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Abstract. In this paper we study the connections between topobooleans [A. A. Estaji, A. Karimi Feizabadi,
and M. Zarghani, Categ. Gen. Algebr. Struct. Appl. 4 (2016), 75–94] and Boolean contact algebras with
the interpolation property (briefly, ICAs) [G. Dimov and D. Vakarelov, Fund. Inform. 74 (2006), 209–249].
We prove that every complete ICA generates a topoboolean and, conversely, if a topoboolean satisfies some
natural conditions then it generates a complete ICA which, in turn, generates it. We introduce the category
ICA of ICAs and suitable morphisms between them. We show that the category ICA has products and
every ICA-monomorphism is an injective function. We prove as well that if A and B are complete Boolean
algebras, f : B1 → B2 is a complete Boolean homomorphism and (A,C) is an ICA, then B possesses a final
ICA-structure in respect of f .

1. Introduction

Efremovič proximity spaces were introduced by Efremovič in 1951 [21, 22], when he axiomatically
characterized the proximity relation “A is near B” for subsets A and B of a given set X. Later, Leader
[33, 34] and Lodato [35, 36] worked on structures having weaker axioms than those of Efremovič proximity
spaces, what enabled them to equip the underlying sets with arbitrary topologies.

Proximity spaces play a very significant role in the study of many problems that involve topological
spaces, such as compactifications, extension problems and so on. Each proximity space determines a
natural topology with nice properties, and the theory possesses deep results, and rich machinery and tools;
Naimpally and Warrack’s book [37] is the most complete exposition of the classical theory of proximity
spaces.

A proximity space is a non-empty set X with a special relation on the Boolean algebra P(X). It is
natural to look for suitable generalizations of this notion. In [40], a paper written under the direction of V.
A. Efremovič, A. S. Šwartz introduced the notion of proximity distributive lattice and proved a topological
representation theorem. It was mentioned there, that the paper can be considered as an attempt to build
a pointfree analogue of the notion of proximity space. Later on, H. de Vries [42] introduced the notion
of compingent algebra (now known as de Vries algebra [3]) and proved that the category deV of complete
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compingent algebras and their appropriate morphisms is dually equivalent to the category KHaus of
compact Hausdorff spaces and continuous maps.This was a convincing demonstration of the usefulness of
the point-free analogues of the notion of proximity space. In [28], V. V. Fedorchuk introduced the notion
of Boolean δ-algebra (now known also as normal contact algebra or IECA [16]) as a pair (B, δ) of a Boolean
algebra B and a proximity-like relation δ on B. He noticed that this notion is equivalent to the notion
of a compingent algebra and proved that the category Fed of complete Boolean δ-algebras and complete
Boolean homomorphisms which reflect the contact relation is dually equivalent to the category KHausqo of
compact Hausdorff spaces and quasi-open maps. Some generalizations of the results of de Vries [42] and
Fedorchuk [28] were obtained in [8], [9], [5], [13] and [12].

By taking some suitable subsets of the set of the axioms of Boolean δ-algebras, the new notions of contact
algebra ([16]), extensional contact algebra ([20]) and precontact algebra [19] (called so in [17] and originally
called proximity algebra) were introduced and topological (or discrete) representation and duality theorems
for these classes were obtained (see [19], [20], [17], [16], [18], [14]). It is interesting that the class of precontact
algebras was introduced independently and in a completely different form (as quasi-modal algebras) by S.
Celani [6]. So that the notion of a precontact algebra arose naturally in the fields of logic, topology and
theoretical computer science (especially in Region-based theory of space - see [1], [30], [38], [41] for surveys).
Finally, the local proximities of Leader [22] were generalized by Roeper [39].

Although the contact algebras which satisfy the interpolation property (for short, ICAs) were introduced
in[16], they were studied very briefly there. In this paper they will be the main object of our investigation.”

Instead of being focused on the points of a space, point-free topology (frame theory) focuses on its open
subsets. It deals with the abstractly defined “lattices of open sets”, known as frames, and their homomor-
phisms. Frames are complete lattices in which the meet distributes over all joins. For instance, for any
topological space X, the power set P(X) and the family of all open sets, O(X), are frames. Just as Boolean
algebras can be seen as models for the classical propositional logic, frames can be seen as models for the
geometric propositional logic, which is a logic with finite conjunctions and infinite disjunctions. Let us also
recall that Banaschewski [2] and Frith [29] introduced the notion of proximity frame and in [15] a category
isomorphic to that of proximity frames was constructed. Proximity frames were studied as well in [4] and
[7].

The second conceptual ingredient in the framework of point-free topologies is to view topoframes as
“point-free spaces”. Estaji, Karimi Feizabadi and Zarghani [24, 25] defined topoframes: A topoframe is a pair
(L, τ), abbreviated as Lτ, consisting of a frame L and a subframe τ whose all elements are complemented
in L. For example, with the notation above, the pair

(
P(X),O(X)

)
is a topoframe. In a topoframe (L, τ), we

have both open and closed elements (the members of τ and their complements, respectively). We refer the
interested reader to [23, 27, 44] and the references therein for more details. A topoframe (L, τ) in which L is
a complete Boolean algebra is called a topoboolean. In this paper we will study the connections between
topobooleans and ICAs.

