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First Eigenvalue of Weighted p-Laplacian Under Cotton Flow
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Abstract. In this paper we find out the evolution formula for the first nonzero eigenvalue of the weighted
p-Laplacian operator acting on the space of functions under the Cotton flow on a closed Riemannian
3-manifold M°.

1. Introduction

As an evolution equation for metric of a Riemannian 3-manifold (M3, 9), Kisisel et al. [10] introduced
the notion of Cotton flow, whose evolution equation is given by

J
5 9ii = KCjj, )

where K is a positive constant and C;; is the Cotton-York tensor. The choice of K is arbitrary except being
positive, the constant K can be set to 1 by scaling the evolution parameter ¢.
The Weyl tensor is a conformally invariant (0,4) tensor which measures conformal flatness of the

manifold. As the Weyl tensor vanishes identically in dimension three, the Cotton tensor is the conformal
tensor in dimension three. The Cotton tensor is given by [9]

B
Cii =

4

kim
klm i klm
where " = and
Vg n

] ]
Vi (Rl - Zcis),

is the complete antisymmetric tensor density of weight +1 with n'* = 1. C7 is

symmetric and covariantly conserved V;C/ = 0 and traceless g;;C/ = 0.
In local coordinates

1
Cj = gikeklm(lemj_Zlegmj)

1
= Egikeklmclm -
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Now scaling the time parameter ¢ to set K = 1, we have the following flow equation

d
3¢9 = Cij - @)

It is worthwhile to mention that this is not a quasilinear parabolic equation like the Ricci flow. In contrast
(2) is a third order curvature flow and hence the short-time existence of the solution is yet to be proved. In
this paper we assume the short-time existence for the flow.

The study of evolution and monotonicity of eigenvalue of geometric operators is a known problem.
In recent years many mathematicians have studied the evolution and monotonicity of the eigenvalue of
geometric operators like p-Laplacian, Witten Laplacian, weighted p-Laplacian along various geometric
flows like Ricci flow, Yamabe flow, Ricci-Bourguignon flow, Ricci-harmonic flow etc., see [1-4, 6-8, 12]. The
main study of evolution of eigenvalue of geometric operator along geometric flow when in [11], Perelman
showed that the first eigenvalue of the geometric operator —4A + R is non-decreasing along the Ricci flow.

Recently in [5], Azami studied the evolution and monotonicity of the first eigenvalue of the p-Laplacain
and weighted p-Laplacain along the Ricci-Bouguignon flow on a closed Riemannian manifold.

Motivated by the above mentioned studies, in this paper we study the evolution of the first nonzero
eigenvalue of the weighted p-Laplacian along the Cotton flow, defined in (2) on a closed 3-manifold

(M, g(t).

2. Preliminaries

The Laplace-Beltrami operator, p-Laplacian operator, the Witten Laplacian and the weighted p-Laplacian
operator are denoted by A, Ay, Ay and A, 4 respectively. In local coordinates

?

dxidxi 1 Jxk

A:gij( )’

where l"i.‘]. is the Christoffel symbols and g”/ = (g;j)~!. We denote dv as the Riemannian volume measure on

(M, g) and du = e~?dv, the weighted volume measure, where ¢ € C*(M). Throughout this study, we assume
that M is a closed Riemannian manifold.
Let f : M — R, f € W'#(M), where W'#(M) is the Sobolev space. For p € (1, ), the p-Laplacian of f is
defined as
Apf div([VfP2Vf)
IVFP2ASf + (p = 2)IVfI*Hessf(Vf, V) .

When p = 2, A, is the usual Laplace-Beltrami operator.
The Witten Laplacian is defined by A, = A — V.V, which is a self adjoint operator.
For p € (1, o), the weighted p-Laplacian of f is defined as

Npof = ePdiv(e ?|VFP2VE)
Af = IVFP2 (Y, V£).

When ¢ is constant then it is just the p-Laplacian.
Choose A such that

Apof = =NfIPf, )

for some f € W!#(M). In this case we say that A is the eigenvalue of the weighted p-Laplacian A, and f is
the corresponding eigenfunction. The equation (3) implies that

[ svsiu=-2 [ ippaa @
M M
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Using the integration by parts, (4) yields

Pdu = Pdu.
waﬂ u Ame u )

The mini-max principle states that the first nonzero eigenvalue A:(t) is characterized as follows

Ai(t) = inf {waﬂde : fM |fPdu=1,0+# fe WLP(M)}, (6)

where W'?(M) is the completion of C*(M) with respect to the Sobolev norm

I llwiry = (L |flPdu + j]\; |Vf|”d/,t)p

and f satisfies the condition fM IfP=2fdu = 0.

