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Abstract. In this article, we continue our study of the ring of Baire one functions on a topological space
(X, τ), denoted by B1(X), and extend the well known M. H. Stones’s theorem from C(X) to B1(X). Introducing
the structure space of B1(X), an analogue of Gelfand-Kolmogoroff theorem is established. It is observed
that (X, τ) may not be embedded inside the structure space of B1(X). This observation inspired us to
introduce a weaker form of embedding and show that in case X is a T4 space, X is weakly embedded as a
dense subspace, in the structure space of B1(X). It is further established that the ring B∗1(X) of all bounded
Baire one functions, under suitable conditions, is a C-type ring and also, the structure space of B∗1(X) is
homeomorphic to the structure space of B1(X). Introducing a finer topology σ than the original T4 topology
τ on X, it is proved that B1(X) contains free maximal ideals if σ is strictly finer than τ. Moreover, in the class
of all perfectly normal T1 spaces, σ = τ is necessary as well as sufficient for B1(X) = C(X).

1. Introduction and Prerequisites

The collection B1(X), of all real valued Baire one functions defined on a topological space X forms a
commutative lattice ordered ring with unity, if the relevant operations are defined pointwise on X. We
developed a few basic properties of this ring in [1] , followed by an investigation on the duality existing
between ideals / maximal ideals in B1(X) and ZB-filters / ZB-ultrafilters on X in [2]. A zero set in X is a set
of the form Z( f ) = {x ∈ X : f (x) = 0}, for some f ∈ B1(X). A ZB-filter on X is a family of zero sets in X
enjoying the properties of a filter. A ZB-filter on X, which is not properly contained in any ZB-filter on X is
called a maximal ZB-filter or ZB-ultrafilter on X. The above mentioned duality existing between ideals in
B1(X) and ZB-filters on X is manifested by the fact that if I is an ideal in B1(X), then Z[I] = {Z( f ) : f ∈ B1(X)}
is a ZB-filter on X and dually for a ZB-filter F on X, Z−1[F ] = { f ∈ B1(X) : Z( f ) ∈ F } is a proper ideal in
B1(X). Furthermore, the assignment M 7→ Z[M] is a bijection on the set of all maximal ideals in B1(X) and
the family of all ZB-ultrafilters on X.

A celebrated result due to M. H. Stone in the theory of rings of continuous functions C(X) says that
given any topological space X there exists a Tychonoff space Y such that the ring C(X) is isomorphic to
C(Y). A natural question is, whether one can expect an analogous fact in the theory of rings of Baire
one functions. Indeed it is shown in the present paper that such an isomorphism from C(X) onto C(Y)
as mentioned above can be extended to an isomorphism from B1(X) onto B1(Y) [Theorem 2.1]. Thus in
order to study the algebraic properties of the ring B1(X) one need not bother about the ambient spaces X,
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which are not Tychonoff. One of the most important facts in the theory of rings of continuous functions
C(X) for a Tychonoff space X is that the space of all maximal ideals in C(X) equipped with the Hull Kernel
topology, often called the structure space of the ring C(X), is topologically equivalent to βX, the Stone-Čech
compactification of X (7N, [4]). In the context of B1(X) the things are little restricted. In fact, we have proved
that if X is a T4-space, then it could be embedded by a weaker kind of embedding inside the structure space
of the ring B1(X) [Theorem 4.4]. Nevertheless, it happens that there exists a topology σ on X, finer than the
original topology τ on X for which the structure space of B1(X, τ) is precisely β(X, σ) [Theorem 4.11]. This
leads to seemingly interesting conclusions. Indeed, it is realized that with a little restriction on the nature
of the weak embedding map X →M(B1(X)), as mentioned earlier, the ring B∗1(X) of all bounded Baire one
functions on X is isomorphic to a ring of the form C(Y) for some Tychonoff space Y; whereM(B1(X)) stands
for the structure space of B1(X) [Theorem 4.9]. Furthermore, it is observed that under such restriction, the
structure spaces of B1(X) and B∗1(X) are homeomorphic [Corollary 4.10].

