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Existence of Positive Solutions for the Nonlinear Fractional Boundary
Value Problems with p-Laplacian

Tawanda Gallan Chakuvinga?, Fatma Serap Topal?

Department of Mathematics, Ege University, 35100 Bornova, Izmir-Turkey

Abstract. The monotone iterative technique, theory of fixed point index in a cone and the Leggett-Williams
fixed point theorem are applied to investigate the existence and multiplicity of positive solutions for four
boundary value problems of nonlinear fractional differential equations with a p-Laplacian point operator
and infinite delay. Moreover, examples are presented to illustrate a vast applicability of our main results.

1. Introduction

Investigating existence of positive solutions is one of the most important features of boundary value
problems based on a model. This has been one of the most crucial targets for researchers in recent years.

In these studies, fixed point theorems are generally used and in some of the studies the lower and upper
solution methods known as monotonous methods are also used.

With the acceleration of the studies in fractional derivative analysis, it has been applied to modelling
boundary value problems in [3], [4], for physical phenomena, engineering and economic processes and
concepts involving fractional derivatives. Recently, boundary value problems involving fractional order
differential equations were considered in physics, chemistry, aerodynamics, polymer rheology, and many
other fields [5]-[9], [27], [28]. This shows the extent to which fractional differential equations have attracted
the attention of researchers working in various fields. The advantage of having fractional derivatives is
that they provide more degrees of freedom in models and is thus more effective for modelling real-life events.

In paper [1], the nonlinear differential equation of fractional order
Dg.u(t) + f(t,u(t) =0, 0<t<1,

subject to the boundary conditions

u(0) =0, DEu(1)=aD’,u(&),
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was considered. In this problem, D, and D# are the standard Riemann-Liouville fractional order derivative,
1<a<20<p<1,0<a<1,&€(0,1),a8F2<1-8,0<a-B-1and f:[0,1] x[0,00) — [0, )
satisfies Carathéodory type conditions. The boundary value problem (BVP) was transformed to an equiv-
alent integral equation. Fixed point theorems were applied to show the existence and multiplicity results
of positive solutions of the BVP under consideration. Trivially, the Banach contraction mapping principle
revealed that the operator considered has a unique fixed point which is a solution of the BVP. Incorporation
with the Arzela-Ascoli theorem, the operation is completely continuous. Furthermore, some theorems were
considered with some valid assumptions, implying that the BVP has multiple positive solutions.

In [2], the existence and multiplicity of positive solutions to m-point boundary value problem of non-
linear fractional differential equations with p-Laplacian operator

D (@p(D&u()) + p(MN) f(t,u(t) =0, 0<t<1,

2

m=2
u(0)=0, Dy.u(l)= ) &EDyuln), D§u() =0,
i=1

was considered, where Dy, Dg and Dé are the standard Riemann-Liouville fractional derivatives with
l<a<2,0<B,y<lsuchthat0<a-y-land0<a-B-1, A €(0,+c0),
0<é&,ni<1(=12-,m=-2)suchthat 2?;2 &mi <1, f € C([0, 1]X[0, +00), [0, +o0)) and ¢, (s) = [s|" s, p > 1
with @, ! = ¢, such that % + % = 1. They applied the monotone iterative technique and theory of fixed point
index in a cone. The BVP is changed into an equivalent integral equation and the eigen value interval for
existence of multiplicity of positive solution is considered. After showing that the operator is equicontin-
uous, the Arzela-Ascoli theorem proves complete continuity of the operator. Also, by the Schauder fixed
point theorem, the operator is shown to have at least one fixed point and the BVP having a single positive
solution. Furthermore, some theorems are proved to show that the BVP has multiple positive solutions. Of
which, one of the BVP solutions is a minimal positive solution and the other a maximal positive solution.
As far as we know, there are handfuls of papers probing the existence of positive solutions for fractional
differential equations with both a p-Laplacian operator and infinite delay. The applications of these are still
at an initial stage.

Recently, a vast amount of studies in nonlinear fractional differential equations were considered (see [21]-
[26]).

Motivated by the literature mentioned, in this paper we concentrate on the existence of positive solutions
for a four point BVP of fractional differential equations with infinite delay

D (@ (DYy()) = f(t,yr), ae te]=[0,1],
y(0) =0, D%y()=aD%(&), Dy(0)=0, D"y(1)=0bD"y(n),
y(t) = ¢(t)/ te (_OO/ 0]/ (1)

where D%, DF and D? are the standard Riemann-Liouville fractional derivatives with
1<a,f<2,0<y<lsuchthat 0<a—-y-1,0<ab<1,0<¢n<landf:]xB — [0,+)is a specified
function satisfying certain assumptions to be stated in the next sections, ¢ € B and B is a phasespace. For
a function y and any ¢ € [0, 1], y; denotes the element of B defined by y:(0) = y(t + 6) for 6 € (—o0,0], we
assume that belonging to B are the histories y;.

The essential part in the study of qualitative and quantitative theory in functional differential equations is
characterised by the notion of phase space B, which entails seminormed space satisfying suitable axioms
covered in detail by [10], [12] - [14].

In section 2, we will give some necessary definitions and lemmas which are used in the main results.
For the sake of convenience, we also state the fixed point theorems.
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In Section 3, we firstly consider the following nonlinear BVP

Df (g, (D*y(1)) = f(t, y(H), te (1),
¥(0) =0, D*y(1) = aD*y(&), D*y(0) = 0, D"y(1) = bD y(n) )

and we will give the existence results of this problem. To simplify BVP (2), we let w = D%y, and v = @p(w),
so BVP (2) becomes the following linear BVP

Dfu(t) = g(t)
v(0)=0 and (1) = a’ 'v(), (3)

where g € L’[0,1] and g > 0.

