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Product Generalized Local Morrey Spaces and Commutators of
Multi-Sublinear Operators Generated by Multilinear
Calderon-Zygmund Operators and Local Campanato Functions

Ferit Giirbiiz?

*Faculty of Education, Department of Mathematics Education, Hakkari University, Hakkari 30000, Turkey.

Abstract. The aim of this paper is to get the boundedness of the commutators of multi-sublinear operators
generated by local campanato functions and multilinear Calderén-Zygmund operators on the product
generalized local Morrey spaces.

1. Introduction and main results

Because of the need for study of the local behavior of solutions of second order elliptic partial differential
equations (PDEs) and together with the now well-studied Sobolev spaces, constitude a formidable three
parameter family of spaces useful for proving regularity results for solutions to various PDEs, especially for

non-linear elliptic systems, in 1938, Morrey [15] introduced the classical Morrey spaces which are natural
generalizations of the classical Lebesgue spaces.

Its definition defined by

Definition 1.1. Let 0 < g < p < oo. Foran Lf]"f(]R”)—function f and any ball B = B(x, r), the Morrey space MZ (R™)
is the collection of all measurable functions f whose Morrey space norm is

Il = sup 1B ol gy <

(x,r)eR" (0,00

Here, we would like to mention that in many research papers, such as in [2, 9] et al., the Morrey space
is defined in another way.
Definition 1.2. Let 0 < A <nand 0 < q < co. Then for f € Lff’c(]R") and any ball B = B(x,r), the Morrey space
Ly (R") is defined by

_A _A
”fHL (R = SUPSUpr 1 IfllL,8) =supr 7 || fllL, @) < oo.
oA xeR" r>0 B
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Conclusion 1.3. Recall that 0 < g < p < oo and 0 < A < n. By checking the definitions of Mf; (R") and Ly, (R"), it
is easy to see that if we take A = (1 - g) n € [0,n], then Lq,(l_%)n (R") = MZ (R™). Moreover, if we choose p = % <q,

ﬂ
My (R") = Ly (R"). Thus, we conclude that M’; (R") is equivalent to L,y (R").

Remark 1.4. Obuviously, the Morrey space is the generalization of the Lebesgue space that can be seen from the special
case Mg (R") = L; (R") with 1 < g < oo.

We also refer to [1] for the latest research on the theory of Morrey spaces associated with Harmonic
Analysis. In recent years, more and more researches focus on function spaces based on Morrey spaces to
fill in some gaps in the theory of Morrey type spaces (see, for example, [2, 9]). Moreover, various Morrey
spaces are defined in the process of study. Also, these spaces are useful in harmonic analysis and PDEs.
But, this topic exceeds the scope of this paper. Thus, we omit the details here.

First of all, we recall some explanations and notations used in the paper.

Recall that the concept of the generalized local (central) Morrey space LM;’;‘;)} has been studied in [2, 9].

Definition 1.5. (Generalized local (central) Morrey space) Let @(x,r) be a positive measurable function on
R" X (0, 0) and 1 < p < oo. For any fixed xo € R", the generalized local Morrey space LM}{jffp} is defined by

Luy! = LMl

_1
= {f € L;"C (R™): ”f”LML’g’ = sup @(xo, 1) |B(xo, )7 A NlL, (B, < 00}-
P >0

According to this definition, we recover the local Morrey space LL;"R’

A=n
P

under the choice ¢(xg,7) =r

LY = LMy |

A-n .
P Lo r)=r 7

{xo0}
P’

On the other hand, in 1976, Coifman et al. [4] introduced the commutator T}, generated by the Calderén-
Zygmund operator T and a locally integrable function b as follows:

For the properties and applications of generalized local (central) Morrey spaces LM, ¢}, see also [2, 9].