The paper is organized as follows. In Section 2, we review some basic notions together with some
known properties of Boolean algebras and topobooleans. In Section 3, we prove that every complete
ICA generates a topoboolean (see Theorem 3.8) and, conversely, if a topoboolean satisfies some natural
conditions then it generates a complete ICA which, in turn, generates it (see Theorem 3.19). Finally, in
Section 4 we introduce the category ICA of ICAs as a full subcategory of the category PCA from [14].
We show that the category ICA has products and every ICA-monomorphism is an injective function (see
Propositions 4.8 and 4.9). We prove as well that if A and B are complete Boolean algebras, f : B1 → B2 is a
complete Boolean homomorphism and (A,C) is an ICA, then B possesses a final ICA-structure in respect of
f (see Theorem 4.3).

This research has been continued by the authors in [26]. The work contains some results concerning the
weight of ICAs.



A.A. Estaji et al. / Filomat 35:9 (2021), 2895–2909 2897

2. Preliminaries

In this section, we recall some definitions and results on Boolean algebras and topobooleans. For further
information on the concepts related to Boolean algebras and topobooleans, we refer the reader to [31] and
[25], respectively.

Let L be a lattice. We denote the top element and the bottom element of a bounded lattice by > and ⊥,
respectively. An element a of a bounded lattice L is called an atom if a , ⊥, and ⊥ < b ≤ a implies b = a for
b ∈ L. In what follows, the set of all atoms of a bounded lattice L is denoted by At(L).

A bounded lattice L is said to be complemented if every a ∈ L has a complement, that is, for every a ∈ L
there exists an element b of L such that a ∧ b = ⊥ and a ∨ b = >. A distributive complemented lattice is
called a Boolean algebra. Notice that every element a of a Boolean algebra has a unique complement, which
is denoted by a′. See [31].

A frame L is a complete lattice in which the distributive law

a ∧
∨

S =
∨
{a ∧ s : s ∈ S}

holds for all a ∈ L and S ⊆ L.
We recall from [32] that every frame is isomorphic to a subframe of a complete Boolean algebra.
In what follows, B denotes a complete Boolean algebra. Also, L denotes a subframe of a complete

Boolean algebra B.

Definition 2.1. ([24]) A topoframe is a pair (L, τ), abbreviated as Lτ, consisting of a frame (L : ∧,∨,>,⊥)
and a subset τ of L satisfying the following conditions.

(1) Every element p of τ has a complement p′ in L.

(2) If {pi}i∈I is a subfamily of τ, then the supremum of {pi}i∈I belongs to τ.

(3) If {pi}i∈I is a finite subfamily of τ, then the infimum of {pi}i∈I belongs to τ.

If (B : ∧,∨,>,⊥) is a complete Boolean algebra, then the topoframe (B, τ) is called a topoboolean. Now,
let Bτ be a topoboolean. An element a ∈ B is said to be compact if a ≤

∨
S for S ⊆ τ implies a ≤

∨
F for

some finite F ⊆ S. A topoboolean Bτ is said to be compact whenever its top element is compact. Hereafter,
the real line R is always assumed to be endowed with the natural topology O(R).

Definition 2.2. ([24]) Let Bτ be a topoboolean. A function f : P(R) → B is called a τ- real-continuous
function on B (or a real-continuous function on Bτ) if f : P(R)→ B is a complete Boolean homomorphism
and f

(
O(R)

)
⊆ τ. The set of all real-continuous functions on Bτ is denoted by R(Bτ).

We recall from [24] that the set R(Bτ) with the operator � ∈ {+, ·,∧,∨} defined by

( f � 1)(X) =
∨
{ f (Y) ∧ 1(Z) | Y � Z ⊆ X}

is an f -ring. Here,

Y � Z = {y � z | y ∈ Y, z ∈ Z}

or equivalently,

( f � 1)(X) =
∨
{ f ({x}) ∧ 1({y}) | x � y ∈ X}.

Also, we recall from [25] that for every f ∈ R(Bτ), f ({0}) and f (−∞, 0) ∨ f (0,+∞) are called a zero-element
and a cozero-element of f and are denoted by z( f ) and coz( f ), respectively. Obviously, z( f ) =

(
coz( f )

)′
.

We recall form [43] that for every f , 1 ∈ R(Bτ), the following statements are equivalent:
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(1) f ≤ 1.

(2) For every p ∈ Q, f (p,+∞) ≤ 1(p,+∞).

(3) For every q ∈ Q, f (−∞, q) ≥ 1(−∞, q).

Definition 2.3. ([24]) Let Bτ be a topoboolean. For each c ∈ R, function c defined by

c(X) =

{
1B c ∈ X,
0B c < X,

for every X ∈ P(R), is called a constant real-valued functions on a topoboolean Bτ.

Proposition 2.4. ([25]) Let Bτ be a topoboolean. For every f , 1 ∈ R(Bτ), the following statements hold:

(1) z( f ∧ 1) = z( f ) ∨ z(1), while f , 1 ≥ 0.

(2) z( f ) ∧ z(1) = z(| f | + |1|) = z( f 2 + 12).

(3) An element f is unit if and only if coz( f ) = >.

Let Bτ be a topoboolean. If p ∈ B, then the closure of p is the element

clτ(p) :=
∧
{q ∈ B|q′ ∈ τ, p ≤ q},

and the interior of p is the element

p◦ = intτ(p) :=
∨
{t ∈ τ|t ≤ p}.

Lemma 2.5. ([43]) Let Bτ be a topoboolean. Then, the following hold for every a ∈ B.

(1) (clτ(a))′ = intτ(a′).

(2) clτ(a′) =
(
intτ(a)

)′
.

Lemma 2.6. ([43]) Let Bτ be a topoboolean. Then the following hold for all a, b ∈ B.

(1) clτ(⊥) = ⊥ and clτ(>) = >.

(2) If a ≤ b, then clτ(a) ≤ clτ(b).

(3) a ≤ clτ(a).

(4) clτ
(
clτ(a)

)
= clτ(a).

