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Abstract. In the paper, we obtain the optimal integrability for positive solutions of the following integral
system involving Wolff potentials:

u(@) = Wy, @)@, xR,
{ u(x) = Wy, (@)(1), x€R,

wherep,g>0,8>0,y >1and 0 < By < n. Ma, Chen and Li [Advances in Mathematics, 226(2011), 2676-2699]
developed the regularity lifting method and obtained the optimal integrability for p > 1, g > 1. Here, based
on some new observations, we overcome the difficulty there, and derive the optimal integrability for the
case of p > 0,9 > 0 and pg > 1. This integrability plays a key role in estimating the asymptotic behavior of
positive solutions.

1. Introduction

The Wolff potential is defined for any non-negative Borel measure p:

[ u(By(x)) |7 dt
Wﬁf?’lu(x):j(; [%] Tr

where 1 <y < 00,0 < By < n and By(x) is the ball of radius t centered at point x.
If du = fdx with f > 0and f € L; (R"), we write(cf.[4]):

o[ fyo FY ]
Wﬁ,y(f)(x)=j(; f&(t)T %

It is easy to verify that Wi »(-) is the well-know Newton potential and W »(:) is the Riesz potential.
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The Wolff potentials are helpful to well understand the nonlinear PDEs (cf.[7],[10],[13]). For example,
Wi, (w) and W a ., (w) can be used to estimate the A-superhamonic functions involving solutions of the

y-Laplace equation
—div(|Vu|'~2Vu) =

and the k-Hessian equation

respectively. Here
Filul = S(AD™w),  A(D*w) = (Ar, Az, -+, An)

with A; being eigenvalues of the Hessian matrix (D?u), and Sk(-) is the k-th symmetric function:

S = Y Aidgeee A

1<iy<--<ix<n

Two special cases are F;[u] = Au and F,[u] = det(D?u).

In this paper, we consider the following system involving Wolff type

{ u(x) = Wg,, (v7)(x), u > 0in R", "
o(x) = Wg, (uP)(x), v>0in R",
withp,q,>0,y>1,By <n,pg>1and
n—
P+i—1+q+;—1:n(7—ﬁi)' ?
In particular, when g = § and y = 2, system (1) reduces to
u(x) = fRn lxvqy(lyn),,dy, v>0inR"; o

@ = [, ‘x”y‘lz)“dy, u>0inR"
The solutions (u,v) of (3) are critical points of the functional associated with the well-known hardy-
Littlewood-Sobolev inequality (see [5])

f;R”ﬂ)ﬂwddysam&mwwm@

|na

where f € L'(R"), g € L(R"),0 < @ < n,s,r > 1 such that 1 + 1 = *2 and the best constant is given by

C(n,s,a) = max {fﬂ N |f( )gl(nyld xdy : |Ifll- = llglls = 1}.

Chen, Li and Ou [2] introduce the method of moving planes in integral forms to study the symmetry of
the solutions for the HLS system (3). Jin and Li [6] thoroughly discussed the regularity of the the solutions
of (3)(see also [3]). They found the optimal integrability intervals in the case of p > 1,4 > 1 and established
the smoothness for the integrable solutions. Furthermore, Onodera [12] obtain the optimal integrability
intervals in the case of 0 < p, g < . Based on the results, [9] gave the asymptotic behavior of the integrable
solutions when |x| — 0 and |x| — oo.

In the special case where p = g = 7% and u(x) = v(x), system (3) becomes the single integral equation

e (y)

R lx =yl

u(x) = ——dy, u>0inR".
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and the equivalent PDE is the well-known family of semi-linear equations
(-A)*?y =uvs, u>0inR" 4)

The classification of the solutions of (4) has provided an important ingredient in the study of the well-
known Yamabe problem and the prescribing scalar curvature problem. It is also essential in deriving a
priori estimates in many related nonlinear elliptic equations.

For the system of (1), Chen and Li [1] proved that the solutions u and v are radial symmetry and
decreasing about some point xy. Furthermore, Ma, Chen and Li thoroughly discussed the regularity of the
solutions to (1) and obtained some nice results. Namely, in the case of p > 1 and g > 1, they found the
optimal integrability intervals of the solutions, which is important to estimate the asymptotic rates of the
solutions. Based on these results, Lei [8] obtained the decay rates of the integrable solutions when |x| — oo.

Proposition 1. ([1], Theorem 1.) Let 1 <y < 2. Assume that (u,v) is a pair of positive solutions of (1) with (2) and
uelP7""YR"Y), veLlTY(RMY.

Then (1, v) must be radially symmetric and monotone decreasing about some point in R".