In Section 4, we will give the multiplicity results for the BVP (1). In the last section, we will give some
examples to illustrate our main results.

2. Basic Definitions and Preliminaries
We first introduce some necessary definitions and lemmas in this section.

Definition 2.1. (see [10], [15], [16]) The integral

o (t—s)*
I (t)—f @ g(s)ds

defines the fractional (arbitrary) order integral of the function g € L'([a,b), Ry) of the order a € R, where T is the
gamma function. For a = 0, we have I*g(t) = g(t) * pa(t), where @, (t) = %, when t > 0, @,(t) = 0 for t < 0 and
@a(t) = 0(t) as a — 0, where 6 is the delta function.

Definition 2.2. (see [10], [15], [16]) The ath Riemann-Liouville fractional-order derivative of g, a € Ry, for a
function g given on the interval [a, b] is defined as follows:

a\"
—F(nl—a) (E) L(t—s)““’_lg(s)ds.

The following auxiliary Lemmas are necessary to illustrate the existence of solutions for
problem (2).

Dg.g(t) =

Lemma 2.3. [11] Let o > O then the differential equation
Dy(t) =0

has solutions y(t) = ol oot 2 o ot N, for some ¢; € R, where IN is the smallest integer greater than or
equal to .

Lemma 2.4. [11] Let y € C(0,1) N L(0, 1) with a fractional derivative of order o > O that belongs to C(0,1) N L(0, 1),
then

I*D*y(t) = y(t) + it et ot

for some c; € R, where N is the smallest integer greater than or equal to a.
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Lemma 2.5. Let y be a continuous function and considering the BVP (3). Problem (3) has a unique solution given

by
1
y(t) = f G(t,s)p(s)ds
0
where
ta—l
G(t,s) = Gi(t,s) + ] Ga(1,9),
inwhichd =1-bn*71 >0,
where
ta—l(l_s)a—y—l_(t_s)a—l
—2 2 0<s<t<l,
Gi(t,s) {Ml_s)ﬂ?‘% 0 )
T T = s=4b
(=) ~(=9) !
Ga(1, ) ((1-s>n>“—yr—(1“ ) o telodl
S R te[0,1],
and
1
) = @q (f H(s, ’[)g(T)dT),
0
in which
gp_lsﬁ_l
H(s,7) = Hi(s, 7) + T_léﬁ_le(é, ),
where
L s P
His, ) {M_Tf%@ cs<r<l
e <s<t<l,
(A-1)&)F1-(g—)f !
=2 s5€[0,1],
Hy(&,7) = et P
&) {—((1 P sel0,1],

such that aP~1&F-1 < 1,
Proof. From Lemma 2.4 and problem (3), we get
o(t) = ctF ! + cotF 2 + Py ().
Since v(0) = 0, we have c; = 0 and so
o(t) = et + Py(t).

Considering the boundary condition in problem (3), v(1) = a”~'v(&), we have

é —

-0 (& -1
L 15ﬁ1[f F(ﬁ) T)d””plf ) g(T)dT]'

(4)
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Substituting for c; into (6), we get

) - N 11— g
=) T O ”1&“[ 1f 1 YT TR gde]'

If
U(t) = _V(t)/

then we have

S 1
v(s) :%ﬁ) [) [(1—7)f 1Pt — (s — T)ﬁfl]g(’c)d’[ + %ﬁ) I 1- T)ﬁflsﬁflg(f)d’[
ab~1sf~1

A= @)
1.6-1
fH1ST ’()dT+app—1£ﬁlf Hy(&, 1)g9(T)dT

3 1
[f (1 =1)ftEFt — (- T)ﬁ_l)g(’()d’( + f 1- T)‘B_léﬁ_lg(’[)d’(
3

=f H(s, 1)g(t)dr,
0

where
H H L 8
(s,7) =Hi(s, 1) + [y 2(&,7), (8)
in which
Sl g g,
Hl(S, T) = 1 (1—7)p-1
T(B) ’ 0<s<t<1
and
(=D& (o)
—sm—, s€[0,1],
Hy(E7) = { aenep ! )
wool oy

Noting that Dy = w, w = @, L) = @4(v) from (3), we know that the solution of problem (2) satisfies
D¥y(t) = —pq(v(1)). (10)
Let
p(t) = q(v(b), (11)
from Lemma 2.4, (10) and (11), we have
y() = =I*(p(t) + c1t*7! + et (12)

Since y(0) = 0 we get c; = 0.

Also, since Dt* = —r(roff;}r)l) Y we get
_ I'a) 1
14 = o7 a-y
Dy(t) I"7Vo(t) + 1 T 7/)t
Ie) ..,
= _g)r-1 a—y-1
F(a ) f (t—s) p(s)ds + 01 a )/)t . (13)
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Using the boundary condition D”y(1) = bD”y(17), we have

1 7
-1fa—@*%w@%+qnm=b(]ﬂm—g*%m@ﬁ+qnmww4)
0 0

and so

1 1 . il
— AN ey _ _ oya—y-1
‘ ﬂ@Lﬂ“s’ pots=b [ (-9 p@ﬂ, (14)
whered =1-bn*771 > 0.

