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Abstract. In this paper we find out the evolution formula for the first nonzero eigenvalue of the weighted
p-Laplacian operator acting on the space of functions under the Cotton flow on a closed Riemannian
3-manifold M3.

1. Introduction

As an evolution equation for metric of a Riemannian 3-manifold (M3, 1), Kisisel et al. [10] introduced
the notion of Cotton flow, whose evolution equation is given by

∂
∂t
1i j = KCi j , (1)

where K is a positive constant and Ci j is the Cotton-York tensor. The choice of K is arbitrary except being
positive, the constant K can be set to 1 by scaling the evolution parameter t.

The Weyl tensor is a conformally invariant (0, 4) tensor which measures conformal flatness of the
manifold. As the Weyl tensor vanishes identically in dimension three, the Cotton tensor is the conformal
tensor in dimension three. The Cotton tensor is given by [9]

Ci j =
ηikl

√
1
∇k

(
R j

l −
1
4
δ j

l R
)
,

where εklm =
ηklm
√
1

and ηklm is the complete antisymmetric tensor density of weight +1 with η123 = 1. Ci j is

symmetric and covariantly conserved ∇iCi j = 0 and traceless 1i jCi j = 0.
In local coordinates

Ci j = 1ikε
klm(∇lRmj −

1
4
∇lR1mj)

=
1
2
1ikε

klmClmj .
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Now scaling the time parameter t to set K = 1, we have the following flow equation

∂
∂t
1i j = Ci j . (2)

It is worthwhile to mention that this is not a quasilinear parabolic equation like the Ricci flow. In contrast
(2) is a third order curvature flow and hence the short-time existence of the solution is yet to be proved. In
this paper we assume the short-time existence for the flow.

The study of evolution and monotonicity of eigenvalue of geometric operators is a known problem.
In recent years many mathematicians have studied the evolution and monotonicity of the eigenvalue of
geometric operators like p-Laplacian, Witten Laplacian, weighted p-Laplacian along various geometric
flows like Ricci flow, Yamabe flow, Ricci-Bourguignon flow, Ricci-harmonic flow etc., see [1–4, 6–8, 12]. The
main study of evolution of eigenvalue of geometric operator along geometric flow when in [11], Perelman
showed that the first eigenvalue of the geometric operator −4∆ + R is non-decreasing along the Ricci flow.

Recently in [5], Azami studied the evolution and monotonicity of the first eigenvalue of the p-Laplacain
and weighted p-Laplacain along the Ricci-Bouguignon flow on a closed Riemannian manifold.

Motivated by the above mentioned studies, in this paper we study the evolution of the first nonzero
eigenvalue of the weighted p-Laplacian along the Cotton flow, defined in (2) on a closed 3-manifold
(M3, 1(t)).

2. Preliminaries

The Laplace-Beltrami operator, p-Laplacian operator, the Witten Laplacian and the weighted p-Laplacian
operator are denoted by ∆, ∆p, ∆φ and ∆p,φ respectively. In local coordinates

∆ = 1i j(
∂2

∂xi∂x j − Γk
i j
∂

∂xk
),

where Γk
i j is the Christoffel symbols and 1i j = (1i j)−1. We denote dν as the Riemannian volume measure on

(M, 1) and dµ = e−φdν, the weighted volume measure, where φ ∈ C∞(M). Throughout this study, we assume
that M is a closed Riemannian manifold.

Let f : M → R, f ∈ W1,p(M), where W1,p(M) is the Sobolev space. For p ∈ (1,∞), the p-Laplacian of f is
defined as

∆p f = div(|∇ f |p−2
∇ f )

= |∇ f |p−2∆ f + (p − 2)|∇ f |p−4Hess f (∇ f ,∇ f ) .

When p = 2, ∆p is the usual Laplace-Beltrami operator.
The Witten Laplacian is defined by ∆φ = ∆ − ∇φ.∇, which is a self adjoint operator.
For p ∈ (1,∞), the weighted p-Laplacian of f is defined as

∆p,φ f = eφdiv(e−φ|∇ f |p−2
∇ f )

= ∆p f − |∇ f |p−2
〈
∇φ,∇ f

〉
.