It is a standard result in the theory of C(X) that X is compact if and only if each maximal ideal in C(X) is
fixed [Theorem 4.11 in [4]]. Circumstances are not so pleasant in the scenario of Baire one functions. Indeed,
we have shown that even if (X, τ) is compact, the ring B1(X, τ) necessarily contains free maximal ideals if
τ ( σ [Theorem 4.15]. The paper ends with the observation that within the category of perfectly normal
T1-spaces X, B1(X) = C(X) is equivalent to the space X to be a P-space [Theorem 4.18]. Since a perfectly
normal T1 space which is also a P-space is necessarily discrete, it follows that a perfectly normal T1 space
X is discrete if and only if B1(X) = C(X).

2. Extension of M. H. Stone’s Theorem

Theorem 2.1. For each topological space X, there exists a Tychonoff space Y such that B1(X) is isomorphic to B1(Y)
and B∗1(X) is isomorphic to B∗1(Y) under the same (restriction) map. Indeed, a suitable isomorphism from C(Y) onto
C(X) extends to the desired isomorphism from B1(Y) onto B1(X).

Proof. It follows from Theorem 3.9 in [4] that given the topological space X, there exists a Tychonoff space
Y and a continuous map τ : X → Y with τ(X) = Y such that the assignment ψ : C(Y) → C(X) given by
ψ(1) = 1 ◦ τ defines an isomorphism. We shall show that ψ has an extension to an isomorphism from
B1(Y) onto B1(X). For that purpose choose h ∈ B1(Y). Then there exists a sequence {hn}⊆ C(Y) such that
lim
n→∞

hn(y) = h(y) for each y ∈ Y. Clearly, hn ◦ τ ∈ C(X) for each n ∈ N and for each x ∈ X, lim
n→∞

(hn ◦ τ)(x)

exists. Define ψ̂(h) : X→ R by the formula : ψ̂(h)(x) = lim
n→∞

(hn ◦ τ)(x), for x ∈ X. Then ψ̂(h) ∈ B1(X) and it is

not hard to verify that the map ψ̂ : B1(Y)→ B1(X) is defined without any ambiguity. It is easy to check that
ψ̂ is an isomorphism onto B1(X) and furthermore ψ̂ agrees with ψ on C(Y). Since for any two topological
spaces U and V, a ring homomorphism from B1(U) to B1(V) takes bounded functions to bounded functions
[Theorem 3.7 in [1]], it follows that ψ̂(B∗1(Y)) = B∗1(X).

Since each ring homomorphism from B1(X) to B1(Y) is also a lattice homomorphism [Theorem 3.6 in
[1]], following result is immediate.

Corollary 2.2. The isomorphism ψ̂ : B1(Y)→ B1(X) in Theorem 2.1 is a lattice isomorphism.

In view of Theorem 2.1, from now on, each topological space that will appear in this paper will be
assumed to be Tychonoff.

3. The Structure Space of B1(X)

We reproduce the following basic facts from [4], 7M, which we need in the present article. Let A
be a commutative ring with unity and M(A), the set of all maximal ideals in A. For each a ∈ A, let
Ma = {M ∈ M(A) : a ∈ M}. Then {Ma : a ∈ A} is a closed base for the Zariski topology or often called the
hull-kernel topology τ onM(A). The topological space (M(A), τ) or more simplyM(A), by suppressing τ,
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is a compact T1 space and is called the structure space of the ring A. It is a standard result in [5] that if A is a
Gelfand ring meaning that each prime ideal in A extends to a unique maximal ideal, thenM(A) is Hausdorff.
For any subsetM0 ofM(A), its closure is determined by the formula : M0 = {M ∈ M(A) : M ⊃