Ty f(x) = [b, TIf (x) = b()T f(x) - T(bf)(x) = f K (x, ) [b(x) - b(y)If (y)dy, 1)

R"

with the kernel K satisfying the following size condition:

K(x,y)sC|x—y|_”, X#Y,

and some smoothness assumption. A celebrated result is that T is bounded operator on L, space, where
1 < p < co. Sometimes, the commutator defined by (1) is also called the commutator in Coifman et al.’s
sense, which has its root in the complex analysis and harmonic analysis (see [4]). The main result from [4]
states that, if and only if b € BMO (bounded mean oscillation space), T}, is a bounded operator on L, (R"),

1 < p < co. It is worth noting that for a constant C, if T is linear we have,
[b+CTIf =®+C)Tf-T(b+C)f)
=bTf+CTf-T(bf)-CTf
= [b, TIf.

This leads one to intuitively look to spaces for which we identify functions which differ by constants, and so
itisno surprise that b € BMO or LCLXE} (R") (local Campanato space) has had the most historical significance.
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Also, the definition and some properties of spaces of bounded mean oscillation BMO and local Campanato
space LCLXX} (R") that we need in the proof of commutators are as follows.

BMO spaces have been, and continue to be, of great interest and a subject of intense research in harmonic
analysis. One of the most fascinating aspects of BMO spaces is their self-improvement properties, which
go back to the work of John and Nirenberg in [10]. Functions of BMO were also introduced by John and
Nirenberg [10], in connection with differential equations. The definition on R" reads as follows:

Definition 1.6. The space BMO(IR") of functions of bounded mean oscillation consists of locally summable functions
with finite semi-norm

1
16ll. = 11bllsmo = sup B f [b(y) — bp@nldy < oo, (2)

x€R",r>0
B(x,r)

where by y) is the mean value of the function b on the ball B(x,r) and ||b|. is called the BMO-norm of b, and it
becomes a norm on after dividing out the constant functions. Bounded functions are in BMO and a BMO-function
is locally in L, (R) for every p < oo. Typical examples of BMO-functions are of the form log|P| with a polynomial on
R". Furthermore, BMO is a bit like the space Lo, but Lo, is a subspace of BMO. Indeed,

1 1 1
|B(x, 7")| f |b(y) h bB(xr7)|dy = |B(x, T)| f |b(y)| dy + m f ‘bB(X,T)| dy

B(x,r) B(x,r) B(x,r)

1 1
= B f|b(y))dy+(bg(x,r)|s2m f(b(y)|dyg2||b||Lm,

B(x,r) B(x,r)
As a result, since ||b||, < 2||bll;_., Leo(R") € BMO(R") is valid.

Remark 1.7. The fact that precisely the mean value by figures in (2) is inessential and one gets an equivalent
seminorm if by is replaced by an arbitrary constant c :

||b||*~sup1nf|B( )| f|b(y) c|dy 3)

>0
B(x,r)

Indeed, it is obvious that (2) implies (3). If (3) holds, then

|bB(x,r) - C| =

1
B(x, )| f (b(y)-c)dy| <C,

B(x,r)

SO

1 1
BCx, )] f Iby) = bonldy < iy f (b @) = | + [e = baen]) dy < 2C.

B(x,r) B(x,r)
Definition 1.8. [2, 9] Let 1 < g < 00 and 0 < A < 1. A local Campanato function b € Lf;"' (IR") is said to belong to
{xo} ;
the LCq’ff\ (R™), if

1
q

1
bl f b bp,»| dy| < oo, 4
6l o) = sup IB(xO 5 | 1@ =baen| dy 4)

B(xo,r)
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where

1
bB(Xo,r)_m f b(y)dy.

B(xo,r)

Define
X ny _ loc ny .
LCk (R") = {b e LI (R") : ||b||LCL{],:?} < oo}.

. . . . . {xo}
Remark 1.9. If two functions which differ by a constant are regarded as a function in the space ch,;)\ (IR"), then

LC[{;;’\] (R") becomes a Banach space. The space LC‘{;{R} (R") when A = 0 is just the LC,[;“O](IR”), Apparently, (4) is
equivalent to the following condition:

l

T e T

>0 CEC |B(

Also, in [14], Lu and Yang introduced the central BMO space CBMO,(R") = LC{Oé(]R”) Note that BMO(IR") c

Ol LC; Wl (R™), 1 < g < co. Moreover, one can imagine that the behavior of LC"‘O (IR™) may be quite different from that
q

of BMO(IR"), since there is no analogy of the famous John-Nirenberg inequality of BMO(IR") for the space Lqu" (R™).
Lemma 1.10. [2, 9] Let b be a local Campanato function in LC};‘;} (R"),1<g<00,0<A< % and r1, 1, > 0. Then