(5) clτ(a ∨ b) = clτ(a) ∨ clτ(b).

3. Boolean contact algebras with interpolation property

In this section, we consider the topoboolean Bτ(C), which is induced by an contact relation C on B with
interpolation property, and study its properties.

Definition 3.1. ([16]) An algebraic system B = (B,⊥,>,∨,∧, ′,C) is called a contact algebra (abbreviated as
CA) if (B,⊥,>,∨,∧, ′) is a non-degenerate Boolean algebra and C is a binary relation on B, called contact,
satisfying the following axioms.

(C1) aCb implies bCa.
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(C2) (a ∨ b)Cc if and only if aCc or bCc.

(C3) If aCb, then a , ⊥ and b , ⊥.

(C4) If a , ⊥, then aCa.

We shall simply write (B,C) for a contact algebra. A contact algebra (B,C) is called complete (atomic)
CA if the Boolean algebra B is complete (atomic). The negation of C will be denoted by (−C).

Let (B,C) be a contact algebra. The relation�C (or simply�) of non-tangential inclusion is defined by
a� b if and only if a(−C)b′. The definition of CA can be equivalently reformulated using this relation. This
can be done using the following axioms.

(� 1) > � >.

(� 2) If a� b, then a ≤ b.

(� 3) It follows from a ≤ b� c ≤ d that a� b.

(� 4) a� b implies b′ � a′.

(� 5) a� b and a� c imply a� (b ∧ c).

A mapping f between two contact algebras (B1,C1) and (B2,C2) is called a CA-morphism ([14]) if f : B1 → B2
is a Boolean homomorphism, and f (a)C2 f (b) implies aC1b, for any a, b ∈ B1. Note that f : (B1,C1)→ (B2,C2)
is a CA-morphism if and only if a�C1 b implies f (a)�C2 f (b) for any a, b ∈ B1. Two contact algebras (B1,C1)
and (B2,C2) are CA-isomorphic if and only if there exists a bijection f : B1 → B2 such that f and f−1 are
CA-morphisms.

Lemma 3.2. ([16]) Let C be a contact relation on a complete Boolean algebra B. If a C b, a ≤ a1 and b ≤ b1, then
a1 C b1.

As it follows easily from Lemma 3.2, the condition (C4) is equivalent to the following condition.

(C4’) If a ∧ b , ⊥, then aCb.

Example 3.3. Let Bτ be a topoboolean. For every a, b ∈ B, we define aCb if and only if clτ(a) ∧ clτ(b) , ⊥.
Then, using Lemma 2.6, we can easily show that (B,C) is a contact algebra.

Definition 3.4. ([16]) Let B be a Boolean algebra. A contact relation C on B which satisfies the interpolation
property

(C5) x� y⇒ (∃z)(x� z� y),

will be called, for the sake of brevity, I-contact relation. If C is an I-contact relation, then (B,C) is called an
I-contact algebra (abbreviated as ICA).

Let (B,C) be an ICA. Hereafter, we set

τ(C) :=
{
b ∈ B : ∀x ∈ At(B)(x ≤ b⇒ x�C b)

}
.

Fact 3.5. b ∈ τ(C)⇔ ∀x ∈ At(B)(xCb′ ⇒ x ≤ b′).

Remark 3.6. Note that if B is atomless, then τ(C) = B.

Theorem 3.7. Let (B,C1) and (B,C2) be two ICAs. Then, C2 ⊆ C1 implies τ(C1) ⊆ τ(C2).

Proof. Let b ∈ τ(C1) and x ∈ At(B) be such that (x, b′) ∈ C2. Since C2 ⊆ C1, we conclude that (x, b′) ∈ C1, and
so x ≤ b′. Then, b ∈ τ(C2).
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Theorem 3.8. If (B,C) is a complete ICA, then Bτ(C) is a topoboolean.

Proof. This is straightforward.

Theorem 3.9. Let (B,C) be a complete ICA, b0 ∈ B and b0 ≤
∨
{x ∈ At(B) : x C b0}. Then

clτ(C)(b0) =
∨
{x ∈ At(B) : x C b0}.

Proof. Put S = {x ∈ At(B) : xCb0}, T = {a ∈ B : a′ ∈ τ(C), b0 ≤ a′} and s =
∨

S, t =
∧

T, �:=�C. We have to
show that t = s.
For proving that s ≤ t, let a ∈ T and x ∈ S. Since b0 ≤ a, we obtain that xCa. Thus x3 a′. Then x � a′ because
a′ ∈ τ(C). Therefore x ≤ a. Hence, x ≤ t. Thus s ≤ t.

For proving that t ≤ s, it is enough to show that s ∈ T. Since, by our hypothesis, b0 ≤ s, we only need to
verify that s′ ∈ τ(C). We will do this using Fact 3.5. So, let x ∈ At(B) and xCs. We will first show that x ∈ S.
Suppose that x < S. Then x(−C)b0, i.e., x � (b0)′. Hence, there exist c, d ∈ B such that x � c � d � (b0)′.
Then x(−C)c′, d(−C)b0 and c ≤ d. Thus c(−C)b0. For every y ∈ S, we have that yCb0 and hence y ≤ c′ (because
c(−C)b0). Therefore, s ≤ c′. Since x(−C)c′, we obtain that x(−C)s, a contradiction. Hence x ∈ S. Thus x ≤ s.
Now, Fact 3.5 implies that s′ ∈ τ(C). Hence, the inequality t ≤ s is proved.

Corollary 3.10. Let (B,C) be a complete atomic ICA. Then, for every b ∈ B,

clτ(C)(b) =
∨
{x ∈ At(B) : x C b}.