Substituting ¢; into (12) we get

1

_oay-lpa-1 _ gy a-1 _ oya—ry-lia-1
¥ n>f“ S = (1= sy p(eds + —— [ (1= s p)ds

1
@
tal . .
ubmrw<jﬂaﬂwyl<—ﬂyﬂmm

bta 1
4 1— a=y-15(5)d 15
awmwmmﬁ“ S plo)ds (15)
1 1
:f Gi(t,s)p(s) Ga(n,s)p(s)ds (16)
0 0
1
:f G(t,s)p(s)ds,
0
where
ta—l
G(t,s) = G1(t,s) + 7 Ga(n,s), 17)
in which
tw—l(l_s)a—y—l_(t_s)a—l
— 7 0<s<t<l,
Gl (t/ S) = { ta—l (1_5)3:5/%)1
~Ta <t<s<1
and
(A=s)m* 71 =(n=s)* 7"
, tel0,1],
Ga(n,s) = e (18)
a {—«1 e relo 1]

The proof is complete. [

Lemma 2.6. The functions H(t,s) and G(t, s) defined by (8) and (17) respectively satisfy the following conditions:

1. G(t,s) = 0,H(t,s) > 0,G(t,s) < G(s,s) and H(t,s) < H(s,s) for s, t € [0,1],
2. G(t,8) > t*1G(1,s) for all s,t € [0,1],
3. there exist positive functions g1 and g, € C(0, 1) such that

g}gﬁ Gi(t,8) = 91(s)Ga(s, s) and 51;}23 G2(n,8) = 92(5)Ga(s, s) for s € (0,1), where

5¢x—1 (1_S)a—;/—1 _(6_5)0(—1

g1(S) — fa-1(1—g)a—r1 ’ l:fS € [0/ ml]/
(), if s € [my, 1]
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and

(=90 gy
g2(s) = { (A=s)n)* 7T , ifsel0,m], "

(%)a7y71/ Zfs € [ml/ 1]/

for0<d <m <0< 1L

T(a—
4. maxo<t<i fol G(t,s)ds = H(ZQT—yy)) [1 + %]

Proof. The proof will be given in four parts. Part 1 and 2 are covered in [19] and [20] respectively. Here, we
will prove Part 3 and Part 4. Considering G1(t, s) for s < t, we define

Lg,(t,5) = 1971 (1 — )27 7L — (¢t = 5)*7!
and we let
Jo,(t,s) = t* 11 —s)* 7 ort <s < 1.

We also know that L, (, s) is non-increasing for s < t, and Jg, (t, s) to be non-decreasing for all s € [0, 1] then

min G (t S) _ L LGl(S/ S)/ S € [O/ ml]/

9<t<6 w B F(OC) ]Gl(érs)/ RS [ml/l]r
1 [l — gt - -9, se0,m],
T(@) |6%1(1 — )21, s € [my, 1],

for 8 < my < 6 satisfies the equation
Sa_l(l _ S)a—y—l _ (‘9 _ S)a—l — 604—1(1 _ S)a—y—l.
By the monotonicity of L¢, and Jg,, we have

g1 (1 _ S)a—y—l

522)5 Gl(t/ S) = Gl(sl S) = f(oz) s (20)
we assign g1(s) as in (19), we evidently see that

51;5123 Gl(t/ S) 2 g1 (S)Gl (S/ S)/
for all s, t € [0,1].
Using the same approach on Gy(7, s) for t,s € [0,1] X [0, 1], we get

(5(1 = 5))*! (1-5)"
_ = 21
Ga(s, s) T(@) and (I)I;g)f Ga(n,s) T(@) (21)

and assigning g»(s) as stated from (19), we see that for s € [0,m1],s < tand s <7,
(1 =5)5)2 71— (5 —5)* ! « (1 —s)s)* 7!
(1 =s)mar-t I(a)

F =90y = 6=y,

since g>(s) is non-increasing, for 9 < 6, we get

(=997t = (8 — sy
e '

92(5)Ga(s, 5)

92(5)Ga(s, 5) <
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Therefore,

Jmin, G2(1,8) 2 92(5)Gafs, 5).

Also, since g,(s) is non-decreasing for s € [m1,1], 1 < sand 9 <9,

a-y-1
PA9Ga(5,5) = (2) X Fl =
< F( )[(1—5)8]“ -1
< @ )[<1 $)6]* 77
Therefore,

Srmtn G2(n,5) 2 92(s)Ga(s, s) for all s, t € [0, 1].
Snt<

By the Beta integral B(u,v) = fo t=1(1 — t)°>~1dt, for u,v € R and B(u,v) = rr((l;i(;;), using equation (20) and
(21) we get

1 1 1
= L a=1r1 _ qya-r-1 b f a=1¢1 _ a-y-1

grgg)ff(; G(t,s)ds = 1"(0()[, s“7t(1—5s) ds+d1"(oc) | s“7H1—5s) ds
_ Ta-y) b
T TQa-y) [1+d]' (22)

This completes the proof. [J
Lemma 2.7. The function H defined by (8) satisfies the outlined conditions:

1 T _
1. maxg<t<1 fo H(t,s)ds = %?) [1 + %],

2. there exist a positive function gy € C(0,1) such that
min H(t,s) > gu(s)H(s,s), s € (0,1),

9<t<d
where
F1(1-s)f1-(5-s)ft .
gH(S) — #FT(1—s)P1 ’ thS € [O/ ml]/ (23)
(2, ifs € [my,1],
and 9 < my < 0.
Proof. The proofs follow from Lemma 2.6, Part 3 and 4. We can easily see that
sP1(1 — s)f 1 (1-s)f!
max Hy(t,s) = Hi(s, s) ) and  maxHp(¢,s) = Ha(s,5) @) (24)
Let gy(s) be defined as in (23). From (24), and the Beta integral function we get
I'(B) a!
. 2
&i’ff Ht 98 = mop |1 T 25)

The proof is complete. [

Also, we will use the following fixed point theorems and lemmas to give existence results.
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Lemma 2.8. ([2]) Let E be a real Banach space, C C E be a cone, Q, = {y € C : |lyl| < r}. Let the operator
T : CNQ, — C be completely continuous and satisfying Tu # u, Yu € 9Q,.
Then

1. IfIITull < |lull, Yu € 9, then i(T,Q,,C) =1,
2. IfFTull = |lull, Yu € 9Q,, then i(T,Q,,C) = 0.

Letting C C E be a cone in E and (E, ||.||) be a Banach space. We show a continuous mapping
¢ : C — [0, )

by a concave, positive and continuous functional 1 on C with
PAx+ 1 -A)y) 2 APp(x) + (1 = A)Y(y) forall x,y € Cand A € [0,1]. For K, L, 7 > 0 constants with C and ¢ as
above, we let

Ck={yeC:yll <K}
and
C(,L,K) =y € C:¢p(y) > Land ||y < K}.

