s = ‖T2(T11)‖s ≤ C‖u‖2−γr0
‖v‖2−γs0

‖vA‖
q−1
s0
‖1‖s. (10)

Noting that u ∈ Lr0 (Rn) and v ∈ Ls0 (Rn), we obtain a smallness condition

C‖u‖2−γr0
‖v‖2−γs0

‖vA‖
q−1
s0
≤

1
2

when A is sufficiently large.
Inserting this smallness condition into (10), we see that TA is a contraction from Ls(Rn) to Ls(Rn). In

addition, we can see that TA is also a contraction from Ls0 (Rn) to Ls0 (Rn), since (5) holds. It is easy to verify
that v solves the operator equation

1 = TA1 + F.

Furthermore, according to the definition of F, we know that F ∈ Ls(Rn). Take X = Ls0 (Rn), Y = Z = Ls(Rn) in
Proposition 3. Thus, by regularity lifting lemma, we see that

v ∈ Ls(Rn), ∀
1
s
∈

(
0,

2
s0

)
. (11)



L. Li / Filomat 35:9 (2021), 2951–2961 2956

Step ii. Estimate of u.
Once the integrability of v is obtained, we can use do similar discuss to the integral equation (1) to

estimate the integrability of u.
Let

0 <
1
s
<

2
s0
.

From (8), we have
1
r
−

1
s

=
1
r0
−

1
s0
. (12)

Therefore, we can use Proposition 4 and Hölder inequality to obtain that

‖u‖r ≤C‖u‖2−γr0
‖u‖γ−1

r ≤ C‖u‖2−γr0
‖vq
‖ nr

n(γ−1)+βγr

≤C‖u‖2−γr0
‖v‖q−1

s0
‖v‖s,

where
1
r

=
2 − γ

r0
+
γ − 1

r
and

γ − 1
r

+
βγ

n
=

q − 1
s0

+
1
s
.

Inserting (11) into (12), from the inequality above, we deduce that

u ∈ Lr(Rn), ∀
1
r
∈

(
1
r0
−

1
s0
,

n − βγ
n(γ − 1)

)
. (13)

Step iii. To extend the left-end point of the interval in (13), we apply Proposition 4 to system (1). We
have

‖u‖r = ‖Wβ,γ(vq)‖r ≤ C‖vq
‖

1
γ−1

nr
n(γ−1)+βγr

(14)

provided
nr

n(γ − 1) + βγr
> 1, (15)

that is
1
r
<

n − βγ
n(γ − 1)

.

In order the right-hand side of (14) to be finite, we only need

0 <
n(γ − 1) + βγr

nqr
<

2
s0

=
2

q + γ − 1
.

and this is indeed true under conditions (15), since γ − 1 < 1, and q > 1. Thus, we deduce that

u ∈ Lr(Rn), ∀
1
r
∈

(
0,

n − βγ
n(γ − 1)

)
. (16)

Similarly, applying proposition 4 to equation (1) with p = 1, we obtain

‖v‖s = ‖Wβ,γ(u)‖s ≤ C‖u‖
1
γ−1

ns
n(γ−1)+βγs

.

This result, together with (16), implies

v ∈ Ls(Rn), ∀
1
s
∈

(
0,min

{
n − βγ

n(γ − 1)
,

1
γ − 1

γ

q + γ − 1

})
.
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This is the integrability interval of v in Theorem 1 when p = 1.

Case II. We prove the case of 0 < p < 1, q > 1 and 0 < q < 1, p > 1. Without loss of generality, we assume
that 0 < p < 1, q > 1.

Step i. Since pq > 1, then there exists a ρ > 0 such that

1 <
1
p
< ρ < q.

Here ρ will be determined later.
Define

Tρ11(x) :=
∫
∞

0


∫

Bt(x) vqdy

tn−βγ


2−γ
γ−1


∫

Bt(x) vq−ρ
A 1

ρdy

tn−βγ

 dt
t
,

and

Tρ2 f (x) :=
∫
∞

0


∫

Bt(x) updy

tn−βγ


2−γ
γ−1


∫

Bt(x) u
p− 1

ρ

A f
1
ρ dy

tn−βγ

 dt
t
,

where the definition of vA, uA is similar as (6).

Next, we estimate Tρ11(x) and Tρ2 f (x).
By the Hölder inequality, we have

|Tρ11| ≤ u2−γ(Tρ,01 1)
γ−1,

where

Tρ,01 1 =

∫
∞

0


∫

Bt(x) vq−ρ
A 1

ρdy

tn−βγ


1
γ−1

dt
t
.