When φ is constant then it is just the p-Laplacian.
Choose λ such that

∆p,φ f = −λ| f |p−2 f , (3)

for some f ∈W1,p(M). In this case we say that λ is the eigenvalue of the weighted p-Laplacian ∆p,φ and f is
the corresponding eigenfunction. The equation (3) implies that∫

M
f∆p,φ f dµ = −λ

∫
M
| f |pdµ. (4)
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Using the integration by parts, (4) yields∫
M
|∇ f |pdµ = λ

∫
M
| f |pdµ. (5)

The mini-max principle states that the first nonzero eigenvalue λ1(t) is characterized as follows

λ1(t) = in f
{∫

M
|∇ f |pdµ :

∫
M
| f |pdµ = 1, 0 , f ∈W1,p(M)

}
, (6)

where W1,p(M) is the completion of C∞(M) with respect to the Sobolev norm

‖ f ‖W1,p(M) =

(∫
M
| f |pdµ +

∫
M
|∇ f |pdµ

) 1
p

and f satisfies the condition
∫

M | f |
p−2 f dµ = 0.

The first nonzero eigenvalue of weighted p-Laplacian and its corresponding eigenfunction are not known
to be C1-differentiable with respect to t under the Cotton flow. We assume that λ(t) exists and is C1-
differentiable under the Cotton flow in the given interval t ∈ [0,T).

3. First eigenvalue of the weighted p-Laplacian under Cotton flow

In this section we find a useful evolution equation for the first nonzero eigenvalue of the weighted
p-Laplacian under the flow (2). Here we have assumed that the function φ is a time dependent function
unless otherwise stated. In similar of [6], we can assume that λ1(t) = λ1( f , t), where λ1( f , t) is defined by

λ1( f , t) = −

∫
M

f∆p,φ f dµ

and f is a smooth function satisfying the normalization condition∫
M
| f |pdµ = 1 and

∫
M
| f |p−2 f dµ = 0 .

We first recall some necessary evolution equations for the geometric quantities associated to (M3, 1(t))
along the Cotton flow (2).

Lemma 3.1. [7] Let (M3, 1(t)) be a closed 3-manifold evolving under the Cotton flow (2). Then we have the following
evolutions:

(i)
∂1i j

∂t
= −Ci j where Ci j = 1ik1 jlCkl, (7)

(ii)
∂
∂t

Γk
i j =

1
2
1kl(∇iC jl + ∇ jCil − ∇lCi j), (8)

(iii)
∂
∂t

Ri j = 3RliCl
j − RlmClm1i j −

1
2

RCi j −
1
2
∇

2Ci j, (9)

(iv)
∂R
∂t

= −Ci jRi j, (10)

where Ri j is the Ricci tensor and R is the scalar curvature.
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Lemma 3.2. Let (M3, 1(t)) be a closed 3-manifold evolving under the Cotton flow (2). Then the associated geometric
quantities evolve by

(i)
∂
∂t
|∇ f |p =

p
2
|∇ f |p−2

{
−Ci j
∇i f∇ j f + 21i j

∇i f∇ j ft
}
, (11)

(ii)
∂
∂t
|∇ f |p−2 =

p − 2
2
|∇ f |p−4

{
−Ci j
∇i f∇ j f + 21i j

∇i f∇ j ft
}
, (12)

(iii)
∂
∂t

(∆ f ) = −Ci j
∇i∇ j f + ∆ ft, (13)

(iv)
∂
∂t

(∆p f ) = −Ci j
∇i(Z∇ j f ) + 1i j

∇i(Zt∇ j f ) + 1i j
∇i(Z∇ j ft), (14)

(v)
∂
∂t

(∆p,φ f ) = −Ci j
∇i(Z∇ j f ) + 1i j

∇i(Zt∇ j f ) + 1i j
∇i(Z∇ j ft) − Zt

〈
∇φ,∇ f

〉
+ZCi j

∇iφ∇ j f − Z1i j
∇iφt∇ j f − Z1i j

∇iφ∇ j ft, (15)

where Z := |∇ f |p−2, Zt = ∂
∂t Z and ft = ∂

∂t f .