1
q

B(xo,r1)
where C > 0 is independent of b, r1 and r,.
From this inequality (5), we have
b3 = B < C (141 —) B o )1 6l ©)
and it is easy to see that
5! —+n}\
b - @]l ) < c(1 +inlt ) - @)

4
Pm

ﬁ
b e LC;ffAli(]I{”)for 0<Ai< %, i=1,...,m. Then, from Lemma 1.10, it is easy to see that

1

Remark 1.11. Let xp € R", 1 < p;,qi < oo, fori = 1,...,m such that ;—] = Pll + -+ =

1 R
+q]+ + +qm””d

[ = @, 5 = i

il

and

”bi - (bi)B”Lqi(ZB) = ”bi - (bi)ZB”LquB) + H(bi)B - (bi)23“qu(ZB) s ||bi||Lc;ﬁgi ’ (8)

fori=1,2.
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The singular integral operator theory, which plays a significant part in many respects of harmonic
analysis has been extensively studied in recent years, and the results are plentiful and substantial. In
the last century, the theory of the Calderén-Zygmund operator is a crucial part of accomplishment in the
classical analysis, and it has been fully applied in Fourier analysis, complex analysis, operator theory and so
on. The generalized Calderén-Zygmund operator originated in the classical Calderén-Zygmund operator
has attracted many researchers to explore it. Lin [13] established the sharp maximal function pointwise
estimates for generalized Calderén-Zygmund operators and their commutators with BMO functions. On
the other hand, multilinear Calderén-Zygmund theory is a natural generalization of the linear case. The
initial work on the class of multilinear Calderén-Zygmund operators has been done by Coifman and Meyer
in [3]. Moreover, the study of multilinear singular integrals has motivated not only as the generalization of
the theory of linear ones but also their natural appearance in analysis. It has received increasing attention
and much development in recent years, such as the study of the bilinear Hilbert transform by Lacey and
Thiele [11, 12] and the systematic treatment of multilinear Calderén-Zygmund operators by Grafakos-
Torres [6-8] and Grafakos-Kalton [5]. Meanwhile, the commutators generated by the multilinear singular
integral and BMO functions of Lipschitz functions also attract much attention, since the commutator is
more singular than the singular integral operator itself.

i=1
(R")™ = R" X ... x R" be the m-fold product spaces (m € N). For x € R" and r > 0, we denote by B(x,r)
the open ball centered at x of radius 7, and by B€(x, r) denote its complement and |B(x, r)| is the Lebesgue

measure of the ball B(x, ) and |B(x, 7)| = v,+", where v, = |B(0,1)|. Throughout this paper, we denote by

n 2
Let IR" be the n-dimensional Euclidean space of points x = (xy, ..., x,) with norm |x| = [Zx?] and

_y) = (Y1, Ym), d7 = dy,...dyu, and by ? the m-tuple (fi, ..., fu), m, n the nonnegative integers with
n>2,m>1.
Suppose that T represents a multilinear or a multi-sublinear operator, which satisfies that for any

m € IN and ? = (fi,..., fm), suppose each f; (i=1,...,m) is integrable on R" with compact support and

x ¢ ﬁsuppfi,
i=1

1 (7) @

1 m
<¢ mn fl (yl) }d?’ (9)
O(Rnf)m =y x = ) {I;“ |

where ¢ is independent of 7 and x.

We point out that the condition (9) in the case of m = 1 was first introduced by Soria and Weiss in [16]
. The condition (9) is satisfied by many interesting operators in harmonic analysis, such as the m-linear
Calderén-Zygmund operators, m-sublinear Carleson’s maximal operator, m-sublinear Hardy-Littlewood
maximal operator, C. Fefferman’s singular multipliers, R. Fefferman’s m-linear singular integrals, Ricci—
Stein’s m-linear oscillatory singular integrals, the m-linear Bochner—Riesz means and so on (see [2, 9, 16] for
details).