⋂
M0}. We

will use these notations in our investigation on the structure space of B1(X).
A complete description of the maximal ideals in B1(X) in the manner of Gelfand-Kolmogoroff theorem

in rings of continuous functions C(X) (vide Theorem 7.3 in [4]) is in our agenda. Since there is already
a one-to-one match between the maximal ideals of B1(X) and the ZB-ultrafilters on X : M 7→ Z[M], we
propose to furnish an explicit description of the ZB-ultrafilters on X. In this program we follow closely the
technique adopted to prove Theorem 6.5 in [4]. Let us recall in this connection that the complete list of fixed
maximal ideals in B1(X) is given by the family {M̂p : p ∈ X}, where M̂p = { f ∈ B1(X) : f (p) = 0} (Theorem
3.2, [2]). Therefore, the list of fixed ZB-ultrafilters [i.e. those ZB-ultrafilters S on X satisfying

⋂
S , ∅] on

X is {Z[M̂p] ≡ Up : p ∈ X}, where Up = {Z ∈ Z(B1(X)) : p ∈ Z}, Z(B1(X)) standing for the family of all zero
sets in X. Thus we see that X becomes a ready-made index set for the collection of all fixed ZB-ultrafilters
on X. We extend X to a bigger set X̂, to serve as an index set for the family of all ZB-ultrafilters on X. For
each p ∈ X̂, let the corresponding ZB-ultrafilters on X be denoted by U p with the understanding that in case
p ∈ X, we write U p = Up. For each Z ∈ Z(B1(X)) set Z = {p ∈ X̂ : Z ∈ U p

}. Then {Z : Z ∈ Z(B1(X))} forms
a base for closed sets of some topology, which we wish to call the Stone topology on X̂. In this topology
for any Z ∈ Z(B1(X)), Z is essentially the closure of Z in X̂. All these results can be proved by using some
routine arguments. Thus X becomes dense in X̂ in this topology because X = {p ∈ X̂ : X ∈ U p

} = X̂ (since,
X is a member of each ZB-ultrafilter on it.)

Theorem 3.1. The structure spaceM(B1(X)) of the ring B1(X) is homeomorphic to X̂ with Stone topology.

Proof. First observe that the map φ : M(B1(X)) → X̂ defined by φ(M̂) = p, where Z[M̂] = U p is a bijection
between the two sets under consideration; this is already mentioned in the Introductory section of this
article. For any f ∈ B1(X) and M̂ ∈ M(B1(X)), f ∈ M̂ ⇔ Z( f ) ∈ Z[M̂] ⇔ Z( f ) ∈ U p, where φ(M̂) = p
⇔ p ∈ clX̂Z( f ). Thus φ exchanges the basic closed sets between M(B1(X)) and X̂ and is therefore a
homeomorphism.

The following result describes the collection of all maximal ideals in the ring B1(X).

Theorem 3.2. Maximal ideals in the ring B1(X) are given by {M̂p : p ∈ X̂}, where M̂p = { f ∈ B1(X) : p ∈ clX̂Z( f )}.
Furthermore, if p , q in X̂, then M̂p , M̂q.

Proof. Since {U p : p ∈ X̂} is the collection of all ZB-ultrafilters on X, it follows that {Z−1[U p] : p ∈ X̂} is the
family of all maximal ideals in B1(X). Let Z−1[U p] = M̂p. Thus M̂p = { f ∈ B1(X) : Z( f ) ∈ U p

} = { f ∈ B1(X) :
p ∈ clX̂Z( f )}. Again if p , q in X̂, then U p , U q which implies Z−1[U p] , Z−1[U q] and so M̂p , M̂q.

Theorem 3.3. For p ∈ X̂, M̂p is a fixed maximal ideal in B1(X) if and only if p ∈ X.

Proof. Let p ∈ X. Then M̂p = { f ∈ B1(X) : Z( f ) ∈ Z[M̂p]}= { f ∈ B1(X) : Z( f ) ∈ U p
}= { f ∈ B1(X) : Z( f ) ∈ Up}

( because p ∈ X implies U p = Up) = M̂p.
Conversely, let M̂p be a fixed maximal ideal in B1(X). Then M̂p = M̂q, for some q ∈ X. But from the

above, M̂q = M̂q. So, M̂p = M̂q. It follows from Theorem 3.2 that p = q. So, p ∈ X.