Proposition 2. ([11], Theorem 2.1.) Let (u,v) € LP*7=1(R") x LT*7~Y(R") be a pair of positive solutions for system
(1) in the case (2). Further assumep > 1,q > 1, and 1 <y < 2. Without loss of generality, assume p < q. Then
(u,v) € L"(R") X L*(R") when ever v and s are in the following rang:

11 n—By _[(n=By 1 p+y-1
(?'g)e(O’n(y—1))X(O'mm{ﬂ(y—1)’y—1q+V—1})'

The right end values are optimal in the sense that if % or % exceed the right end values, ||ull, = ||v|ls = co.

For the case of p,q > 0, pg > 1 except p > 1,4 > 1, there are some technical difficulty to derive the
optimal integrability using the method in [11]. Roughly speaking, since one of the equations in (1) cannot
use the smallness condition to obtain a contraction mapping which is essential for the regularity lifting
method developed in [11]. In this paper, we find a way to deal with these problems and hence prove that
Propositions 2 still hold for the casesp =1, >1org=1,p>1,and0<p<1l,g>lor0O<g<1l,p>1
Together with the results in [11], we now know the optimal integrability for all cases pg > 1.

The following proposition will be used to derive the integrability intervals. The proof can be found in
[11].

Let V be a topological vector space. Suppose there are two extended norms (i.e. the norm of an element
in V might be infinity) defined on V',

- 1x, 11+ fly = V= [0, eo].

Let
X={veV:||vlx <o} and Y :={veV:|vly< oo}

Proposition 3. (Regularity lifting lemma) Let T be a contraction map from X into itself and from Y into itself.
Assume that f € X, and that there exists a function g € Z := X N Y such that f = Tf + gin X. Then f also belongs
to Z.

Proposition 4. ([11], Corollary 2.1.) Let p,q > 1, > 0, y > 1 and By < n, then there exists some positive constant
C such that

Wgy (Nl < Cllfllfl, feLPRY,

-1
where % -

7 =ﬁ7yandq>y—1.
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Finally, we state the main result of this paper.

Theorem 1. Let (1,0) € LP*Y"H(R™) X LT~Y(R") be a pair of positive solutions for system (1) in the case (2). Further
assume p,q > 0,pq>1,and 1 <y < 2. Then (u,v) € L"(R") X L’(R") when ever r and s are in the following rang:

(i) when p < g,
11 n— By _[n=By 1 p+ty-1)\)\
(75)6@Wﬂy—D)XQme{n@—lYV—lq+7—1}»

11 fn=By 1 g+y-1 il
(;/g)e(O’mm{n(y/—1)'V—1P+V_1})X(0'”(y_l))'

The right end values are optimal in the sense that if % or % exceed the right end values, ||ull, = ||v|ls = oo.

(ii) when p > g,

2. Proof of Theorem 1.

From Proposition 2, we can see that the case of p > 1, g > 1 is proved by Ma, Chen and Li. Therefore, in
this section, we derive our result in two cases: the first step proves the caseof p=1,g>1andg=1,p > 1,
the second step proves thecaseof 0 <p<1,g>1and0<g<1,p>1.

Case I. We prove the case of p = 1,4 > 1 and q = 1,p > 1. Without loss of generality, we assume that
p=14g>1.

Step i. Estimate of v.
Setro=p+y—-1=y,5=qg+y—1,and let s satisfy

1 2
1p2)
Define .
-
1 -1
M AN L dt
19 = 0 =By =By t’
and .
Tof := “( Jo ¥\ ( Jp S at
2, #n—py mpy | ¢’
where

® u(x), ifou(x)=>Aorx|2A;
va(x) =
4 0, otherwise.

For any g € L*(R"), we define
Tag =T>(T1g), F = Tu(Fo),

. f * [fox) vidy ]1 [mex)(v —va)ldy ] dt
0:= —.
0

=By =By t

with

Next, we estimate T1g and T>f.
By the Holder inequality, we have
T2l < 0?7 (T3f) 7,



L. Li/ Filomat 35:9 (2021), 2951-2961 2955

Jooo fdy )™
Tof f [Bt(t)" ~By t'

IT2flls < Clloll ITS AL,

where

Consequently,

. 12— : " :
with { = 2= + = Using Proposition 4, we obtain

IT2flls < Clioll, yIIfII - 7)
Write _
ns
= (8)
n(y —=1) + Bys
Similarly, we have
Tigl < u?7(T{g) ",
where
Ju\ 7
fB JBi Ya 94Y v - gdy dt
g " N t’
Therefore,
2—y )—
ITgll < Cllully, " ITY gll}
with 1 = =1 4 2;_0)/ Using Proposition 4, we obtain
ITaglle <Cully 1y 'l
©)
<Cllull, " loallf; liglls,
where = ﬁy S_O+%andg<1—ﬁ7y
Combmmg (7) with (9), we derive
ITaglls = IT2(T1g)lls < Cllully, 1ol " oall] " lglls- (10)

Noting that u# € L(R") and v € L*(R"), we obtain a smallness condition

2-y

Cllull?, 1ol loally,”

Nl'—‘

when A is sufficiently large.