We are going to be working on IR". Let’s begin with the recalling of the multilinear Calderén-Zygmund

operator T(m) (m € IN). Let 7 € L;;’f (R") x...x L% (R") and K (Yo, 1, , Ym) be a function away from the

m+1. T(’”)

diagonal in (R") stands for an m-linear singular integral operator defined by

T (2) 0 =T oo i) @ = [+ [KGovareery) [ 15 ) s .
(70 =1" = [ Koo [ [ iy

R" R"

= f K(x, Yi,-- -/]/m) {ﬁfl (]/i)} d?'

(]R,,)m
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where f; (i = 1,--- ,m) are smooth functions with compact support and x ¢ ﬂsupp fi. If the kernel K satisfies
i=1
the following size and smoothness conditions:

(i) For some C > 0 and all (yo, y1, - , Ym) € (R")™*! defined away from the diagonal,
C

Y| €
{Z ‘yk - y1|]
k120

(ii) For some € > 0, whenever 0 < i < m and |yl AR

|K(y0, Yi,... (10)

1
E maX0<k<m

Clyi -y
K(yOI-“/yir"'rym)_K(yOI---/y;/"'/ym)‘S . |y % mn+e’
k,1=0

then we call T an standard m-linear Calderén-Zygmund operator, where K is an m-Calderén-Zygmund
kernel which is a locally integrable function defined away from the diagonal yo = y; = --- = y,, in (R")"",
see [5, 6] for details.

At the same time, Grafakos and Torres [6, 8] have proved that the multilinear Calderén-Zygmund
operator is bounded on the product of Lebesgue spaces.

Theorem 1.12. [6, 8] Let T" be an m-linear Calderén-Zygmund operator. Then, for any numbers1 < pq,...,pm <

oo with % = pll +oot pin, T" can be extended to a bounded operator from Ly, X --- X L, into L,, and bounded from

L1X"'XL1i7’lf0L;oo

Let T" be an m-linear Calderén-Zygmund operator, b = (b1, ...,by) is a group of locally integrable

- — =
functions and f = (fi,..., fu). Then the m-linear iterated commutator generated by T(m)and b is defined

to be
T (F) = [ou Lo B o, Thdca 1), (7))

Inspired by [6, 8], we will introduce the commutators Tg% generated by m-linear Calderén-Zygmund

operators T(m) and local Campanato functions —b) =(b1,...,by)

7 (f)(x) fK(x, Vi Ym) [ﬁ [bi (x) = bi (%)]fi(]/i)}d?

(]er)m i=1

where K(x, y1,...,Yn) is a m-linear Calderén-Zygmund kernel, b; € LC x”’ 1 (R™) (local Campanato spaces)

for0<A; < %, i=1,...,m. We would like to point out that Tb is the spec1al case of TH—b> with taking m = 1.
Closely related to the above results, in this paper in the case of b; € LCji’lf‘)A}i(R”) for0 < A; < %, i=1,...,m,
we find the sufficient conditions on (@1, ...¢@m, @) which ensures the boundedness of the commutator

operators T(m) from LMp’i“q7 e X LMFl’x@qjm to LMPXE,);
1

p = p1 +- + p— + q_1 + q—z +oo+o-In fact, in this paper the results of [2] and [9] (by takmg Q =1 there)

will be generahzed to the multlhnear case; we omit the details here.

, where 1 < p;,g; < oo, fori = 1,...,m such that
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Remark 1.13. Our results in this paper remain true for the nonhomogeneous versions of local Campanato spaces
LC[{;X] (R") for 0 < A < L and generalized local Morrey spaces LM;,’,‘(‘;,},

We now make some conventions. Throughout this paper, we use the symbol A < B to denote that there
exists a positive consant C such that A < CB. If A < B and B < A, we then write A = B and say that A and B
are equivalent. For a fixed p € [1, o), p’ denotes the dual or conjugate exponent of p, namely, p’ = = L and
we use the convention 1’ = oo and oo’ = 1.

Our main results can be formulated as follows.