The current study is anchored on the fixed point theorem as presented by Leggett and Williams [18], see
also [17], [10].

Theorem 2.9. Let C C E be a cone in E, which is a Banach space and R > 0 a constant. Suppose there exists a

concave positive continuous functional on C with y(y) < |lyll for y € Cg and let N : Cr — Cg be a continuous
compact map. Assume that there are numbers r,L and Kwith0 <r <L < K< R:

(A1) {y € C@, LK) : (y) > L, llyll < K} # @ and Y(N(y)) > L for y € C(¢, L, K);

(A2) INW)Il < rfory € C;
(A3) Y(N(y)) > L for y € C(y, L, R) with [Nl > K.
Then N has at least three fixed point y1, Y2, y3 in Cr. Also we get

neC, ypelyeCy, LR):P(y) > L}
and
y3 € Cr — {C(¥, L, R) U G, ).

Theorem 2.10. (Schauder-Tychonoff Fixed Point Theorem) Let X be a Banach space. Assume that K is a closed,
bounded, convex subset of X. If T : K — K is compact then T has a fixed point in K.

3. Existence results for BVP (2)

We consider the Banach space E = C([0, 1], R) endowed with the norm defined by
Iyl = supy,; ly(t)l. Let C = {y € E|y(t) > 0}, then Cis a cone in E. Define an operator T : C — C as

1 1
(Ty)(t) = fo G(f/S)(Pq( fo H(S,T)f(T/y(T))dT)dS- (26)

Then, T has a solution if and only if the operator T has a fixed point.

Lemma 3.1. If f € C([0, 1] X [0, +00), [0, +00)), then the operator T : C — C is completely continuous.
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Proof. From the continuity and non-negativeness of G(t,s), H(t,s) and f(t, y(t)), we see that T : C — C is
continuous.

Let Q) c C be bounded. Then, for all T € [0,1] and y € Q, there exists a positive constant M such that
If(t, y(t)| < M. Thus, we get

1 1
I(Ty)®) I fo G(f,S)ﬁoq( fo H(S,T)f(T,y(T))dT)dSI

IA

1 1
f G(s,8)pq (f H(z,7)f(t, y(*c))d*c) ds
0 0

T(a- MT p-1 (e
(a-7) 1.0 (B) 1. ,
I'a—-vy) d|| T'(2B) 1 —ar-1&p-1
which implies that T(Q) is uniformly bounded.
Also, by the continuity of G(¢t,s) and H(t,s) on [0,1] X [0, 1], we know that this is uniformly continuous

on [0,1] x [0,1]. Therefore, for fixed s € [0,1] and for any ¢ > 0, there exists a constant 0 > 0, such that
t,tp € [0, 1] and |f1 - t2| <9,

MI -1
G(t1,5) = G(t2, 5)| < @y [ 1"(2([5)) (1 Tz Z:—léﬁ—l )] &

Thus, for all y € Q,

IA

1 1
[(Ty)(t2) = (Ty)(t)l fo IG(t2,5) = G(t, 5)lepg (fo H(S/T)f(T,y(T))dT)dS

IA

1 1
f |G(f2,5)—G(t1,S)|(Pq( f H(T,T)f(T,y(T))dT)ds
0 0

MI() a1 1
< qo,,[ T2p) (1 + = )]fo |G(t2,s) — G(t1, s)|ds

< g

which means that T(QQ) is equicontinuous and by the Arzella-Ascoli theorem, we obtain T : C — Cis
completely continuous. [J

Theorem 3.2. If f € C([0, 1] X [0, +00), [0, +00)), f(t, V) is non-decreasing in y, then BVP (2) has a minimal positive
solution v in B, and a maximal positive solution w in B,. In addition, v,,(t) — v(t) and w,,(t) — w(t) as m — oo
uniformly on [0, 1], where

o= [ Gt 99, ( | He 0f6s vm_m»df) s )
and

ant = [ Gt )0, ( | ' Hes DG wm_m»dT) ds. 28)
Proof. Let

B, ={yeC:|yll<r},
where

T(a-7) b][MiT(B) L o
"= Ta-y) [l ' _H T(26) (1 Tt )] '

d
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Step 1: Problem (2) has at least one solution.
For y € B,, there exists a positive constant M; such that |f(t, y(t))| < My,

1 1
(O = | fo Gt 9, ( fo Hs 0 f y(T))dT) "
1 1
< |j(; G(s,8)py (j(; H(z,7)f(t, y(T))d’L’) ds|
I(a—7y) 14 b][MiL(B) ) a1 -1
Ira-vy) d|| T(2p) 1 —ar-1-1 .
Therefore,
T:B, = B,.

By Lemma 3.1, it is obvious that T : B, — B, is completely continuous. Thus, by the Schauder fixed point
theorem, the operator T has at least one fixed point and BVP (2) has at least one solution in B,.

Step 2: BVP (2) has a positive solution in B,, which is a minimal positive solution. From (26) and (27), it
can be seen that

Um(t) = (Top-1)(t), t €[0,1], form=1,2,3,.... (29)
Also, since f(t, y) is non-decreasing in y, we get
0=0o(t) v1(t) <---om(t) <---, £€[0,1],

we obtain that {v,,} is a sequentially compact set because T is compact. As a result, there exists v € B, such
that v,, > vasm — oo.
Let y(t) be any positive solution of BVP (2) in B,. It is obvious that

0 =vo(t) < y(t) = (Ty)(®)-
Therefore,

Um(t) < y(t) form=0,1,2,---. (30)
Taking limits as m — oo in (30), we obtain v < y(f) for t € [0, 1].