Corollary 3.11. Suppose that (B,C) is a complete ICA, b ∈ B and b ≤
∨
{x ∈ At(B) : x C b}. Then the following

statements are true for every a ∈ B with a(−C)b.

(1) clτ(C)(b) ≤ a′.

(2) clτ(C)(b) ≤
(
intτ(C)(a)

)′
.

Proof. (1) Let x ∈ At(B), xCb and x � a′. Since x is an atom of B, we conclude that x ≤ a. On the other hand,
xCb and so by Definition 3.1 (2), (x ∨ a)Cb. Then, aCb. Hence, by Theorem 3.9, clτ(C)(b) ≤ a′.

(2) By (1), Lemma 2.6 (2) and (4), and Lemma 2.5,

clτ(C)(b) = clτ(C)

(
clτ(C)(b)

)
≤ clτ(C)(a′) =

(
intτ(C)(a)

)′
.

Lemma 3.12. For a complete ICA (B,C), the following statements are true.

(1) For every a, b ∈ B, if aCb, then
(
clτ(C)(a)

)
C
(
clτ(C)(b)

)
.

(2) Let a, b ∈ B \ {⊥} be given. If b ≤
∨
{x ∈ At(B) : x C b} and a ≤

∨
{x ∈ At(B) : x C a}, then

(
clτ(C)(a)

)
C
(
clτ(C)(b)

)
implies that aCb.

Proof. (1) By Lemma 2.6, a ≤ clτ(C)(a) and b ≤ clτ(C)(b). Now, by Lemma 3.2 we conclude that(
clτ(C)(a)

)
C
(
clτ(C)(b)

)
.

(2) Suppose that a(−C)b. Then, by Definition 3.4, there exists c ∈ B such that a(−C)c and c′(−C)b. By
Corollary 3.11, clτ(C)(b) ≤ c and by Lemma 3.2, a(−C)c implies a(−C)clτ(C)(b). A similar reasoning allows us
to conclude that

(
clτ(C)(a)

)
(−C)

(
clτ(C)(b)

)
, a contradiction. Hence aCb.

Lemma 3.13. Let (B,C) be a complete ICA, a, b ∈ B and a(−C)b. If a ≤
∨
{x ∈ At(B) : x C a}, then b(−C)clτ(C)(a). If

b ≤
∨
{x ∈ At(B) : x C b}, then a(−C)clτ(C)(b).



A.A. Estaji et al. / Filomat 35:9 (2021), 2895–2909 2901

Proof. See the proof of Lemma 3.12 (2).

Definition 3.14. Let Bτ be a topoboolean. Two elements a and b of B are said to be completely separated
(from one another) in Bτ if there exists a real-continuous function f in R(Bτ) such that

a ≤ f ({0}), b ≤ f ({1}) and 0 ≤ f ≤ 1 .

Proposition 3.15. Let Bτ be a topoboolean. The relation C, defined on B by a(−C)b if and only if a and b are completely
separated, is an I-contact relation on B.

Proof. We check the conditions (C1)–(C5) for C.

(C1). This is clear.

(C2). By Definition 3.14, (a∨ b)(−C)c gives us f , 1 ∈ R(Bτ) such that z( f )∧ z(1) = ⊥, a∨ b ≤ z( f ) and c ≤ z(1).
Now, since a ≤ a ∨ b and b ≤ a ∨ b, we conclude that a(−C)c and b(−C)c. Conversly, if a(−C)c and
b(−C)c, then there exist fi, 1i ∈ R(Bτ) such that z( fi) ∧ z(1i) = ⊥ for i = 1, 2. Moreover, a ≤ z( f1),
b ≤ z( f2) and c ≤ z(1i). Set f = | f1| ∧ | f2| and 1 = |11| + |12|. By Proposition 2.4, z(1) = z(11) ∧ z(12) and
z( f ) = z( f1) ∨ z( f2). Furthermore,

z(1) ∧ z( f ) =
(
z(11) ∧ z(12)

)
∧

(
z( f1) ∨ z( f2)

)
=

(
z(11) ∧ z(12) ∧ z( f1)

)
∨

(
z(11) ∧ z(12) ∧ z( f2)

)
=

(
⊥ ∧ z(12)

)
∨

(
z(11) ∧ ⊥

)
= ⊥.

Also, a ∨ b ≤ z( f ) and c ≤ z(1). Then, (a ∨ b)(−C)c.

(C3). If aCb and a = ⊥, set f = 1 and 1 = 0. Then, z( f ) = ⊥ and z(1) = >. Hence, a ≤ z( f ), b ≤ z(1) and
z( f ) ∧ z(1) = ⊥, which mean that a(−C)b.

(C’4). If a(−C)b, then there exist f , 1 ∈ R(Bτ) such that a ≤ z( f ), b ≤ z(1) and z( f )∧ z(1) = ⊥. Hence, a∧ b = ⊥.

(C5). If a(−C)b, then there exists an element f of R(Bτ) such that a ≤ f ({0}), b ≤ f ({1}) and 0 ≤ f ≤ 1. We set
c := f ([ 1

2 , 1]). Since the map 1 : P(R)→ P(R) defined by

1(A) =

 1
2 A ∩ (−∞, 1

2 ], 1 < A,(
1
2 A ∩ (−∞, 1

2 ]
)
∪ [ 1

2 ,∞), 1 ∈ A,

is a frame map, f1 ∈ R(Bτ), so that

a ≤ f ({0}) = f1({0})

and

c ≤ f
(
[
1
2
,∞)

)
= f1({1}).

Hence, a(−C)c.