4. When isM(B1(X)) a Compactification of X?

To introduce a weak kind of embedding of X into the spaceM(B1(X)), we reproduce the following result
from [6].
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Theorem 4.1. ([6]) (i) For any topological space X and any metric space Y, B1(X,Y) ⊆ Fσ(X,Y) = { f : X → Y :
f−1(G) is an Fσ set, for any open set G ⊆ Y}, here B1(X,Y) denotes the collection of all Baire one functions from X
into Y.

(ii) If X is a normal space, then B1(X,R) = Fσ(X,R).

Definition 4.2. A function f from a topological space X into a topological space Y is called:
(i) Fσ-continuous if for any open set U of Y f−1(U) is an Fσ set in X.

(ii) weak Fσ continuous relative to an open base B of Y if for any U ∈ B, f−1(U) is an Fσ set in X.
(iii) Fσ-embedding if f is one-to-one, Fσ continuous and f−1 : f (X)→ X is continuous.
(iv) weak Fσ-embedding relative to an open base B of Y if f is one-to-one, weak Fσ continuous relative

to B and f−1 : f (X)→ X is continuous.

Remark 4.3. If there exists a countable open base B of Y, then any weak Fσ-continuous map f : X → Y
relative to B is Fσ-continuous.

Theorem 4.4. A T4 space X is densely weak Fσ-embedded inM(B1(X)).

Proof. Let ψ : X→M(B1(X)) be defined by ψ(x) = M̂x. Clearly, ψ is a one-to-one map.
We set for f ∈ B1(X), M̂ f = {M ∈ M(B1(X)) : f ∈ M}. Then BM ≡ {M̂ f : f ∈ B1(X)} is a closed base for

M(B1(X)) and therefore B∗M =M(B1(X)) \ BM is an open base for the same space. Since for any f ∈ B1(X),
ψ−1(M̂ f ) = Z( f ), a Gδ set in X ([1]), it follows that ψ is weak Fσ-continuous relative to B∗M. Furthermore,
(ψ−1)−1(Z(1)) = M̂1 ∩ ψ(X), an easy verification for each 1 ∈ C(X). This proves that ψ−1 : ψ(X) → X is a
continuous map. Finally we observe that

clM(B1(X))ψ(X) = {M̂ ∈ B1(X) : M̂ ⊇
⋂
x∈X

M̂x}

= {M̂ ∈ B1(X) : M̂ ⊇ {0}}
= M(B1(X)).

Thus ψ becomes a weak Fσ embedding relative to B∗M with ψ(X) dense inM(B1(X)).

Corollary 4.5. If every closed set ofM(B1(X)) is expressible as a countable intersection of basic closed sets {M̂ f :
f ∈ B1(X)}, then the T4-space X is densely Fσ-embedded inM(B1(X)).

We now show that the above condition though a bit stringent and sufficient may not be necessary for X
to be densely Fσ-embedded insideM(B1(X)). We construct the desired counterexample from 6S, [4] .

Remark 4.6. Take X = N, then B1(X) = C(X) = C(N) and therefore M(B1(X)) = βN. We recall from the
discussions preceding Theorem 3.1 that {clβNZ : Z ⊂ N} is a base for closed sets of the topology on βN.
We assert that if p ∈ βNrN, then the one pointic closed set {p} in βN can not be expressed as a countable

intersection of these basic closed sets. We argue by contradiction and assume that {p} =
∞⋂

n=1
clβNZn for a

countable family {Zn : n ∈ N} of subsets of N. Since each Zn is clopen in N, it follows that clβNZn is
clopen in βN [see 6.9(c) in [4]]. Consequently, {p} is a Gδ subset of βNrN. Each nonempty Gδ set G in the
space βN rN has nonempty interior and hence |G| ≥ 2c [see 6S.8 in [4]], there is a contradiction. Finally
we observe that the embedding ψ : N → M(B1(N)) constructed in the proof of Theorem 4.4 is a dense
Fσ-embedding.