Consequently,
‖Tρ11‖r ≤ C‖u‖2−γr0

‖Tρ,01 1‖
γ−1
r ,

where
1
r

=
2 − γ

r0
+
γ − 1

r
. (17)

Using Proposition 4 and the Hölder inequality, we deduce that

‖Tρ11‖r ≤C‖u‖2−γr0
‖vq−ρ

A 1
ρ
‖ nr

n(γ−1)+βγr

≤C‖u‖2−γr0
‖vA‖

q−ρ
s0
‖1‖

ρ
s ,

(18)

where
q − ρ

s0
+
ρ

s
=
γ − 1

r
+
βγ

n
, (19)

and
γ − 1

r
< 1 −

βγ

n
. (20)

Similarly, we have
|Tρ2 f | ≤ v2−γ(Tρ,02 f )γ−1,

where

Tρ,02 f =

∫
∞

0


∫

Bt(x) u
p− 1

ρ

A f
1
ρ dy

tn−βγ


1
γ−1

dt
t
.
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By the Hölder inequality and Proposition 4, we derive

‖Tρ2 f ‖s ≤C‖v‖2−γs0
‖Tρ,02 f ‖γ−1

s ≤ C‖v‖2−γs0
‖u

p− 1
ρ

A f
1
ρ ‖ ns

n(γ−1)+βγs

≤C‖v‖2−γs0
‖uA‖

p− 1
ρ

r0
‖ f ‖

1
ρ

r ,

(21)

where
1
s

=
2 − γ

s0
+
γ − 1

s
, (22)

p − 1
ρ

r0
+

1
ρ

r
=
γ − 1

s
+
βγ

n
, (23)

γ − 1
s

< 1 −
βγ

n
. (24)

Set r0 = p + γ − 1, s0 = q + γ − 1, then by (2), both conditions (19) and (23) become

1
r
−

1
r0

= ρ
(1

s
−

1
s0

)
,

and the set of conditions (17)-(24) can now be simplified as

1
r

=
2 − γ

r0
+
γ − 1

r
,

1
s

=
2 − γ

s0
+
γ − 1

s
, (25)

1
r
−

1
r0

= ρ
(1

s
−

1
s0

)
, (26)

γ − 1
r

< 1 −
βγ

n
,

γ − 1
s

< 1 −
βγ

n
. (27)

In order to handle the smallness condition, we consider the following operators Tρ,A1 , Tρ,A2 :

Tρ,A1 1(x) := Tρ11(x) +

∫
∞

0


∫

Bt(x) vqdy

tn−βγ


2−γ
γ−1


∫

Bt(x)(v − vA)qdy

tn−βγ

 dt
t
,

Tρ,A2 f (x) := Tρ2 f (x) +

∫
∞

0


∫

Bt(x) updy

tn−βγ


2−γ
γ−1


∫

Bt(x)(u − uA)pdy

tn−βγ

 dt
t
.

Clearly, we can see that
Tρ,A2 Tρ,A1 v = v and Tρ,A1 Tρ,A2 u = u. (28)

Next, we prove that, when ρ > 1, the mapping Tρ,A2 Tρ,A1 becomes a contraction by taking A sufficiently
large. By the sample fact that (a + c)1/ρ

− (b + c)1/ρ
≤ (a)1/ρ

− (b)1/ρ for a ≥ b ≥ 0, c ≥ 0 and the Minkowski
inequality, we see that

| (Tρ,A1 11(x))
1
ρ − (Tρ,A1 12(x))

1
ρ |

≤


∫
∞

0


∫

Bt(x) vqdy

tn−βγ


2−γ
γ−1


∫

Bt(x) vq−1
A |11 − 12|

ρdy

tn−βγ

 dt
t


1
ρ

.
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In view of the inequalities (18) and (21), it then follows that

‖Tρ,A2 Tρ,A1 11(x) − Tρ,A2 Tρ,A1 12(x)‖s

≤C‖v‖2−γs0
‖uA‖

p− 1
ρ

r0
‖(Tρ,A1 11(x))

1
ρ − (Tρ,A1 12(x))

1
ρ ‖ρr

≤C‖v‖2−γs0
‖uA‖

p− 1
ρ

r0
‖u‖

2−γ
ρ

r0
‖vA‖

q−ρ
ρ

s0
‖11 − 12‖s

≤
1
2
‖11 − 12‖s.

Here the last inequality holds if A is sufficiently large.