Proof. By direct computations we have

∂
∂t
|∇ f |p =

∂
∂t

(1i j
∇i f∇ j f )

p
2

=
p
2
|∇ f |p−2

{
∂
∂t

(1i j)∇i f∇ j f + 21i j
∇i f∇ j ft

}
=

p
2
|∇ f |p−2

{
−Ci j
∇i f∇ j f + 21i j

∇i f∇ j ft
}
.

Using (11) we get

∂
∂t
|∇ f |p−2 =

p − 2
2
|∇ f |p−4

{
−Ci j
∇i f∇ j f + 21i j

∇i f∇ j ft
}
.

Using (8), we obtain

∂
∂t

(∆ f ) =
∂
∂t

[
1i j(∂i∂ j − Γk

i j∂k) f
]

=
∂
∂t

(1i j)
(
∂i∂ j − Γk

i j∂k

)
f + 1i j

(
∂i∂ j − Γk

i j∂k

)
ft − 1i j ∂

∂t
Γk

i j∂k f

= −Ci j
∇i∇ j f + ∆ ft −

1
2
1i j1kl

(
∇iC jl + ∇ jCil − ∇lCi j

)
∇k f

= −Ci j
∇i∇ j f + ∆ ft −

1
2
1kl

(
21i j
∇iC jl − 1

i j
∇lCi j

)
∇k f

= −Ci j
∇i∇ j f + ∆ ft,

as Cotton tensor is trace free and divergence free.
Let us take Z = |∇ f |p−2. Then we get

∂
∂t

(∆p f ) =
∂
∂t

(div(|∇ f |p−2
∇ f ))

=
∂
∂t

(1i j
∇i(Z∇ j f ))

=
∂
∂t

(1i j)∇iZ∇ j f + 1i j
∇iZt∇ j f + 1i j

∇iZ∇ j ft + Zt∆ f + Z(∆ f )t

= −Ci j
∇iZ∇ j f + 1i j

∇iZt∇ j f + 1i j
∇iZ∇ j ft + Zt∆ f + Z(−Ci j

∇i∇ j f + ∆ ft)

= −Ci j
∇iZ∇ j f − ZCi j

∇i∇ j f + 1i j
∇iZt∇ j f + 1i j

∇iZ∇ j ft + Zt∆ f + Z∆ ft
= −Ci j

∇i(Z∇ j f ) + 1i j
∇i(Zt∇ j f ) + 1i j

∇i(Z∇ j ft).
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We have
∆p,φ f = ∆p f − |∇ f |p−2

〈
∇φ,∇ f

〉
.

Taking derivative with respect to the time t of both sides of the above equation and using (14) we obtain

∂
∂t

(∆p,φ f ) =
∂
∂t

(∆p f ) −
∂
∂t

(Z
〈
∇φ,∇ f

〉
)

=
∂
∂t

(∆p f ) − Zt

〈
∇φ,∇ f

〉
− Z

∂
∂t

(1i j
∇iφ∇ j f )

=
∂
∂t

(∆p f ) − Zt

〈
∇φ,∇ f

〉
+ ZCi j

∇iφ∇ j f − Z1i j
∇iφt∇ j f − Z1i j

∇iφ∇ j ft

= −Ci j
∇i(Z∇ j f ) + 1i j

∇i(Zt∇ j f ) + 1i j
∇i(Z∇ j ft) − Zt

〈
∇φ,∇ f

〉
+ZCi j

∇iφ∇ j f − Z1i j
∇iφt∇ j f − Z1i j

∇iφ∇ j ft.

Now we derive an evolution formula for the first nonzero eigenvalue of the weigthed p-Laplacian ∆p,φ of
the eigenvalue problem (3) along the Cotton flow (2).