We shall soon realise that the embedding (ψ,M(B1(X))) of X inM(B1(X)) in Theorem 4.4 enjoys a kind
of extension property analogous to that possessed by the Stone-Čech compactification βX of X. We need a
lemma for that purpose:
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Lemma 4.7. Let X be a normal space and ψ0 : X→ Y a Fσ-continuous function. For each h ∈ C(Y), h ◦ψ0 ∈ B1(X).

Proof. This follows from Theorem 4.1.

Theorem 4.8. If f : X → Y is an Fσ-continuous function from a T4 space X to a compact Hausdorff space Y, then
there exists a unique continuous function f̂ :M(B1(X))→ Y such that f̂ ◦ ψ = f .

Proof. Let M̂ ∈ M(B1(X)). Set M1 = {1 ∈ C(Y) : 1 ◦ f ∈ M̂}. There is no ambiguity in the definition of M1
because of Lemma 4.7. It is easy to check that M1 is a prime ideal in C(Y) and therefore can be extended to
a unique maximal ideal M in C(Y). As Y is compact, M = {1 ∈ C(Y) : 1(y) = 0} for a unique point y ∈ Y (see
Theorem 4.11 in [4]). Thus,

⋂
1∈M1

Z(1) = {y}. Define f̂ :M(B1(X))→ Y by f̂ (M̂) = y. It is clear that f̂ ◦ ψ = f .

To show that f̂ is continuous at an arbitrary point M̂ ∈ M(B1(X)). Let W be a neighbourhood of
f̂
(
M̂

)
in Y. Since Y is a compact Hausdorff space, it is Tychonoff and so, each neighbourhood of y in Y

contains a zero set neighbourhood of y and also a cozero set neighbourhood of y. Thus we can write,
f̂
(
M̂

)
∈ Y r Z(11) ⊆ Z(12) ⊆W, for some 11, 12 ∈ C(Y).

Now, f̂
(
M̂

)
∈ Y r Z(11) =⇒ 11 < M1 =⇒ 11 ◦ f < M̂. So, M̂ ∈ M(B1(X)) r M̂11◦ f . So,M(B1(X)) r M̂11◦ f

is a basic open set inM(B1(X)) containing M̂.

Our claim is f̂
(
M(B1(X)) r M̂11◦ f

)
⊆W.

Let N̂ ∈ M(B1(X)) r M̂11◦ f =⇒ N̂ < M̂11◦ f =⇒ 11 ◦ f < N̂ =⇒ 11 < N1. Also from 11.12 = 0 and N1 is
a prime ideal in C(Y), it follows that 12 ∈ N1 and hence, f̂

(
N̂

)
⊆ Z(12) ⊆W.

The uniqueness of f̂ follows from its continuity and the denseness of ψ(X) inM(B1(X)).

Theorem 4.9. Suppose X is a T4 space and
(
ψ,M(B1(X))

)
is an Fσ-embedding of X inM(B1(X)), here ψ(x) = M̂x,

x ∈ X. Then the ring B∗1(X) ≡ { f ∈ B1(X) : f is bounded over X} is isomorphic to the ring C(M(B1(X))) and
hence, B∗1(X) is a C-type ring.

Proof. Let f ∈ B∗1(X). Since X is T4 and f is Baire one, it follows from Theorem 4.1(ii) that f is Fσ-continuous.

Using Theorem 4.8, there exists a continuous function f̂ :M(B1(X))→ [r, s] such that f̂ ◦ ψ = f ; here [r, s] is
a closed interval in R containing f (X).

Define η : B∗1(X)→ C(M(B1(X))) by η( f ) = f̂ .

Let f , 1 ∈ B∗1(X) and x ∈ X. Then

( f̂ + 1)(M̂x) = f̂ + 1(ψ(x)) = ( f + 1)(x) = f (x) + 1(x) = ( f̂ + 1̂)(ψ(x)) = ( f̂ + 1̂)(M̂x)).
Thus the two functions agree on all fixed maximal ideals in B1(X). Since the set of all fixed maximal ideals
in B1(X) is dense in M(B1(X)), it follows that f̂ + 1̂ = f̂ + 1 on the whole of M(B1(X)). In otherwords,
η( f + 1) = η( f ) + η(1). Analogously, η( f1) = η( f )η(1). Thus η is a ring homomorphism. That η is one-to-one
is clear from its definition.