Define h : P(R)→ P(R) by

h(A) = {
1
2

(a + 1) : a ∈ A} ∩ [
1
2
,+∞)

when 0 < A, and

h(A) =
(
{
1
2

(a + 1) : 0 , a ∈ A} ∩ [
1
2
,+∞)

)
∪ (−∞,

1
2

]
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otherwise. Since h is a frame map, f h ∈ R(Bτ), so that b ≤ f ({1}) = f h({1}). Also, from f (1,+∞) = ⊥we
infer that

c′ = f (−∞,
1
2

) ∨ f (1,+∞) = f (−∞,
1
2

) = f h({0}).

Therefore, c′(−C)b

Definition 3.16. A topoboolean Bτ is said to be completely regular if for every t ∈ τ, there exists a subset
{ fi}i of R(Bτ) such that t =

∨
i coz( fi).

Lemma 3.17. Let Bτ be a completely regular topoboolean. If b ∈ τ and x ∈ At(B) are such that x ≤ b, then there exist
f , h ∈ R(Bτ) such that

x ≤ int
(
z(h)

)
≤ z(h) ≤ coz( f ) ≤ b.

Proof. By the hypothesis, there exists a subset { fi}i of R(Bτ) such that b =
∨

i coz( fi). This gives us an element
f of R(Bτ) such that b′ ≤ z( f ) and x ≤ coz( f ), because x � b′ =

∧
i z( fi). Since

coz( f ) =
∨
n∈N

(
f (−∞,−

1
n

) ∨ f (
1
n
,+∞)

)
=

∨
n∈N

(
f (−∞,−

1
n

]◦ ∨ f [
1
n
,+∞)◦

)
=

∨
n∈N

(
f (−∞,−

1
n

] ∨ f [
1
n
,+∞)

)
,

we conclude that there exists an element n of N such that

x ≤ f (−∞,−
1
n

]◦ ∨ f [
1
n
,+∞)◦ ≤ f (−∞,−

1
n

] ∨ f [
1
n
,+∞) ≤ coz( f ).

If h =
(
( f − 1

n ) ∨ 0
)(

( f + 1
n ) ∧ 0

)
, then z(h) = f (−∞,− 1

n ] ∨ f [ 1
n ,+∞), which completes the proof.

Definition 3.18. Let Bτ be a topoboolean, and let (B,C) be a ICA. Then τ and C are said to be compatible if
τ = τ(C).

We recall that if 1 is an invertible element of a ring R, then f
1

is defined as f .1−1 for every f ∈ R.

Theorem 3.19. Let Bτ be a completely regular topoboolean, and assume that the contact relation C is defined by
a(−C)b if and only if a and b are completely separated. Then, the following statements are true.

(1) τ ⊆ τ(C).

(2) If B is an atomic Boolean algebra, then C is compatible with τ.

Proof. (1) Let b ∈ τ be given, x ∈ At(B) and x ≤ b. Then, by Lemma 3.17, there exist f , h ∈ R(Bτ) such that

x ≤ int
(
z(h)

)
≤ z(h) ≤ coz( f ) ≤ b.

Since coz(| f | + |h|) = >, by Proposition 2.4 we conclude that | f | + |h| is unit, and so we set 1 := | f |
| f |+|h| . Then

1 ∈ R(Bτ), b ≤ 1({0}), x ≤ 1({1}) and 0 ≤ 1 ≤ 1. Hence x(−C)b′, which implies that b ∈ τ(C).
(2) Let b ∈ τ(C) be given, x ∈ At(B) and x ≤ b. Then x(−C)b′, and so there exists an element fx of R(Bτ)

such that
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x ≤ fx({0}) ≤ fx(−∞, 1
2 ), b′ ≤ fx({1}) and 0 ≤ fx ≤ 1.

Since B is an atomic Boolean algebra, we conclude that

b =
∨

x∈At(B)
x≤b

x ≤
∨

x∈At(B)
x≤b

fx(−∞,
1
2

) ≤ b,

which implies b ∈ τ.

Remark 3.20. We recall from [24] that a topoboolean Bτ is normal if for every a, b ∈ τ with a ∨ b = >, there
exist u, v ∈ τ such that

a′ ≤ u, b′ ≤ v and u ∧ v = ⊥.

Also, a topoboolean Bτ is normal if and only if for any s, t ∈ τwith s′ ≤ t, there exists an element v of τ such
that

s′ ≤ v ≤ clτ(v) ≤ t.

Proposition 3.21. Let Bτ be a normal topoboolean. Define a relation C on B by writing aCb if and only if clτ(a) ∧
clτ(b) ,⊥. Then, C is an I-contact relation on B.

Proof. By Example 3.3, C is a contact relation on B. Now, let a, b ∈ B with a(−C)b be given. Then clτ(a)∧clτ(b) =
⊥ and by Remark 3.20, there exists an element v of τ such that

clτ(b) ≤ v ≤ clτ(v) ≤
(
clτ(a)

)′
.

This implies

clτ(a) ∧ clτ(v) = ⊥

and

clτ(v′) ∧ clτ(b) = v′ ∧ clτ(b) = ⊥.

Hence, a(−C)v and v′(−C)b. Therefore, C is an I-contact relation on B.

Proposition 3.22. If a completely regular topoboolean Bτ has a compatible I-contact relation C defined by aCb if and
only if clτ(a) ∧ clτ(b) , ⊥, then Bτ is a normal topoboolean.

Proof. Let a, b ∈ τ be given with a∨ b = >. Then a′(−C)b′, which gives us an element c of B such that a′(−C)c
and c′(−C)b′. So,

a′ ≤ intτ(c′), b′ ≤ intτ(c) and intτ(c′) ∧ intτ(c) = ⊥.