T ,%+"'+,%m+q%+q%+"'+i””d
b e LC{q'fiii(R”)for 0< A< %, i=1,...,m. Letalso, T" (m € IN) be a multilinear operator satisfying condition
(9), bounded from Ly, X --- X L, into L, for p; > 1(i =1,...,m). Then the inequality

Theorem 1.14. Let xo € R", 1 < p;, q; < oo, fori =1,...,m such that % =

[

() m m m dt
179 (7 oo < [ [0 o 7 [ (1107) HnﬁuL,,,(B(th» — an

— ‘7
i=1 2r % Aj [+
¢ i=1 i=1

holds for any ball B(xo, r) and for all 7) € Ly (R") x - -- Ly (R").

4111, 1
— p1+ +Pm+lh+l/]2+ +Qm
and b € LC;XOA}}(]R”)for 0< A< %, i=1,...,m Letalso, T™ (m eIN) be a multilinear operator satisfying
condition (9), bounded from Ly, X---X Ly, into L, forp; > 1(i = 1,...,m). If functions ¢, p; : R"x (0, 00) — (0, ),
(i=1,...,m)and (@1, ...om, @) satisfies the condition

Theorem 1.15. Let xp € R", 1 < p;,q; < oo, fori = 1,...,m such that % =

0 essinf H(p,(xo, T)TPi o

m t<t<oco
f(l +In r) - -
, [ZZ]
t

i=1 i=1

dt < Co (xo, 1), (12)

where C does not depend on r.

Then the operator Tl(_'I"_;) (m € IN) is bounded from product space LM,,’?)({,1 X ee X LM;;E on t0 LM, o] o for pi >

1(i=1,...,m). Moreover, we have for p; > 1(i=1,...,m)

m m
T(M)( ) LMo 1:1[” HLCEJ‘}J{Q“ﬁ“LMZ%' 13)

For the m-sublinear commutator of the m-sublinear maximal operator

M (F)er = sup e [ [T - ulls wolay
i=1

>0
B(x,t)

from Theorem 1.15 we get the following new results.

Corollary 1.16. Let xp € R, 1 <p,~,qi<oo,f0ri=1,...,msuchthatll—7= l+~-+i+l+i+-~+q%and

P1 Pm n q2
ﬁ
b € LC{q’v‘"jv(]R”)for 0< A< %, i=1,...,mand (¢1,...Pm, @) satisfies condition (12). Then, the operators M(rTT);’

and TE% (m € IN) are bounded from product space LM!™! - x LM po LM, fao} o forpi>1(i=1,...,m).

12Y (Pl PmPm
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Remark 1.17. Note that, in the case of m = 1 Theorem 1.15 and Corollary 1.16 have been proved in [2, 9].

Corollary 1.18. Letm > 2, T (m € N) bea multilinear opemtor satisfying condition (9), bounded from L, X --- X
q

Ly, into Ly« for fixed 1 < vy, , ¥y < 00 with % = h +--+ = Let xo € R" and b € BMO™(R"). If functions

@, @i 1 R"%(0,00) = (0,00),(i=1,...,m)and (p1, ... Pm, @ )satzsﬁes the condition

n

essinf @;(xo, T Z)T

u t,<T <00
Hf o dt; < Co (xo,71),

where C does not depend on r. Then the operator T(H"% (m € IN) is bounded from product space LMp’fO(p1 e X

LMY to LM{’“’ forany 1 <p;<oo(i=1,...,m) with %7 = pll ot # and 1 < p < co. Moreover, we have

PmsPm
(7)) s Hnb ||BMOH||ﬁ||LMw .
PV)

ﬁ
Corollary 1.19. Let1 < p;,q; < oo, fori=1,...,msuch that}—) = pl]+~~+pl—mand b e BMO™"(R")fori=1,...,m
Let also, T™ (m € N) be a multilinear operator satisfying condition (9), bounded from Ly, X --- X L, into L, for
pi > 1(i=1,...,m). If functions @, p; : R"x(0,00) — (0,00), (i=1,...,m) and (¢1,...Qu, ) satisfies the
condition

. s o
f(l +In r) - dt < Cop(x,1), (14)
r nz}%&l
=

where C does not depend on r.
Then the operator Tl(_'I"_;, (m € IN) is bounded from product space My, X -+ X Mp, 0, to My, for p; >

1(Gi=1,...,m). Moreover, we have for p; > 1(i=1,...,m)

(7)< Tl T,
My j=1 i=1

ﬁ
Corollary 1.20. Let 1 < p;, q; < oo, fori = 1,...,msuchthat% = pl1+~-+;—mand b € BMO™(R") fori=1,...,m

and also (@1, . . . @, @) satisfies condition (14). Then, the operators Mg% and Ti;’% (m € IN) are bounded from product
space My, o, X+ X My, o, to M, forpi >1(i=1,...,m).