We finally show that η(B∗1(X)) = C(M(B1(X))).
For that purpose, we choose h ∈ C(M(B1(X))). Then h is a bounded function asM(B1(X)) is compact.

Furthermore, the hypothesis that ψ is an Fσ embedding implies in view of Lemma 4.7 that h ◦ ψ ∈ B1(X).
Hence, h ◦ ψ ∈ B∗1(X). Since ĥ ◦ ψ ◦ ψ = h, i.e., ĥ ◦ ψ and h agree on ψ(X) and ψ(X) is dense inM(B1(X)), it
follows that ĥ ◦ ψ = h, i.e., η(h ◦ ψ) = h.

As the structure spaces of two isomorphic rings are homeomorphic and also a Tychonoff space X is
compact if and only if it is homeomorphic to the structure space of C(M(C(X))), the following result comes
out as a consequence of Theorem 4.9.
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Corollary 4.10. If X is a T4 space and ψ is an Fσ-embedding, thenM(B1(X)) is homeomorphic toM(B∗1(X)).

It follows from Theorem 4.8 that for a T4 space X, a bounded Baire one function f on X has a unique
continuous extension over the compact Hausdorff space M(B1(X)) through a weak embedding ψ : X →
M(B1(X)). It is quite natural to ask, when does M(B1(X)) become βX, the Stone-Čech compactification of
X. An answer to this question is given in the last theorem (Theorem 4.18) of this article. At present,
however, let us be satisfied with a somewhat weaker form of answer to this query. Indeed, the family
B = {Z( f ) : f ∈ B1(X)} is clearly a base for closed sets for some topology σ on X. If τ is the original topology
on X, then {Z( f ) : f ∈ C(X, τ)} is base for its closed sets. As C(X, τ) ⊆ B1(X) it follows that τ ⊆ σ. Since τ is
Hausdorff, it is clear that σ is also Hausdorff. Also, since the topology σ on X is determined by a set of real
valued functions on X, it follows that σ is completely regular and therefore, Tychonoff [vide Theorem 3.7 in
[4]].

In the following, to avoid any confusion we simply writeM(B1(X, τ)) instead ofM(B1(X)). Also we use
the notation βXσ for the Stone-Čech compactification of the space (X, σ).

Theorem 4.11. If X is a T4 space, thenM(B1(X, τ)) is βXσ.

Proof. We first observe that the function ψ∗ : (X, σ)→M(B1(X, τ)) given by ψ∗(x) = M̂x defines a topological
embedding onto a dense subspace of M(B1(X, τ)) and therefore the pair (ψ∗,M(B1(X, τ)) is a Hausdorff
compactification of X ([3]).

That the map ψ∗ is one-to-one and ψ∗(X) is dense in M(B1(X, τ)) are already checked in Theorem 4.4.
We now observe that ψ∗ exchanges the basic closed sets of the spaces (X, σ) and ψ∗(X, σ). Indeed for
any f ∈ B1(X, τ), ψ∗(Z( f )) = M̂ f ∩ ψ∗(X), a fact easily verifiable. To complete this theorem, it therefore
remains to prove that the above embedding ψ∗ possesses the universal extension property. To that end, let
f : (X, σ)→ Y be a continuous function where Y is a compact Hausdorff space. All that we need is to define
a continuous function f̂ :M(B1(X, τ))→ Y with the property f̂ ◦ ψ∗ = f . So, let M̂ ∈ M(B1(X, τ)). As in the
proof of Theorem 4.8, we set M1 = {1 ∈ C(Y) : 1 ◦ f ∈ M̂} and observe that M1 is a prime ideal in C(Y) with⋂
1∈M1

Z(1) = {y} for a uniquely determined point y ∈ Y. Now define f̂ (M̂) = y. Then proceeding as in the

proof of Theorem 4.8 we can establish that f̂ is a continuous function with f̂ ◦ ψ∗ = f .