Therefore, Bτ is a normal topoboolean.

Lemma 3.23. Let (B,C) be a complete ICA and a, b ∈ B. Then, the following statements are true.

(1) If a ≤
∨
{x ∈ At(B) : x C a}, then a� b implies clτ(C)(a)� b.

(2) If b′ ≤
∨
{x ∈ At(B) : x C b′}, then a� b implies a� intτ(C)(b).

Proof. (1) By Lemma 3.13, a(−C)b′ implies clτ(C)(a)(−C)b′. So, clτ(C)(a)� b.
(2) It follows from a(−C)b′ that a(−C)clτ(C)(b′). By Lemma 2.5, we conclude that a(−C)

(
intτ(C)(b)

)′
, that is,

a� intτ(C)(b).
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Corollary 3.24. Let (B,C) be a complete atomic ICA, a, b ∈ B and a(−C)b. Then there exists an element c of B such
that a� intτ(C)(c) and

(
intτ(C)(c)

)
(−C)b.

Proof. Since a(−C)b, there exist c, d ∈ B such that a� c� d� b′. Then a(−C)c′, d(−C)b and c ≤ d. Hence, by
Lemma 3.23, a� intτ(C)(c) and intτ(C)(c) ≤ c ≤ d. These imply b(−C)

(
intτ(C)(c)

)
.

Lemma 3.25. Let Bτ be a completely regular topoboolean, and let C be a contact relation on B compatible with τ. If
B is an atomic Boolean algebra and a, b ∈ B are such that a is compact, b is closed, and a ∧ b = ⊥, then a(−C)b.

Proof. If x is an atom of B and x ≤ a, then x(−C)b because b is closed. Hence, given any atom x of B, Corollary
3.24 gives us an element cx of τ such that x � cx and cx(−C)b. Now, {cx : x is an atom of B} is an open cover
of the compact element a. So, there exists a finite subcover {cx1 , cx2 , . . . , cxn } of a such that (

∨n
i=1 cxi )(−C)b, by

the definition of contact algebra. Therefore, a(−C)b.

Remark 3.26. Let Bτ be a compact topoboolean. Then, each closed element k ∈ B is compact. In fact, if
k ≤

∨
S for some S ⊆ τ, then k′ ∨

∨
S = 1 and so, by the compactness of >, there exist s1, . . . , sn ∈ S such that

k′ ∨ (s1 ∨ · · · ∨ sn) = >. Consequently, k ≤ s1 ∨ · · · ∨ sn, as desired.

Theorem 3.27. Let Bτ be a compact topoboolean which is completely regular. If B is an atomic Boolean algebra, then
there exists a unique compatible contact relation with the interpolation property given by

aCb if and only if clτ(a) ∧ clτ(b) , ⊥.

Proof. By Theorem 3.19(2), there exists a compatible contact relation on B. Let C be any compatible contact
relation and clτ(a) ∧ clτ(b) , ⊥. Then, by Definition 3.1 (4), clτ(a)(−C)clτ(b). So, by Lemma 3.12(2), aCb.
Conversely, let aCb. Suppose that clτ(a) ∧ clτ(b) = ⊥. Then, by Remark 3.26 and Lemma 3.25, we conclude
that clτ(a)(−C)clτ(b). Hence, by Lemma 3.2, a(−C)b, which is a contradiction. Thus, clτ(a) ∧ clτ(b) , ⊥.

4. CA-morphisms between ICAs and the category ICA

A pair (B,C) is said to be a precontact algebra ([6, 17, 19]) if it satisfies the axioms (C2) and (C3) from
Definition 3.1. In [14], the category PCA of all precontact algebras and all Boolean homomorphisms
f : (B1,C1) → (B2,C2) between them such that, for all a, b ∈ B, f (a)C2 f (b) implies that aCb was introduced
and studied. In this section, we introduce the category of I-contact algebras as a full subcategory of this
category, and present some of its properties. These include the existence of products and initial objects.

Recall that if B1 and B2 are two complete Boolean algebras, then any complete Boolean homomorphism
f : B1 → B2 has a right Galois adjoint f∗ : B2 → B1 and a left Galois adjoint f ∗ : B2 → B1.

Remark 4.1. (see [8]) Let (B1,C1) and (B2,C2) be two complete CAs, and let f : B1 → B2 be a complete
Boolean homomorphism. Then f : (B1,C1) → (B2,C2) is a CA-morphism if and only if, for every a, b ∈ B2,
aC2b implies f ∗(a)C1 f ∗(b).

Theorem 4.2. Let f : (B1,C1)→ (B2,C2) be a CA-morphism such that for every b ∈ At(B2), there exists ab ∈ At(B1)
with b ≤ f (a). Then f (τ(C1)) ⊆ τ(C2).

Proof. Let b ∈ τ(C1) and x ∈ At(B2) be such that x ≤ f (b). Suppose that x 3 f (b). Then xC2 f (b′). There
exists a ∈ At(B1) such that x ≤ f (a). Then, by Lemma 3.2, f (a)C2 f (b′) and hence aC1b′. Since a ∈ At(B1) and
b ∈ τ(C1), we obtain that a ≤ b′. Thus, x ≤ f (a) ≤ f (b′). Therefore, x ≤ f (b) and x ≤ f (b′), which imply x = ⊥,
a contradiction. Hence x� f (b).

Theorem 4.3. Suppose that f is a complete Boolean homomorphism from a complete Boolean algebra B1 to a complete
Boolean algebra B2. Let (B1,C1) be an ICA. We define the relation C2 on B2 by writing a(−C2)b if and only if there
exists an element c of B1 such that
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f ∗(a)(−C1)c′ and f (c) ≤ b′.