Theorem 3.3. Let (M3(t), 1(t)), t ∈ [0,T) be a solution of the Cotton flow (2) on a closed Riemannian manifold M3.
Let λ1(t) be the first nonzero eigenvalue of the weighted p-Laplacian and f (x, t) its corresponding eigenfunction. Then
λ1(t) satisfies the following evolution equation

d
dt
λ1(t) = −

p
2

∫
M
|∇ f |p−2Ci j

∇i f∇ j f dµ + λ1(t)
∫

M
φt| f |pdµ −

∫
M
φt|∇ f |pdµ (16)

for all time t ∈ [0,T),T < ∞.

Proof. We now have

∂
∂t

∫
M

f∆p,φ f dµ =

∫
M

∂
∂t

(∆p,φ f ) f dµ +

∫
M

∆p,φ f
∂
∂t

( f dµ)

= −

∫
M

Ci j
∇i(Z∇ j f ) f dµ +

∫
M
1i j
∇i(Zt∇ j f ) f dµ

+

∫
M
1i j
∇i(Z∇ j ft) f dµ −

∫
M

Zt

〈
∇φ,∇ f

〉
f dµ

+

∫
M

ZCi j
∇iφ∇ j f f dµ −

∫
M

Z
〈
∇φt,∇ f

〉
f dµ

−

∫
M

Z
〈
∇φ,∇ ft

〉
f dµ +

∫
M

∆p,φ f
∂
∂t

( f dµ). (17)

Using the integration by parts the first integral of the right hand side of the above equation, we get

−

∫
M

Ci j
∇i(Z∇ j f ) f dµ =

∫
M

Z∇i f∇ j(Ci j f e−φ)dν

=

∫
M

ZCi j
∇i f∇ j f dµ +

∫
M

Z∇iCi j
∇ j f f dµ −

∫
M

ZCi j
∇i f∇ jφ f dµ (18)

=

∫
M

ZCi j
∇i f∇ j f dµ −

∫
M

ZCi j
∇i f∇ jφ f dµ ,
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as the Cotton tensor is divergence free, i.e. ∇iCi j = 0.
Using integration by parts in the second and third integral in the right hand side of (17) we obtain∫

M
1i j
∇i(Zt∇ j f ) f dµ = −

∫
M

Zt∇ j f∇i( f e−φ)dν

= −

∫
M

Zt|∇ f |2dµ +

∫
M

Zt

〈
∇ f ,∇φ

〉
f dµ , (19)

and ∫
M
1i j
∇i(Z∇ j ft) f dµ = −

∫
M

Z∇ j ft∇i( f e−φ)dν

= −

∫
M

Z
〈
∇ ft,∇ f

〉
dµ +

∫
M

Z
〈
∇ ft,∇φ

〉
f dµ. (20)

In view of (18), (19) and (20), it follows form (17) that

∂
∂t

∫
M

f∆p,φ f dµ =

∫
M

ZCi j
∇i f∇ j f dµ −

∫
M

Zt|∇ f |2dµ −
∫

M
Z

〈
∇ ft,∇ f

〉
dµ

−

∫
M

Z
〈
∇φt,∇ f

〉
f dµ +

∫
M

∆p,φ f
∂
∂t

( f dµ). (21)

From (12) we get

|∇ f |2
∂
∂t

Z = −
p − 2

2
ZCi j
∇i∇ j f + (p − 2)Z

〈
∇ f ,∇ ft

〉
. (22)

In veiw of (22), (21) yields

∂
∂t

∫
M

f∆p,φ f dµ =

∫
M

ZCi j
∇i f∇ j f dµ +

p − 2
2

∫
M

ZCi j
∇i f∇ j f dµ

−(p − 2)
∫

M
Z

〈
∇ f ,∇ ft

〉
dµ −

∫
M

Z
〈
∇ ft,∇ f

〉
dµ

−

∫
M

Z
〈
∇φt,∇ f

〉
f dµ +

∫
M

∆p,φ f
∂
∂t

( f dµ)

=
p
2

∫
M

ZCi j
∇i f∇ j f dµ − (p − 1)