Corollary 4.12. If X is a T4 space, then the three spacesM(B1(X, τ)),M(C(X, σ)) and βXσ are pairwise homeomor-
phic.

The following gives a complete description of the maximal ideals of B∗1(X), under certain conditions.

Theorem 4.13. Assume that X is T4 and ψ : X → M(B1(X)) given by x 7→ M̂x is an Fσ-embedding. Then the
complete list of maximal ideals in B∗1(X) is given by {M̂∗p : p ∈ βXσ} where M̂∗p = { f ∈ B1

∗(X) : f̂ (p) = 0}. Also
p , q implies M̂∗p , M̂∗q. Moreover, M̂∗p is a fixed maximal ideal if and only if p ∈ X.

Proof. By Theorem 4.9, the map η : f → f̂ is an isomorphism from B∗1(X) onto C(M(B1(X))). So, there is a
one-one correspondence between the maximal ideals of B∗1(X) and those of C(M(B1(X))). M(B1(X)) being
compact, every maximal ideal of the ring C(M(B1(X))) is of the form {h ∈ C(M(B1(X))) : h(p) = 0}, where
p ∈ M(B1(X)) � βXσ. So, the maximal ideals of B∗1(X) are given by

η−1 (
{h ∈ C(M(B1(X))) : h(p) = 0}

)
= { f ∈ B1

∗(X) : f̂ (p) = 0} = M̂∗p (say), for each p ∈ βXσ; here
η : B∗1(X)→ C(M(B1(X, τ)) is the isomorphism considered in the proof of Theorem 4.9.
p , q⇒{h ∈ C(M(B1(X))) : h(p) = 0} , {h ∈ C(M(B1(X))) : h(q) = 0} and so, η−1 (

{h ∈ C(M(B1(X))) : h(p) = 0}
)
,

η−1 (
{h ∈ C(M(B1(X))) : h(q) = 0}

)
. i.e., M̂∗p , M̂∗q.

If p ∈ X, then clearly, M̂∗p = { f ∈ B1
∗(X) : f (p) = 0} = M̂∗p, the fixed maximal ideal of B1

∗(X).

If q ∈ βXσ \X, then we claim that M̂∗q is not fixed. If possible, it is a fixed maximal ideal of B1
∗(X). Then

M̂∗q = M̂∗p for some p ∈ X. But in that case, M̂∗q = M̂∗p and consequently, p = q.
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To set further insight into the interconnection between (X, σ) and B1(X, τ), we recall from the monograph
of Chandler [Chapter 1, [3]] that a compactification of a Tychonoff space X stands for a pair (ψ,Y) where
Y is a compact Hausdorff space and ψ : X → Y a topological embedding with ψ(X) dense in Y. Two such
compactifications (ψ1,Y1) and (ψ2,Y2) of X are called topologically equivalent if there exists a homeomor-
phism t : Y1 → Y2 such that t ◦ ψ1 = ψ2. A close look into the proof of Theorem 4.11 reveals that the pair
(ψ∗,M(B1(X, τ))) is topologically equivalent to βXσ. On the other hand it is a standard fact that the pair
(ψ,M(C(X, σ))), where ψ(x) = Mx = {1 ∈ C(X, σ) : 1(x) = 0} is also topologically equivalent to βXσ. It
follows that these two pairs themselves are topologically equivalent compactifications of (X, σ). This means
that there exists a homeomorphism ζ :M(B1(X, τ))→M(C(X, σ)) such that ζ ◦ ψ∗ = ψ. i.e., ζ(M̂x) = Mx, for
each x ∈ X. Thus fixed maximal ideals are sent to fixed maximal ideals under the homeomorphism ζ. It is
well known that a Tychonoff space Y is compact if and only if each maximal ideal of C(Y) is fixed [Theorem
4.11 in [4]]. Thus we have already established the following result.

Theorem 4.14. If (X, τ) is a T4 space, then each maximal ideal of B1(X, τ) is fixed if and only if (X, σ) is compact.