The first nonzero eigenvalue of weighted p-Laplacian and its corresponding eigenfunction are not known
to be C'-differentiable with respect to t under the Cotton flow. We assume that A(t) exists and is C!-
differentiable under the Cotton flow in the given interval f € [0, T).

3. First eigenvalue of the weighted p-Laplacian under Cotton flow
In this section we find a useful evolution equation for the first nonzero eigenvalue of the weighted

p-Laplacian under the flow (2). Here we have assumed that the function ¢ is a time dependent function
unless otherwise stated. In similar of [6], we can assume that A;(t) = A1(f, t), where A1(f, t) is defined by

M h = - fM Ao fu

and f is a smooth function satisfying the normalization condition

fMIfI”d‘u=1and jl\;lfl’”_zfdy=0.

We first recall some necessary evolution equations for the geometric quantities associated to (M3, g(t))
along the Cotton flow (2).

Lemma 3.1. [7] Let (M?, g(t)) be a closed 3-manifold evolving under the Cotton flow (2). Then we have the following
evolutions:

(i) &ai: = —Cl where C' = g*g'Cy, 7)
(ii) %r{; = %gkl(vicﬂ +V,Ci = ViCij), (8)
(iii) %RU = 3R;;C; — R"'Cingij — %Rcij - %vzc,-]-, ©9)
(iv) ‘;—I: = —C'Ry, (10)

where R;; is the Ricci tensor and R is the scalar curvature.



A. Saha et al. / Filomat 35:9 (2021), 2919-2926 2922

Lemma 3.2. Let (M3, g(t)) be a closed 3-manifold evolving under the Cotton flow (2). Then the associated geometric
quantities evolve by

() ISP = VAP -Cvifv f + 20V ), ()
(i) %IWI’“ = %Nﬂﬂ {~CIVifVif +24VifV i}, (12)
(iif) %(A f) = -CIV,V;f +Af, (13)
(iv) %(Am = ~CIVAZV,f) + §VAZ Vi f) + VA2V, f), (14)

po , g i
@) 5;(0pf) = ~CIVAZYif) + §VIZN i) + §IVIZY if) = 2V, V)
+ZCIVOV i f = ZgVipV i f = ZgIVipV i, (15
where Z := V2, Z; = %Z and f = %f-

Proof. By direct computations we have

J d i ?
2P = Z(4IVifV )3
SV = S @iV
9 . B
= gIV fr2 {E(g” WVifVif +29"Vif V,ﬁ}
= B {-covivif + 207V f).
Using (11) we get

d _ p-2 - i ij
SV = SRV SCIVIf + 20 ViV .
Using (8), we obtain

2 P
5B = E[g”(aié’j—r?jak)f ]

. (9 ii k i7 k ij a k
= ﬁ(gj) (ala] - rl]ak)f + g] (9,8] - rljak)ft - gjarl]akf
= ~CIV,Vf +Afi - %g”gk’ (ViCjp+V,Ci - VzCz’j) Vif
y 1 y g
= —CIVVif + Afi - 59" (20ViCi - §VICy) Vif
= —C'V,Vif + Af,,

as Cotton tensor is trace free and divergence free.
Let us take Z = [Vf]P~2. Then we get

d P
- = Z(di p-2
5 (Apf) T (div(VFI=V )
9 ..
= —(JIV; .
5 7VilZVif)
= %(gif)vizvj f+gVZNVif + §VIiZV ifs + ZIAf + Z(AS);
= —CViZVf + §'"ViZV,f + §IViZV i + ZLAf + Z(-CIV, Vi f + Af)

= —CIViZV,f = ZCINNVf + §IViZiV if + §IViZV i f; + ZUAf + ZAS;
= —CIV{ZV;f) + g'V(ZVif) + §IVI(ZV i f).
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We have
Apof = Apf =IVFP (Y6, V).

Taking derivative with respect to the time t of both sides of the above equation and using (14) we obtain
d d d
5 Busf) = 5(8uf) = 5, (Z(V,Vf))
= z(A H-Z <V¢) Vf) _Zz( ijV‘qi)V-f)
ot ! ’ ot g VipVi

J ij ij ij
= S (Of)=Z (Vo,Vf) + ZCINGV if — Zg'VipeVif - Zg'VipV i
= —CINUZVif) + §IVUZVif) + §IVAZV if) - 2 (Y, Vf)
+ZCINpVif = Zg'VipiV i f — Zg'ViV i fr.

O

Now we derive an evolution formula for the first nonzero eigenvalue of the weigthed p-Laplacian A, 4 of
the eigenvalue problem (3) along the Cotton flow (2).

Theorem 3.3. Let (M3(t), g(t)), t € [0, T) be a solution of the Cotton flow (2) on a closed Riemannian manifold M>.
Let A1(t) be the first nonzero eigenvalue of the weighted p-Laplacian and f(x, t) its corresponding eigenfunction. Then
A1 (t) satisfies the following evolution equation

Chty=-2 f IV FP-2CIV, Y, fdy + At f Gl Py - f GV FPdy (16)
M M M
forall timet €[0,T), T < co.