∫
M

Z
〈
∇ f ,∇ ft

〉
dµ

−

∫
M

Z
〈
∇φt,∇ f

〉
f dµ +

∫
M

∆p,φ f
∂
∂t

( f dµ). (23)

Using

−(p − 1)
∫

M
Z

〈
∇ f ,∇ ft

〉
dµ = (p − 1)

∫
M

∆p,φ f ftdµ, (24)

and

−

∫
M

Z
〈
∇φt,∇ f

〉
f dµ =

∫
M
φt∆p,φ f f dµ +

∫
M
φt|∇ f |pdµ, (25)
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in (23), we obtain

∂
∂t

∫
M

f∆p,φ f dµ =
p
2

∫
M

ZCi j
∇i f∇ j f dµ + (p − 1)

∫
M

∆p,φ f ftdµ

+

∫
M
φt∆p,φ f f dµ +

∫
M
φt|∇ f |pdµ +

∫
M

∆p,φ f
∂
∂t

( f dµ)

=
p
2

∫
M

ZCi j
∇i f∇ j f dµ +

∫
M
φt∆p,φ f f dµ +

∫
M
φt|∇ f |pdµ

+

∫
M

∆p,φ f ((p − 1) ftdµ +
∂
∂t

( f dµ)).

Differentiating with respect to t of the integrability condition
∫

M | f |
pdµ = 1 we get

∂
∂t

∫
M
| f |pdµ = 0,

i.e. ∫
M
| f |p−2 f ((p − 1) ftdµ +

∂
∂t

( f dµ)) = 0.

Using the facts that

∂
∂t

∫
M

f∆p,φ f dµ = −
∂
∂t
λ1(t) and ∆p,φ f = −λ1(t)| f |p−2 f ,

we comes to

d
dt
λ1(t) = −

p
2

∫
M
|∇ f |p−2Ci j

∇i f∇ j f dµ + λ1(t)
∫

M
φt| f |pdµ −

∫
M
φt|∇ f |pdµ .

Corollary 3.4. Let (M3(t), 1(t)), t ∈ [0,T) be a solution of the Cotton flow (2) on a closed Riemannian manifold M3.
If the weight function φ is independent of t and λ1(t) be the first nonzero eigenvalue of the weighted p-Laplacian and
f (x, t) its corresponding eigenfunction, then

d
dt
λ1(t) = −

p
2

∫
M
|∇ f |p−2Ci j

∇i f∇ j f dµ (26)

holds for all t ∈ [0,T),T < ∞.

Corollary 3.5. Let (M3, 10) be an Einstein manifold. If the weight function φ = ψ(x) is time-independent, i.e.
dµ = e−ψ(x)dν, then the evolution equation (26) reduces to

d
dt
λ1(t) = 0,

i.e. the first nonzero eigenvalue of the weighted p-Laplacian under the Cotton flow is constant.

Theorem 3.6. Let (M3(t), 1(t)), t ∈ [0,T) be a solution of the Cotton flow (2) on a closed Riemannian manifold M3.
Let Ci j

≥ aφt1i j along the flow (2) in M× [0,T) for some positive constant a. Let λ1(t) be the first nonzero eigenvalue

of the weighted p-Laplacian. Then the quantity λ1(τ)e
−( p

2 a+2)
∫ t

0 max
M
|φt |(τ)dτ

is non-increasing under the Cotton flow.
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Proof. According to (26) of Theorem 3.3, we have

d
dt
λ1(t) ≤ −(

p
2

a + 1)
∫

M
φt|∇ f |pdµ + λ1(t)

∫
M
φt| f |pdµ

≤ (
p
2

a + 2)λ1(t) max
M
|φt|(t).

Therefore, d
dt

(
λ1(τ)e

−( p
2 a+2)

∫ t
0 max

M
|φt |(τ)dτ

)
≤ 0 and it implies the quantity λ1(τ)e

−( p
2 a+2)

∫ t
0 max

M
|φt |(τ)dτ

is non-

increasing under the Cotton flow.
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