Theorem 4.15. If (X, τ) is a compact Hausdorff space and σ ) τ, then there exists at least one free maximal ideal in
the ring B1(X, τ).

Proof. The hypothesis imply that (X, σ) is never compact, because, if a Hausdorff space (Y, δ) is compact,
then no strictly finer compact topology δ1 can be defined on Y. It follows from Theorem 4.11 in ([4]) that
there exists a free maximal ideal N in C(X, σ). Thus N ∈ M(C(X, σ)). Consequently, ζ−1(N) is a free maximal
ideal in B1(X, τ).

The following result decides when the two topologies τ and σ on X become identical.

Theorem 4.16. Suppose X is a T4 space. Then σ = τ if and only if B1(X, τ) = C(X, τ).

Proof. If B1(X, τ) = C(X, τ), then since (X, τ) is Tychonoff it follows from Theorem 3.2 in [4] that σ = τ. For
the converse, let σ = τ. Consider any f ∈ B1(X, τ) and any basic open set (a, b) of R. Then f−1(a, b) = {x ∈
X : a < f (x) < b} = X \

(
{x ∈ X : f (x) ≤ a} ∪ {x ∈ X : f (x) ≥ b}

)
= (X \ Z(11)) ∩ (X \ Z(12)) = U (say), where

11, 12 ∈ B1(X, τ). Since Z(11) and Z(12) are closed in (X, σ), U is open in (X, σ). Hence, f ∈ C(X, σ). By
hypothesis, σ = τ and therefore, C(X, τ) ⊆ B1(X, τ) ⊆ C(X, σ) = C(X, τ). i.e., B1(X, τ) = C(X, τ).

Consequently, from Theorem 4.14 and Theorem 4.16, it follows that for a T4 space (X, τ), if a non-
continuous Baire one function exists, then B1(X) has a free (maximal) ideal.

In general, B1(X) = C(X) does not always imply that X is discrete. For example, if X is a P-space, then
B1(X) = C(X) ([7]). We shall now show that for a particular class of topological spaces, e.g., for perfectly
normal T1 spaces, B1(X) = C(X) is equivalent to the discreteness of the space.

Theorem 4.17. If (X, τ) is a perfectly normal T1-space, then σ is the discrete topology on X.

Proof. Let {y} be any singleton set in (X, σ). Since T1-ness is an expansive property and (X, τ) is T1, it follows
that (X, σ) is also T1. So, {y} is closed in (X, σ). Since (X, τ) is perfectly normal, {y} = Z(1), for some 1 ∈ C(X, τ).
Define χy : X→M as follows :

χy(x) =

1 x = y
0 otherwise.

χy ∈ B1(X, τ) has been established in [2] (see Theorem 3.7). Also Z(χy) = X \ {y}which is an open set in (X, τ)
and hence open in (X, σ). By definition of (X, σ), Z(χy) is a closed set in (X, σ). Hence, {y} is both open and
closed in (X, σ) which shows by arbitrariness of {y}, σ is the discrete topology on X.

Theorem 4.18. For a perfectly normal T1 space (X, τ) the following statements are equivalent:

(1) (X, τ) is discrete.
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(2) B1(X) = C(X).
(3) M(B1(X)) is the Stone-Čech compactification of (X, τ).

Proof. It follows from Theorem 1 in [7] that a Tychonoff space X is a P-space if and only if B1(X) = C(X). On
the other hand, it is easy to prove that if a P-space X is perfectly normal, then it becomes a discrete space.
Equivalence of the statements (1) and (2) therefore follow from these observations.

Since the structure space of C(X) is βX [7N in [4]], (2)⇒ (3) is evident.
(3) ⇒ (1): M(B1(X)) is a compact Hausdorff space containing (X, σ) as a dense subspace. Then the

identity map I :M(B1(X, τ))→M(B1(X, τ)) when restricted on (X, τ) becomes a homeomorphism between
(X, τ) and (X, σ). Hence, σ = τ. Using Theorem 4.17, (X, τ) is a discrete space.
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