Step 3: BVP (2) has a positive solution in B,, which is a maximal positive solution. Let
wo(t) =71, t €[0,1] and w1 (t) = Twy(t). From T : B, — B,, we have w; € B,. Thus

0 <wy(t) < v =wolt).
Also, since f(t, y) in non-decreasing in y, we get
s S wy(t) < -0 S wi(t) S wo(t), te[0,1].
Using the same steps involved in Step 2, we see that
W (t) = w(t) as m — oo

and

1 1
w(t) = fo G(t,s)(pq( fo H(s, 7)f(7, (7))t | ds.
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Let y(t) be any positive solution of BVP (2) in B,.
Trivially,

y(t) < wo(t).
Therefore,
y(t) < wy(t).

Taking limits as m — oo in (31), we get y(t) < w(t) fort € [0,1]. O

We define
t, %
fo = lim su —f( y) , fo=lim inf —f( y) ,
y=0* ser0,11 Pp(llyll) y—0* te[0,1] @, (L2|lyll)
t, t
f* = lim sup —f( y) , foo = lim inf —f( Y) .
yieo oot 9, (ol vt o 11 @y (Lally)
Let
T(a - r p-1 91
g L= [ B][I®) (,,
I'2a-y) d|[T(2p) 1—ar-1&p-1
and

1 5
B :fo G(1,5)p, (f; g;}sr}sH(s,T)dT)ds.

Theorem 3.3. Assume that f € C([0,1] X [0, +00), [0, +00)), and the following conditions hold;

(Nl) fo = foo = 4+00.

(N2) There exists a constant py > 0 such that f(t,y) < @p(Isllyll) for t € [0,1], y € [0, p1].

Then, BVP (2) has at least two positive solutions y; and y, such that

0 <llyall < p1 <llyall,

Proof. Since

7

) ft,y)
= lim inf —F— =
L AT

there is pg € (0, p1) such that

(& y) = @p(2liyll) for t € [0,1], y € [0, pol-

Let

Qp ={y € C:lyll < po}-

2938

(81)

(32)
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Then, for any y € dQ,,, it follows from Lemma 2.6 that

1 1
f G(t,8)pq (f H(s, 1) f(7, y(T))dT) ds
0 0
1 1
f 11G(1, 5)Pg (f H(s, T)(pp(lzllyll)d’c) ds
0 0

1 5
ZZL G(l,s)(pq(j; gg}gH(S,T)dT)dsllyll.

(Ty)(®)

v

v

Therefore,
ITyll = LBallyll.
Considering also (32), we get
ITyll 2 lyll, ¥ y € 9Qy,.
By Lemma 2.8, we get
i(T,Q,,,C) = 0.

Also,

foo = lim inf Sew

— = +OO,
y—oo t€[0,1] (Pp(l4“y“)

there is pj, pf > p1, such that

ft,y) = @p(lallyll) for t € [0,1], y € [pg, +00).
Let

Q= {y € C:lyll £ ppl

Then, for any y € BQPB, it follows from Lemma 2.6 that

1 1
f G(t, s)py (f H(s, 1) f(z, y(T))dT) ds
0 0

1 1
f t*1G(1, ), (f H(s, T)ﬁop(l4||]/||)d’f) ds
0 0

1
Iy f G(1,s)(pq( f minH(s,T)dT)dSIIyII.
0 9 9<t<o

ITYll = LB llyll.

(Ty)(®)

\%

\%

Therefore,

Considering also (32), we get
ITyll = llyll, ¥ y € 9Qy;.
By Lemma 2.8, we get

i(T,Q,;,C) = 0.

2939

(33)

(34)
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Finally, let QO = {y € C: ||yl < p1} for any y € dQ,, it follows from Lemma 2.6, 2.7 and (N>) that

1 1
(Ty)t) = f(;G(t,s)(pq(fo H(s,T)f(T,y(T))dT)ds

1 1
fo G5 )y ( fo H(Tz’f)@p(lS”yH)dT)dS
Tla-y) [, o][ 1) ot A\
st |1 1 (g e
Therefore,

ITyll < IsBlyll-

Considering also (32), we get

IA

ITyll < lyll, ¥y € 0Qy,.
By Lemma 2.8, we get

i(T,Q,,,C) = 1. (35)
From (33)-(35) and py < p1 < pp, we get

(T, Q0 \Qp, O) = =1, i(T,Qp, \Q,,C) = 1.

Thus, T has a fixed point y; € Q,, \ 5[30 and a fixed point y, € QPB \ ﬁpl' Trivially, i1, y» are both positive
solutions of BVP (2) and 0 < ||l < p1 < lly2ll.
This completes the proof. [

Similarly, we can get the following results;
Corollary 3.4. Assume that f € C([0,1] X [0, +00), [0, +00)) and the following conditions hold:

(N1) fo=f>=0.
(N2) There exists a constant pa > 0 such that f(t,y) > @,(sllyll) for t € [0,1], y € [0, p2]. Then BVP (2) has at
least two positive solutions y; and y, such that

0 <llyll < p2 < llyall

4. Multiplicity result for BVP (1)
A solution to problem (1) is obtained by setting
B ={y:(=0,1] = R: yl-wg) € B, yly € C*(JR)},
and let ||.||; the semi norm in B; defined by:
Iyl = llyolls + sup{ly(®)l : 0 <t <1}, y € By.