Corollary 1.21. Letm > 2, T (m € N) bea multilinear opemtor satisfying condition (9), bounded from L, X - -
Ly, into Lo for fixed1 <ry,-++ 1y <cowith 1 = 1 + o If T e BMO™(R"), then the operator T(m) (me ]N)
is bounded from product space MZ? X XMZ’; to Mq p for any pj<qi<o(j=1,...,m) with ; -1 + e+ L

P pm’
1 1 1
= _ oo _ <
q—q1+ +I]m andl<p q<00

2. Proofs of the main results

2.1. Proof of Theorem 1.14.
Proof. In order to simplify the proof, we consider only the situation when m = 2. Actually, a similar
procedure works for all m € IN. Thus, without loss of generality, it is sufficient to show that the conclusion

%
holds for Tﬁ% (f) Ei) b) (f1, f2)-
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We just consider the case p;, q; > 1 for i = 1,2. For any xg € R”, set B = B (x, ¥) for the ball centered at x
and of radius r and 2B = B (xo, 2r). Thus, we have the following decomposition,

TG ) (fus ) (@) = [(01 () = {ba})] [(b2 () = (b2}p] T (fi, o) (%)
— (b1 () = ()] TO [fi, (b2 () — b)) o] ()
— [(b2 (x) = {b2})] T® [(B1 () = {ba}p) 1, o] ()

+ T [(b1 () = {bi}p) fi, (02 () — {ba)p) fo] (%)
= H1 (x) + H2 (x) + H3 (X) + H4 (x) .

Thus,

H (b1,2) (fi, f2)

L (B0 [f’ (blb)(fler)(x)’ dx] < f|H (x)Ipdx] ZG (15)

One observes that the estimate of G, is analogous to that of Gz. Thus, we will only estimate G1, G, and
Gs.

Indeed, we also decompose f; as fi (vi) = fi (vi) X2 + fi (Vi) X gpyc fori =1,2. And, we write f; = R+
and f, = f + f5°, where fi0 = fixas, f° = fiXppye, fori=1,2.

) 0 it .
(i) For G; = HT(b1 bz) 1y )HL B we decompose it into four parts as follows:

Gy <i€er — B2 — ol T (17, 1)

Ly(B(xo,1))
+ ||[(b1 —{b1}p)] T [fl (b2 = {b2}s) £ Ly(B(xo,1)

||[(b2 —{ba}p)] T? [(b1 {h B)f1/f2]|| »(B(xo,1)
+ ||T(2) [(b1 - {bl}B)f1 (b2 = {bz}B)fz]HL (B(xo,1)

=G +Gpp + G13 + Gyg.

Firstly, 1 < p,q < oo, such that % = pl] + plz and % = qil + qlz Then, using Holder’s inequality and from the
boundedness of T® from L,, x L,, into L; (see Theorem 1.12) it follows that:

G 5 (er — () (b2 = ()l | T2 (2 2],

swrwmmwmm4wm%@mmgﬂﬂhm

< |I(by — {bl}B)”qu(B) [1(b2 — {bz}B)”qu(B “ *is fH”fz”L,[(B(xo nH———— ( )
2r t ror2

— u dt
bl gnt? f(1+ln ) .
HLCij?\i H”ﬁ”LP (Beo) ((i+i2)—(/\1+/\2))+1

2r PP

N
=~

i=1
Secondly, for Gy, let 1 < 7 < oo, such that ;1—7 = qil + % Then similar to the estimates for G;;, we have
G % 101 = oIl i [T [ £, 02 = ol ]
S = Gl o 7], 102 = (B2bao) 5]
S I01 = 01}l ) 102 = 210l o 1l oy 12l o)
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1_1,1_1_1
where 1 < k < oo, such that ; = mtn =T T
Hence, we get
2 P dt
G < nbnhw{f@+m) Al o0
1:1[ LCon; 5 H o £ (7 o
r