Inserting this smallness condition into (10), we see that T, is a contraction from L*(R") to L°(R"). In
addition, we can see that T4 is also a contraction from L*(R") to L*(R"), since (5) holds. It is easy to verify
that v solves the operator equation

g=Tag+F

Furthermore, according to the definition of F, we know that F € L*(R"). Take X = L*(R"), Y = Z = [*(R") in
Proposition 3. Thus, by regularity lifting lemma, we see that

ve LXRY, Ve (o, 3). (11)
S S0
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Step ii. Estimate of u.

Once the integrability of v is obtained, we can use do similar discuss to the integral equation (1) to
estimate the integrability of u.

Let

0<—-<—.

From (8), we have

1111 2
r S_T’o So.

Therefore, we can use Proposition 4 and Holder inequality to obtain that

2—y y—1 2—
lully <Clluallyy " MeellL™ < Cllually, 107Nl __z

To HO—1)pyr

2-y -1
<Cliully, "10l15; " liolls,

where 1 2 1 1
r,Y and r--

Joroatt 1
r 70 7 T n

Inserting (11) into (12), from the inequality above, we deduce that

wel’(RY, V%e(l ! ”_ﬁy).

ro so’ n(y —1)

(13)

Step iii. To extend the left-end point of the interval in (13), we apply Proposition 4 to system (1). We
have

Imm=HM@ﬂMmrscwmﬁzw (14)
n(y=1)+pyr
provided
nr
_>1, (15)
n(y —1) +pyr
that is .
1_n-pr
r n(y-1)
In order the right-hand side of (14) to be finite, we only need
-1+
o< Mr=D+pyr 2 2

nqr so g+y-1

and this is indeed true under conditions (15), since y — 1 < 1, and g > 1. Thus, we deduce that
ﬂ—ﬁy)

“n(y-1)

Similarly, applying proposition 4 to equation (1) with p = 1, we obtain

ueL'(RY), v%e(o (16)

1
llolls = W, ()lls < Cllull”".

n(y=1)+pys

This result, together with (16), implies

v e LR, V%e(&nﬂn{n_ﬁy 1 _ 7 })

n(y-1)"y-1g+y-1
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This is the integrability interval of v in Theorem 1 when p = 1.

Case II. We prove the case of 0 < p < 1,4 > 1and 0 < g4 < 1,p > 1. Without loss of generality, we assume
that0 <p<1,9>1.
Step i. Since pg > 1, then there exists a p > 0 such that

1< 1 <p<gq
v .
Here p will be determined later.
Define N
71 qa-p
TP g(x) := DO fBr(x) vidy th(x) U4 g°dy @
1g = 0 tn—ﬁy t"‘ﬁV t ’
and

oo N = . up_%f%dy
L T

=Py =By £’
where the definition of v4, u,4 is similar as (6).

Next, we estimate T 19(x) and T? 5 f(x).
By the Holder 1nequahty, we have

_ 0 Ny
1TV gl < w®7(TY )",

where ;
700, _ ©(Joo 0T e
1 9= 0 n=py t'
Consequently,
ITgll, < Cllullz, I gl ™",
where 1 2 1
LD (Y (17)
r 1o r
Using Proposition 4 and the Holder inequality, we deduce that
IT{ gl <Cllully,” 10 g"ll 7
, " (18)
<Cliully, " loally, lglI¢,
where 1
) p+E=y_ +[2, (19)
S0 s 7 n
and 1
r-t b 20)
r n

Similarly, we have
IT0 £ < 27180 !

where

00F = f mex)Afpdy dt

N t
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By the Holder inequality and Proposition 4, we derive

1
2— ,0 -1 2— P75 1
IT5 flls <Cllolly, "ITS" AL < Cllollg, "My " foll_ue

n(y=1)+pys (21)
<C 2_)/ ‘U—% %
<Cllolls, " llually, “If1I7,
where 1 2 1
=X (22)
s S0 s
11
P=% % -1
Pyl L + ﬁ_}/ (23)
1o 4 s n
-1
-t _,_# (24)
s n
Setro=p+7y—1,s0 =g+ y—1, then by (2), both conditions (19) and (23) become
1.1_ (1 _ l)
roory PAs so)’
and the set of conditions (17)-(24) can now be simplified as
2 - -1 2 - -1
ey, vt L _zzr r-1 (25)
r 10 7 s 50 s
1 1 1 1
e 2
r o (s so)' (26)
-1 -1
rol bt By 27)
7 n s n
In order to handle the smallness condition, we consider the following operators T¢ A, Tg’A:
0o vidy 2 f (v—0va)ldy ) 4
0,A TP Jl;t(x) Bi(x) _t
09ty i= 1o + || P |2
oo 119 fggtu = a7
00 uPdy " u—ua)dy\ g
0.A TP By (x) B:(x) [ad
T, f(x) := T, f(x) +f0 Ty Ty ] x
Clearly, we can see that
TS’ATf’AU =v and Tf’ATg’Au =1 (28)