Step ii. Since we assume p ≤ q, then 1
r0
−

1
s0

is positive. We consider a co-ordinate plane with 1
r as its

horizontal co-ordinate and 1
s as the vertical co-ordinate. Then (26) represents a line on this plane. Let L

denote part of this line which is diagonal to the open square

B :=
( 1

r0
−
ρ

s0
,

1
r0

+
1
s0

)
×

0,
1
ρ + 1

s0

 ,
here we take ρ ≤ s0/r0. Let

B1 :=
(

1
r0
− ρ

γ − 1
s0

,
1
r0

+
γ − 1

s0

)
×

(
2 − γ

s0
,

1
s0

+
1
ρ

γ − 1
s0

)
be a sub-square of Bwith the same center.

Next, we will show that v ∈ Ls(Rn) for any
(

1
r ,

1
s

)
∈ L1, a diagonal of B1 and a subset of L. Then we will

extend this result toB through L. Once we show that
(

1
r ,

1
s

)
belongs to a diagonal, then we can immediately

extend this result to the whole square by interpolations. Hence, in the following, we only need to show
that v ∈ Ls(Rn) when

(
1
r ,

1
s

)
belongs to L.

For any
(

1
r ,

1
s

)
∈ L1, one can find r and s, so that all conditions (25)-(27) are met, hence Tρ,A2 Tρ,A1 is a

contraction. Since v satisfies Eq.(28), and ( 1
r0
,

1
s0

)
∈ L1.

We take X = Ls0 (Rn), Y = Z = Ls(Rn) for any
(

1
r ,

1
s

)
∈ L1, by the regularity lifting lemma (Proposition 3), we

can obtain that v ∈ Ls(Rn) for any
(

1
r ,

1
s

)
∈ L1. Furthermore, by interpolations, v also belongs to Ls(Rn) for

any
(

1
r ,

1
s

)
∈ B1.

In order to prove that v ∈ Ls(Rn) for any
(

1
r ,

1
s

)
∈ L, we apply Proposition 4 to derive

‖v‖s∗ ≤ C‖u‖
p
γ−1

pns∗
n(γ−1)+βγs∗

= C‖u‖
p
γ−1
r ,

where
γ − 1

s∗
=

p
r
−
βγ

n
. (29)

Similarly, we have

‖u‖r∗ ≤ C‖v‖
q
γ−1
s

with condition
γ − 1

r∗
=

q
s
−
βγ

n
. (30)
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Condition (29) and (30) together with (26) are equivalent to

1
s∗
−

1
s0

=
p

γ − 1

(1
r
−

1
r0

)
=

pρ
γ − 1

(1
s
−

1
s0

)
,

1
r∗
−

1
r0

=
q

γ − 1

(1
s
−

1
s0

)
=

q
ρ(γ − 1)

(1
r
−

1
r0

)
.

Notice that both pρ
γ−1 and q

ρ(γ−1) are greater than 1, we can extend the range of 1
r and 1

s through the two
equations above. Thus, we can extend the range where v ”belongs” to from L1 to L. Hence, we obtain

v ∈ Ls(Rn), ∀
1
s
∈

0,
1
ρ + 1

s0

 . (31)

Step iii. To extend the right-end point of the interval in (31), Applying proposition 4 to equation (1), we
obtain

‖v‖s = ‖Wβ,γ(up)‖s ≤ C‖up
‖

1
γ−1

ns
n(γ−1)+βγs

≤ C‖u‖
p
γ−1
r , (32)

where
γ − 1

s
=

p
r
−
βγ

n
.

This result, together with
1
r
∈

( 1
r0
−
ρ

s0
,

1
r0

+
1
s0

)
,

which implies

0 <
1
s
<

1
γ − 1

p + γ − 1
q + γ − 1

. (33)

Furthermore, (32) provided
ns

n(γ − 1) + βγs
> 1

that is
1
s
<

n − βγ
n(γ − 1)

. (34)

Combining (33) with (34), we have

v ∈ Ls(Rn), ∀
1
s
∈

(
0,min

{
n − βγ

n(γ − 1)
,

1
γ − 1

p + γ − 1
q + γ − 1

})
.

This is the integrability interval of v in Theorem 1.
Similarly, we have

u ∈ Lr(Rn), ∀
1
r
∈

(
0,

n − βγ
n(γ − 1)

)
.

The proof of ‖u‖r = ‖v‖s = ∞when 1
r ≥

n−βγ
n(γ−1) or 1

s ≥ min
{ n−βγ

n(γ−1) ,
1
γ−1

γ
q+γ−1

}
is the same as in [11]. �
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