Definition 4.1. Problem (1) has a solution y, which is a function y € By that satisfies the
equation Dﬁ((pp(D“y(t))) = f(t, y;) on ] and conditions y(0) = 0, D*y(1) = aD*y(¢&),
D*y(0) = 0, D"y(1) = bD”y(n) and y(t) = P(t), t € (—00,0].
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The Banach space of all continuous functions from | into R is denoted by C(J, R),
with the norm:
Iylleo = suplly()| : t € J}.
Now, we present axioms for definition of the phase space B.
(A1) Foreveryte[0,1],if y: (—c0,1) = R, yp € B, then the following conditions hold:

(@) y: €B,
(b) There exists a positive constant H : |y(t)| < HI|y:llp;
(c) There exist two functions K(.), M(.) : R+ — R, independent of y, with K continuous and M

locally bounded:
llyells < K(£) sup{ly(s) : 0 <'s < £} + M(H)llyolls-
(A2) y;is a B-valued continuous function on [0, 1] for the function y(.) in (A1).
(A3) The space B is complete. Denoted by

K =sup{K(t) : t € [0,1]} and M = sup{M(t) : t € [0, 1]}.
Let
i = min{g®, 00, g and o= max{9*", 971, u}. (36)

The following assumptions are necessary for the underlying theorem:

(H1) fis a continuous function.
(Hz) There exists a function g* : [0, c0) — [0, c0) which is continuous and non-decreasing and a function
h* : [0, 00) — [0, 00) which is continuous and non-increasing, p; € C(J, R+) and p, € C(J, R+) such that

p2(OF (llull) < f(t,u) < pr®)g°(lul),

for each (t,u) € ] X B.
(H3) There exists a constant r > 0 such that

T -1 g-1 T(a — [
[q*(Kr + M||¢||B)||p1||mr((2’;)) (1 s )] - _yy)) 1+ g] <r

(Hy) There exists a constant L > r such that

-1 0 ) ]
[h*(KL + M||¢l|) ||pz||oo]L7 X [f G(t,s)p, (ﬁ Hs, T)dT) ds| > L.
9 9 ]
(Hs) There exists a constant R such that 0 < r < L < gR and

I'(p) ar-1 g-1 I(a—7) )

[T(KR + Mi|pllp)lp1lleo

Theorem 4.2. If (H1) — (Hs) are satisfied. Problem (1) has at least three positive solutions.

Proof. Relying on Leggett-William fixed point Theorem Transform, we transform problem (1) into a fixed
point problem. Considering the operator

N:By — By
defined as the following:

(P(t)/ te (—oo, O]r

s {fol Gty HE,0fx, ydo)ds, t€ 0,11
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G(t,s) is defined in (17). Obviously, the fixed points of the operator N are solutions of problem (1), also
p(s, ys) is defined in (11). We define x(.) : (=00, 1] — R be the function defined as:

o), ifte(=w,0],
x(t)_{o, if £ € [0,1].

Then, xo = ¢. For each z € B with zy = 0, we denote by z the function defined by

_ o, ifte(=o0,0],
Z(t)_{z(t), ifte01].

Let y(.) satisfy the integral equation

1 1
yt) = ‘fo G(t,8)pq (](; H(s, 7)f(z, y»[)d"[) ds.

We partition y(.) into y(f) = z(t) + x(t), 0 < t < 1, which makes y; = z; + x;, for every t € [0,1], and the
function z(.) satisfies

1 1
z(t) = fo G(t,s)(pq( fo H(S,T)f(T,ZT+xT)dT)dS.

Let By = {z € C([0, 1], R) : zo = 0} and [|.||; be the seminorm in By defined by
llzlli = llzollg + sup{lz(s)| : 0 <5 < 1} = [Iz]lo.

By is a Banach space with the norm ||.|[p. We let the operator P : By — By be defined by

1 1
P(z)(t) :fo G(t, s)py (j(; H(s, 1) f(t,z¢ + x7)dt|ds. (37)

It is easily seen that the operator N has a fixed point that is equivalent to the one P has, so we must prove
that P has a fixed point. We now show that P is completely continuous:

Step 1: P is continuous.
Let {z,} be a sequence such that z, — zin By. Then,

1 1
[P(z)(t)| = ‘fo G(t, s)py (j(; H(s, ) f(t,z: + xT)dT) ds

I'a - ][ T p-1 -1 _
Sr((zo; —yy)) [1 " E] [r((zﬁpg) (1 e )] X Pallf .20 + )

and

Ta-y) [, b][TH) A\
IPi(t) ~PEO] < FHr=y [1 + E] [F(Zﬁ) (1 Mgy )]

X[@q(1f (- Zn, + X)) = @q(lf (20 + x)ID]-

Since f is continuous, we get: ||P(z,) — P(2)llp — 0 as n — oo.
Step 2: P maps bounded sets into bounded sets in By.
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It is sufficient to show that for any & > 0, there exists a positive constant ! such that for each
z€B: ={z€ By |zllp < ¢}, one has ||Pz|| < Iby (Hz) we have for each t € [0,1],

1
PR = fo

1 1
SL G(s,8)p, (j(; H(t, t)p1(1)q(llz- +xT||)d’c) ds

_T-y) [, b][TE) a1 N
Tea-) [1 ’ 3} [F(2ﬁ) 1+ g ot )] —

ds

1
G(t, s)(pq(f; H(s, 7) f(t,z; + x¢)d7)

where

Iz + xzllp <Ilz:llp + [l2cl5
<K(s) sup{lz(7)| : 0 < 7 < s} + M(s)llzolln
+ K(s) sup{|x(7)| : 0 < 7 < s} + M(s)lIxollz
<Ksup{lz(7)| : 0 < T < s} + Ml|¢pllz (38)
<K&+ Ml|¢llp = ¢