Then, the following statements are true.

(1) The relation C2 is a I-contact relation on B2.

(2) The mapping f : (B1,C1)→ (B2,C2) is a CA-morphism.

(3) If C is a I-contact relation on B2 such that f : (B1,C1)→ (B2,C) is a CA-morphism, then C ⊆ C2.

(4) If for each y ∈ At(B2) there exists a xy ∈ At(B1) such that y ≤ f (xy), then f (τ(C1)) ⊆ τ(C2).

Proof. (1) We check the conditions (C1)–(C5) for C2.
(C1). If a(−C2)b, then there exists an element c of B1 such that f ∗(a)(−C1)c′ and f (c) ≤ b′. We set

d :=
(

f ∗(a)
)′

. Since f ∗(b) ≤ f ∗
(

f (c′)
)
≤ c′, we conclude that f ∗(b)(−C1)d′ and f (d) = f

(
( f ∗(a))′

)
≤ a′, which

imply b(−C2)a.
(C2). If (a ∨ b)(−C2)c, then there exists an element d of B1 such that f ∗(a ∨ b)(−C1)d′ and f (d) ≤ c′. Since

f ∗(a) ≤ f ∗(a∨b) and f ∗(b) ≤ f ∗(a∨b), we conclude that a(−C2)c and b(−C2)c. Conversely, assume that a(−C2)c
and b(−C2)c. Then there exist d1, d2 ∈ B1 such that f ∗(a) 6C1 d′1, f ∗(b) 6C1 d′2, f (d1) ≤ c′ and f (d2) ≤ c′. Set
d = d1 ∨ d2. Then f ∗(a ∨ b) 6C1 d′ and f (d) ≤ c′, which mean that a ∨ b(−C2)c.

(C3). Since ( f ∗(⊥),>) = (⊥,>) < C2 and f (⊥) = ⊥ ≤ b′, ⊥(−C2)b for every b ∈ B2.
(C4). If a(−C)b2, then there exists an element c of B1 such that f ∗(a)(−C1)c′ and f (c) ≤ b′. It follows that

a ∧ b ≤ a ∧ f (c′) ≤ f f ∗(a) ∧ f (c′) ≤ f
(

f ∗(a) ∧ c′)
)

= f (⊥) = ⊥.

(C5). If a(−C2)b, then there exists an element c of B1 such that f ∗(a)(−C1)c′ and f (c) ≤ b′, which
imply the existence of an element d of B1 such that f ∗(a)(−C1)d and d′(−C1)c′. We set e := f (d). Since
f ∗(e′) = f ∗

(
f (d′)

)
≤ d′, we infer that f ∗(e′) 6C1 c′. This implies e′(−C)2b. Also, from f ∗(a)(−C1)d and e′ = f (d′)

we conclude that a(−C2)e.
(2) In order to show that f : (B1,C1)→ (B2,C2) is a CA-morphism, suppose that f ∗(a)(−C1) f ∗(b) for some

a, b ∈ B2. Since f ∗(a) �
(

f ∗(b)
)′

, there exists c in B1 such that f ∗(a) � c �
(

f ∗(b)
)′

. This implies f ∗(a)(−C1)c′

and

f (c) ≤ f
((

f ∗(b)
)′)

=
(

f
(

f ∗(b)
))′
≤ b′.

It follows that a(−C2)b. Therefore, by Remark 4.1, f : (B1,C1)→ (B2,C2) is a CA-morphism.
(3) If a(−C2)b, then there exists an element c of B1 such that f ∗(a)(−C1)c′ and f (c) ≤ b′, which imply

f
(

f ∗(a)
)
(−C) f (c′) and b ≤ f (c′). Therefore, it follows that a(−C)b. Hence, C ⊆ C2.

(4) This follows from (2) and Theorem 4.2.

Remark 4.4. ([11]) If (B1,C1) and (B2,C2) are two CAs, f : B1 → B2 is a Boolean homomorphism which
preserves the contact relation C1 (that is, aC1b implies f (a)C2 f (b) for all a, b ∈ B1), then f is an injection.

According to the above remark, the following conditions are equivalent.

1. For every a, b ∈ B1, aCb1 implies f (a)C2 f (b).

2. For every c, d ∈ B2, c(−C)d implies a(−C1)b for every a ∈ f−1(c) and b ∈ f−1(d).

3. For every c, d ∈ B2, c(−C)d implies
(∨

f−1(c)
)
(−C1)

(∨
f−1(d)

)
.

Remark 4.5. Let B be a complete Boolean algebra. We recall from [16] that the largest and smallest contact
relations exist on B; the largest one, Cl, is defined by aClb iff a , ⊥ and b , ⊥; the smallest one, Cs, being
defined by aCsb iff a ∧ b , ⊥; moreover, (B,Cl) is an ICA and (B,Cs) is a normal contact algebra.
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In the sequel, CBoo represents the category of complete Boolean algebras and complete homomor-
phisms.

Proposition 4.6. The category ICA has an initial object.

Proof. Let B = {⊥,>} and Cl be defined on B as in Remark 4.5. Let (M,C) be an ICA. Since B is an initial
object in the category CBoo, there exists exactly one morphism f from B to M in CBoo. Now, assume
that a(−Cl)b. Then a = ⊥ or b = ⊥, and so f (a) = ⊥ or f (b) = ⊥. By Definition 3.1 (C3), we conclude that
f (a)(−C) f (b). Hence, f : (B,Cl)→ (M,C) is a CA-morphism.