Proof. We now have

d
2 [ s

d d
LE(prf)deJr]]\;Awﬁfﬁ(fd‘“)
= - f CIVAZV;f) fdu + f 9IVAZV i f) fdu
M M
v [ oy | zi(vo, V) s
+ fM ZCIN GV, f fdu - fM Z(Véy, Vf) fdu
_ fM Z(ng,Vﬁ) fdu + fM Ap,qbf%(fdy). (17)

Using the integration by parts the first integral of the right hand side of the above equation, we get

- f CIV(ZV;f) fdu f ZVifV(Cife?)dv
M M

f ZCIVifV;fdu + f ZV;:CIV i f fdu - f ZCIVfVipfdu (18)
M M M

f ZCIVifV;fdu - f ZCIV, fVipfdu,

M M
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as the Cotton tensor is divergence free, i.e. V;C/ = 0.
Using integration by parts in the second and third integral in the right hand side of (17) we obtain

- f ZNfV (fe ?)dv
M
- [ zavstau+ [ zi(vrvo) i, (19)

f VATV ) fd
M

and
f gIN(ZVif)fdu = - f ZV,fiV'(fe ?)dv
M M
= —fZ(Vﬁ,Vf)dy+fZ<Vﬁ,qu>fdy. (20)
M M
In view of (18), (19) and (20), it follows form (17) that
d )
5 | oatin = [ zeipviau= [ Zivsiau- | zevs,vpda
9
_ fM Z{Vo, VF) fdu + fM B of 5 (flp). 1)
From (12) we get
20 P=2_
VAP 52 = ——5—2CNVf + (p = 2Z{VL, Vi) - (22)

In veiw of (22), (21) yields

0
EfoAwPfd#

f chfvifvjfdy+¥ f ZCNfV;fdu

M M

-2 [ 2V~ [ 2V, VN da

- [ Z(von i) S+ [ dargisa

g fM ZCWifVifdu—(p=1) fM Z{Vf,Vf)ydu

_ fM Z{Vo, VF) fdu + fM Ap,¢f%(fdy). (23)

Using

-1 fM Z(VEVfydu = (p-1) fM Apof filit, (24)
and

- [ 2{vouv7) s = [ oposstu+ | oavsea 5)
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in (23), we obtain

J
ELwafd[“

NI

[ zemwisaus o= [ aafsau
M M
d
o [ oigassans [ o [ a5 a0
= B[ zowiwisins [ onefsus [ oy
J
+ fM Do f((p = Dfidy + = (fdu)).

Differentiating with respect to t of the integrability condition fM |flPdp =1 we get

d
o fM fPdu =0,
ie.
d
[ - v+ Gisam = o
M

Using the facts that

d J _
ELfA”’(bfd” = —5/\1(1‘) and Ao f = —MOIfP2S,

we comes to

Snw=-1 fM IV FP2CIVL Y, g + M) fM 1l fPdys - fM GV fldy

Corollary 3.4. Let (M3(t), g(t)), t € [0, T) be a solution of the Cotton flow (2) on a closed Riemannian manifold M>.
If the weight function ¢ is independent of t and A1(t) be the first nonzero eigenvalue of the weighted p-Laplacian and
f(x,t) its corresponding eigenfunction, then

G0 =5 [ 1V g 26)
dt 2 )y
holds forall t € [0,T), T < oo.

Corollary 3.5. Let (M3, go) be an Einstein manifold. If the weight function ¢ = (x) is time-independent, i.e.
du = e ¥Wdv, then the evolution equation (26) reduces to

d
EAl(t) - O/

i.e. the first nonzero eigenvalue of the weighted p-Laplacian under the Cotton flow is constant.

Theorem 3.6. Let (M3(t), g(t)), t € [0, T) be a solution of the Cotton flow (2) on a closed Riemannian manifold M>.
Let C' 2 a¢pgij along the flow (2) in M X [0, T) for some positive constant a. Let A1(t) be the first nonzero eigenvalue

~(a+2) fot max lp:l(T)dT

of the weighted p-Laplacian. Then the quantity A1(7)e is non-increasing under the Cotton flow.
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Proof. According to (26) of Theorem 3.3, we have

d —(§a+1> fM GV flPdp + A (b) fM el fldp

E)\l(t)
(Ga+ 20 max (i

IA

IA

_(ga+2) j: max [el(T)dT

is non-

P t (0)d
(3+2) [y maxigi T) < 0 and it implies the quantity Ai(7)e

Therefore, % (/\1 (e

increasing under the Cotton flow. [
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