Step 3: P maps bounded sets into equicontinuous sets of By.
Let t1,t, € [0,1], such that t; < t;, let B: be a bounded set of By as in Step 2 and let z € B;. Then,

1 1
IP(2)(t2) — P(2)(t1)] Slfo G(t1,8)@q (fo H(s, 1) f(1, % +x1)dT) ds

1 1
- f G(tz, S)(Pq (f H(S, T)f(’l', Ze + x.[)d"[) dsl
0 0
< |max(IGi(t2,9) - G BT BT G
< srgoaf]ﬂ 1(t2,8) — Gi(t1,s)|) + y 2}31‘1(' 2(n,9)))

1
X g (Ilpllwq*(c*) fo H(T,T)d’[).

By the continuity of the G function, we get zero on the right hand side of the inequality, as t, — t; and this
show that P(B(0, £)) is equicontinuous in By. As a result of Steps 1 to 3 and the Ascoli-Arzela Theorem, we
can conclude that the operator P : By — By is completely continuous.

Let

. o
= : > > —
o0=1{z€By:z(t) =20 trer[l\%,rg]z(t) 23 |lzllo for t € J}

be a cone in By. We show that P : ¢ — g is well defined. Let z € g, then it follows from Lemma 2.6 and (37)
that

1 1
IP(2)llo Sj; G(s,8)pq (f(; H(t,7)f(7,Z + XT)dT) ds

5 )
<3 [f; G(S, S)(Pq (f;' H(T, ’[)f('fl ET + xq)d’f) dS} )
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Also, considering Lemma 2.6 and (36) this means that for any ¢ € [9, 6]

1 1
(P2)(t) :fo G(t,8)pq ([) H(s, 1) f(T,z: + xT)dT) ds

O a—1 O
> f (91(S)G1(s,s)+b8 : gz(s)@(s,s))%( f gu(DH(T, T)f(1, % + x:)dt | ds
S S

0 5
>0 [fs G(s,5)¢q (fg H(t,7)f(t, 2, + xf)d’c) ds}

o
>—|Pz|lo.
>2 1Pzl

This implies that P : ¢ — ¢is well defined. Using the assumptions (H;) — (H3) and (Hs)
P: Cg — Cg is well defined and completely continuous. Let ) : ¢ — [0, ) is defined by

z) = min z(t).
IP( ) te[9,0] ( )
It is evident that 1 is a non-negative concave continuous functional and
¥(z) < |lzllo for z € Ck.

We are left to show that the hypotheses of Theorem 2.9 to be stated are satisfied.
We note that condition (A,) of Theorem 2.9 is valid for z € C,, and from (H>), (H3), and (38) we get

IP@)I = max|P(z)(t)]
<t<1

1 a—1 1
<max {j; (lcl(t15)| + btd |G2(77,S)|)<Pq (fo H(s, 1)q"(IIz« +xTII)Ip1(T)IdT)dS}

0<t<1

0<t<1

1 1
Smax{ fo IG(t,S)l%( fo H(S,T)q*(KIIZIIO+M||¢||B)P1(T)dT)dS}
1 1
< fo G(s,sm( fo Hu,f)q*(Kuzuo+M||¢||B>p1<f>dr)ds

r p-1 T'(a — b
<0y (qm + Mgl lle r((fﬁ)) (1 e )) - _V;) [1 R a]

<r.

We now proceed to show that condition (A) of Theorem 2.9 is satisfied. Evidently, if z € C(y, L, £)
then L < z(s) < %, s €[9,0], and then {z € C(¢y, L, %), Y(z) > L} # 0. By condition (Hy) we have

1 1
Y (P(z)) = min {f G(t, s)py (f H(s,7)f(t,z: + xT)dT) ds}
9<t<o 0 0
1 1
> min {f G(t,8)pq (f H(s, ©)h*(||z; + XTH)pz(T)dT) ds}
9<t<o 0 0

O
>p (1 (KL + Migl)lp2lle) min { f Git, ), ( f Hs, T)dT) ds}.
<t<d 9 9

Thus, condition (A1) of Theorem 2.9 is satisfied.
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Finally, we show that condition (A3) of Theorem 2.9 is also satisfied. If z € C(y,L,R) and ||Pz]| > %,
we get

1 1
P(P(z)) = grsltig5 {fo G(t,8)pq (fo H(s,7)f(t,z: + xT)dT) ds}
>0||Pz]|

>L.

Thus, condition (A3) holds. By the Leggett and William fixed point theorem this implies that N has at least
three fixed points z1, z, z3 which are solutions to problem (1).
In addition, we have

21€C, € {2 € CY,L,R): Y(2) > L}, 23 € Cr — (¢, LR) UC,}.

Once more, condition (A3) of Theorem 2.9 is satisfied. By Theorem 2.9, there exist three positive solutions
z1,22,23 such that ||z1|| <7, L < a(zz(t)), and ||z3|| > r, with a(z3(t)) < L.
Finally, problem (1) has three positive solutions y1, ¥, 3 such that

o), ifte(-00,0],
%w_ﬁw if telo],  for ie{1,2,3).

The proof is complete. [

5. Examples

In this section we give illustrative examples showing the necessity of the main results covered in previous
sections.

Example 5.1. Consider the following boundary value problem:

trely(8)|

D3 (pa(D2y(t))) = ,te(0,1), 39
(DY) = T € O) 39)
3 1 (1 3 1 1 1 /1
y(0) =0, D>y(1) = §D2y(z)/ D2y(0) =0, Dzy(1) = EDZy(Z)’
3 3 1 1 1 1 1
where a‘i/ﬁ—ify—zrp—q—zr“—gzb—5/E—Z/U—Z/Q_V—lz()

and f € C([0,1] X [0, +00), [0, +00)).
Therefore, My = reand a” = ()7 = 1. By computation we see that

L= [, . b][,, T®) A\ 14
I"(Za — )/) [1 + a:| [Ml F(Zﬁ) (1 + 1- ap_15ﬁ71 )] = Eﬂ.