Proposition 4.7. The category ICA does not have a terminal object.

Proof. Suppose that (A,CA) is an ICA. Let B denote a complete Boolean algebra with four elements, and let p
denote an element of B other than⊥ and>. Consider the binary relation Cl on B. Define 1 : (B,Cl)→ (A,CA)

by 1 :=
(
⊥ p p′ >
⊥ ⊥ > >

)
and h : (B,Cl) → (A,CA) by h :=

(
⊥ p p′ >
⊥ > ⊥ >

)
. It is easy to see that 1 and h are

CA-morphisms from (B,Cl) to (A,CA). Therefore, (A,CA) is not a terminal object.

Let {(Bα,Cα) : α ∈ I} be a family of ICAs. Let B = Πα∈IBα be the product of {Bα}α∈I in the category CBoo,
and let pα be the projection Boolean homomorphism of B to Bα. In the proposition below, we define an
I-contact relation C on B.

Proposition 4.8. Let {(Bα,Cα)}α∈I be a family of ICAs, and let B = Πi∈IBα be the product of {Bα}α∈I in the category
CBoo. Define a binary relation C on B by

aCb if and only if
(
pα(a)

)
Cα

(
pα(b)

)
for someα ∈ I.

Then, the following statements are true.

(1) The relation C is an I-contact relation on B.

(2) For every α ∈ I, the projection map pα : (B,C)→ (Bα,Cα) is a CA-morphism.

(3) A complete Boolean homomorphism f : M → B is a CA-morphism from (M,C1) to (B,C) if and only if the
composition pα ◦ f : (M,C1)→ (Bα,Cα) is a CA-morphism for each projection pα.

(4) The ICA (B,C) is a product of the family {(Bα,Cα)}α∈A of ICAs in the category ICA.

Proof. (1) See [10, Fact 3.2].
(2) This is a direct consequence of the definition of CA-morphisms and the definition of C.

(3) Necessity. By (2), pα ◦ f is a CA-morphism.
Sufficiency. Let a, b ∈ M be such that a(−C1)b. Since for each α ∈ I, pα ◦ f : (M,C1) → (Bα,Cα) is a

CA-morphism,
(
pα ◦ f (a)

)
(−Cα)

(
pα ◦ f (b)

)
. Then, f (a)(−C) f (b) by our definition of C.

(4) Let {(Bα,Cα)}α∈A be a family of ICAs. Consider the product B = Πα∈ABα in the category CBoo. Define
a binary relation C on B by

aCb if and only if
(
pα(a)

)
Cα

(
pα(b)

)
for someα ∈ A.

By Proposition 4.8, (B,C) is an ICA. Suppose that (M, σ) is any ICA, and that 1α : (M, σ) → (Bα,Cα) is a
CA-morphism. Then, there exists a unique morphism 1 : M → B in CBoo such that pα ◦ 1 = 1α for every
α ∈ A. It is sufficient to show that 1 is a CA-morphism. Let m1,m2 ∈ M be given with m1(−σ)m2. Then
1α(m1)(−C)α1α(m2), which implies pα

(
1(m1)

)
(−Cα)pα

(
1(m2)

)
. Hence, 1(m1)(−C)1(m2).

Proposition 4.9. Every monomorphism in the category ICA is an injective function.
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Proof. Let f : (B1,C1) → (B2,C2) be a monomorphism, and let a, b ∈ B1 be such that f (a) = f (b). Also, let
B denote a complete Boolean algebra with four elements, and let p denote an element of B other than ⊥

and >. Consider the binary relation Cl on B . Define 1 : (B,Cl) → (B1,C1) by 1 :=
(
⊥ p p′ >
⊥ a a′ >

)
and

h : (B,Cl) → (B1,C1) by h :=
(
⊥ p p′ >
⊥ b b′ >

)
. It is easy to see that 1 and h are CA-morphisms, and that

f ◦ 1 = f ◦ h. Since f : (B1,C1)→ (B2,C2) is a monomorphism, we conclude that 1 = h, and so a = b.

Let Bτ be a normal topoboolean. By Proposition 3.21, the relation Cτ defined on B by aCτb if and only if
clτ(a) ∧ clτ(b) , ⊥ is an I-contact relation. Then, (B,Cτ) is an ICA.

Proposition 4.10. Let Bτ and Mσ be two normal topobooleans, and let f : B → M be a complete Boolean
homomorphism such that f (τ) ⊆ σ. Then, f : (B,Cτ)→ (M,Cσ) is a CA-morphism.

Proof. Let a, b ∈ B, and let a(−Cτ)b. Then clτ(a) ∧ clτ(b) = ⊥, and so f
(
clτ(a)

)
∧ f

(
clτ(b)

)
= f

(
clτ(a) ∧ clτ(b)

)
=

f (⊥) = ⊥. Also,

a ≤ clτ(a)⇒ f (a) ≤ f
(
clτ(a)

)
⇒ clσ

(
f (a)

)
≤ f

(
clτ(a)

)
.

By a similar reasoning,

clσ
(

f (b)
)
≤ f

(
clτ(b)

)
and so

clσ
(

f (a)
)
∧ clσ

(
f (b)

)
= ⊥.

This means that f (a)(−Cσ) f (b).

A function f like that in Proposition 4.10 will be called a topoboolean map.
Now, let NTboo be the category of normal topobooleans and topoboolean maps.

Proposition 4.11. It follows that G : NTboo→ ICA, given by

Bτ
� G //

f

��

(B,Cτ)

G( f )= f
��

Mσ
�

G
// (M,Cσ)

is a functor.

Proof. This is a direct consequence of Propositions 3.21 and 4.10.
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