Next, we prove that, when p > 1, the mapping Tg’A Tf ! becomes a contraction by taking A sufficiently

large. By the sample fact that (a + ¢)'/? — (b + ¢)'/P < ()P — (b)!/P fora > b > 0,c > 0 and the Minkowski
inequality, we see that

| (T 1 (0)7 = (T 72(0)7 |

N}

-V

foo {th(x) quy]y
<
0 tn=Py

R

a ’
fB[(x) ol g1 — galPdy dt
=Py t ’
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In view of the inequalities (18) and (21), it then follows that
A, A A mp,A
TS T g1(x) = T5 Y ga () s

<CllolZ” lally, “IT g1 ()7 = (T g2(x) llpr

1 2-y q-p

<Cllolly aealls, "l lloally, llgn = galls
Slllm = 92lls-
2
Here the last inequality holds if A is sufficiently large.

Step ii. Since we assume p < g, then ;- — L is positive. We consider a co-ordinate plane with | as its

horizontal co-ordinate and 1 as the vertical co-ordinate. Then (26) represents a line on this plane. Let ¢
denote part of this line which is diagonal to the open square

here we take p < s¢/rp. Let

-1 -1 2 - -1
%1:(1— Y _l+y )x( V;l+ll—»

7o S0 To S0

be a sub-square of B with the same center.
Next, we will show that v € L°(R") for any (%, %) € ¥4, a diagonal of B; and a subset of £. Then we will

extend this result to B through £. Once we show that (%, %) belongs to a diagonal, then we can immediately
extend this result to the whole square by interpolations. Hence, in the following, we only need to show
that v € L*(R") when (%, %) belongs to .
For any (%, %) € ¢4, one can find 7 and 5, so that all conditions (25)-(27) are met, hence Tg’ATlp’A is a
contraction. Since v satisfies Eq.(28), and
11
(— , —) S 21.

To S0
We take X = L*(R"), Y = Z = L’(R") for any (%, %) € ¥4, by the regularity lifting lemma (Proposition 3), we
can obtain that v € L’(R") for any (%, %) € £4. Furthermore, by interpolations, v also belongs to L*(R") for
any (%, %) € B.

In order to prove that v € L*(R") for any (l 1

) € £, we apply Proposition 4 to derive

r’s
= =
lolls < Cllull”",,. = Cllull;,
DA
where 1
r-l_p_pr (29)
s r o n
Similarly, we have
A
llull- < Cllolly™
with condition ,
y-l_a_Fr (30)

re S n
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Condition (29) and (30) together with (26) are equivalent to
1 1 p (1 1 ) pp (1 1 )

s* sozm PR zyTl s sp)

r To
l_l_i(l_l)_ q (1_1)
r ro y-1\s s/ py-D\r r)

Notice that both }f’_pl and ﬁ are greater than 1, we can extend the range of ! and 1 through the two

equations above. Thus, we can extend the range where v “belongs” to from £; to £. Hence, we obtain

1 %+1
ve SR, VY=¢€lo, . (31)
S S0

Step iii. To extend the right-end point of the interval in (31), Applying proposition 4 to equation (1), we
obtain

1 N
l[olls = W, (uP)lls < Cllu”ll"(' e < Cllull]™, (32)
n(y-1)+pys
where
y=1_r_»B
s r o on

This result, together with
1 ( 1 p1 1 )
—el—-=,=—+—),

r \ro so’ 1o So
which implies
1 1 p+y-1

O<g<y—1q+)/—1' (33)
Furthermore, (32) provided
L >1
n(y = 1)+ pys
that is
1 n-—pBy
- . 4
5 < n(y —1) (34)
Combining (33) with (34), we have
- +y-1
pe R, vEe(ominl 2PV L Pty .
s n(y=1"y-1g+y-1
This is the integrability interval of v in Theorem 1.
Similarly, we have
1 n— By
L'(R"), V- .
u e L'(R"), re(o’n(y—l))
The proof of ||u], = [|[v]ls = co when % > nn(;f_g){) or % > min{n’z;%, vquJ_l} is the same as in [11]. O
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