Hence, by Theorem 3.2, BVP (39) has a minimal positive solution v in B, and a maximal positive solution w in B,.

Example 5.2. Consider the following boundary value problem:

7 3 t 2 1

D4(<pg(D3y(t))) = g21y®F +4lyl®) +1iyll, te©,1), (40)
3 1 5 (1 3 1 3 1 (1

¥0) =0, Diy() = =-Diy(3), Diy() =0, Dy) = 2Dty (5),

wherea=3,p=% y=} p=3q=3,a=d b=} =1 q=ha-y-1204d=1
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We set 8 = 1 and 6 = 2. By computation we see that

_T@-y) [HQHF(ﬁ) (1+ !

q-1
)] =0.37744

TQRa-7y) T'(28) 1—ar-15p-1
and
1 1
- _ oya—y-1 _ _ a1
B _F(a) [](; (1-5) (1-5)""ds

Wl

((1 =) T = (- 9)* T s + f (1 =s)m* V‘ldS]

1 ap1 q
T(8) P —o)f ! _ B-1(1 _ —\p-1
><[F(ﬁ) (fs G 1—,1;7—1&%—1[8 & -y dr)]

Taking p1 =8, Is = 2, we get

-1

ftt,y) <= 2(4 +8) +8) =4 = q@,(Illyll) = (p%(S x2), fort €[0,1], y € [0, p1].

Therefore, condition (Ny) is satisfied. It can be easily seen that condition (N1) holds.

Also, let I, =15 and Iy = 12, we get 0 < —— 1 <1< 1 < +ooand 0 < — 1 <1<i

lzBl l5 Z4Bl

Hence, by Theorem 3.3, BVP (40) has at least two solutions yy and y, such that
0 < lly1ll < 8 < |ly2ll for the given values of Is, I, and .

Example 5.3. Consider the functional differential equation:

2llylle!

DX (pa(Diy(t) = —r——=, ifte]=1[0,1],
3e0 V4 + 12
1 g 3 1 1 1
¥(O) =0, Diy(1) = 5 Zy(—) Diy(0) =0, Dly(t) = 5 zy(z), () = d(b)
where
3 3 1 1 1 1 1
“—ifﬁ—z > P=4= 2”—3 b—i,é—z,n—z,a—y—lzo.
We set ¢ such that ||¢|| = 10, B, to be defined by:

B, = {u € C((—o0,0],R) : Slin} e"%u(0) exists)

with the norm

lull, = sup e®u(O)l.
9e(~00,0]

Let u : (oo, 1] — R be such that ug € B,. Then

91im e%u(0) = elim eu(t + 0)

elim e’ 0Dy (0)

e’ lim e7%uy(6) < +co.
O——c0

= 0.090137.

< +o00.

lft € (_00/ 0]/

2946

(41)
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Therefore, u; € B,. We now prove that
lluell < K(t) sup{lu(s)| : 0 < s < t} + M(H)llyoll,,

where K =M = 1and H = 1. we get u(t) = u(t + ¢).
Ift + 0 < 0 we have

lu:(0)]] < sup{lu(s)| : 0 < s < t}.
Hence, for all t + 0 € [0, 1], we get

llu:(O)]] < sup{lu(s)| : —oo <'s < 0} + sup{lu(s)| : 0 < s < t}.
Therefore,

lluelly < llullo + sup{lu(s)l : 0 <'s < £}.

It is evident that (B,, |lull,) is a Banach space, we conclude that B, is a phase space. Since

2llylle*
ft,y) =%, (t,y) € ] X B,.

e10 V4 + ¢

We choose

- 2
q*(y) = g/ Pl(t) = etr h*(y) = ngl pZ(t) = ;Y = O/ te [011]
3 4+

By the definitions of f, q*, p1, I*, pa, it follows that:
p2(OR (Yl < f(t, y) < pr(B)g"(llylD.

By calculations, we obtain

) b ﬂp_l ) q-1
f(Gl(t s)+ - Gz n,s))(f H(s, t)dt + _ap—léﬁlj‘;H(é'T)dT) ds}

= [ﬁ (]; 011 —8)¥7 s + Ef; (,7(1 _ S))a—y—lds]]

1
2 3

min
I<t<H

3 2-1
L 3 /3_1 _ 'B_l L ‘B 1 ﬁ 1
X{F(ﬁ)[f;‘s A= fé (1 - of e
=0.18383.

Also,

[ (KL + M||<P||B)||P2||oo]q_1 =n (L * 1%)

5 5
f G(t, s)py (f H(s, T)dT) ds] >1L,
9 9

e~ 10(mD x 0.18383 > L and we choose L = 0.15.

and then

q-1
[ (KL + MIgl)ipalls ]~ x

which gives
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Also,
g (kr +M||¢||B)“p1”oo]2_1 = %(7 + 1%)61
and
T@-y) [1+ ?H L) (1 L )],,1 = 0.93333
I'2a-y) 4]1@p) L-armie |
then

T -1 1 g —
[q*(Kr+M||¢||B>||pl||wr(fﬂ)) 1+ )] — [1+ g] <

which gives

— . < = 0.10.
3(r+ 100)6 % 0.93333 < r and we choose r = 0.10

Also,

1 1\,
— . < =0.17.
3(R+100)e % 0.93333 < R and we choose R = 0.17

Since all assumptions of Theorem 4.2 are satisfied, Problem (41) has three positive solutions y1, y, and ys.

Acknowledgements: The author are very appreciative of the constructive remarks by the referees.
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