Similarly, Gi3 has the same estimate above, here we omit the details, thus following inequality

G13<H||b|| XO f(1+1n ) HllszLp (B(xo,H) ((L a
t

it i )—(/\1+/\2))+1

2r
is valid.
At last, we con51der the term Gy4. Let1 < 71,72 < o0, such that pll and 1 = = p—2 + o L Ttis easy
to see that ; = 7_1 TZ. Then by the boundedness of T® from L., x LTz into L, (see Theorem 1.12) Holder’s

inequality and (8), we obtain

Gua 5 [[(01 = tba}e) |, oy 02 = (02)e) £
S 1101 = {ba}p)llz, 2p) (b2 = {b2}B)IIL, (28 ”fl”L (2B) ||f2“Lp2(ZB)

(o8]

) dt
H { f(l +1In- ) H“_flan (B(xo,t)) t (( 1 +L)_(/\1+/\2))+1

— q *
i=1 2r

P P2

Combining all the estimates of Gi1, G2, Gi3, G14; there is

N

7@
H (bl bz) fl /f2 || B(JC(] T H LC[YO f 1 + 11‘1 HHﬁ“LP (B(‘C() t))
2r

i=1
dt

X
tn((;l L )-Caa) 1
S N
(if) For G (b bz) 0 1 ) L B we also write

Gz 5 [ibr Wl 12 = B2l T (7, £7)]

»(B(x0,))
M ||[(b1 — {b1}p)] T® [fl (b2 = {bZ}B)f;o]HL ,(B(xo,1)
||[(b2 =~ (b)) T (b1 = B1)s) £, £5° ]HL J(Bzo,1)

* ||T<2> [(b1 — {b1)p) £, (by — {bz}B)fz""]

=Gy + Gy + G23 + Gog.

Lyp(B(x0,7))
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Let1<p,7 < o, such that 2 = pl pl and = 1 = qil + qlz Then, using Holder’s inequality we have

Go1 = ||[(b1— {b1}p)] [(b2 — {b2}g T(z) fl'fZ “

Ly (B(xo,7))

< 1 = (1) 12 ~ bl e [T (£, 57)

‘L—(B)

S 111 = {br}p)ll, 8y 1102 = {b2}p)llL, B 7 re fH“f’ |L,, (Bt 77 T
i=1

2r

2
< HH—b)HLC{xO} rn(qll +q2 )+n(/\1+/\z) Vl(m 1’2) f(l +1n- ) H”f'HLP Blo,) 7

i=1 9irhi b t (Pl 1’2)
Tt f(lﬂn by Hllfll i
~ 2 LC({]T(;{ J 1 Lp B(xo f) t ((%+é)—(/\l+/\2))+l 7

where in the second inequality we have used the following fact:
Itis clear that |(x0 -1, X0 — y2)|2" > (xo - yz)zn. By the condition (9) with m = 2 and Holder’s inequality,
we have

|2 ()| f5 (y2)|
@R, £°) )| 5 Ay
(5 f)x|<ujnj|(x_ylx i

f|f1(y1)|d n f )|:2_(y;2)|

@B
f|f1(y1)|dy1f)f2(l/2)( f Y2
@B)° [xo-2]

< 1Al o 128 f 1l 1B 001

2
fHHfz IL,, (Bero) 777 QH,
i=1

where % = - + ;. Thus, the inequality

2) (f0 oo ’
72 ()], <7 f HuﬁnL .

is valid.
On the other hand, for the estimates used in Gy, G23, we have to prove the below inequality:

TO £, (b2 () = {ba2}p) £5°| )| 5 2l fa) 1+In- Il fillr,, (Bxo, i : (16)
ol o0 f( )H R e
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Indeed, it is clear that |(x0 - VY1, X0 — yz))zn > |x0 - y2|2n. Moreover, using the conditions (10) and (9) with
m = 2, we have

T [£2, (62 () - (k) 15| )
{by}
f%@Wyth)zﬂmwﬂ

xo—yz

(B)°

It’s obvious that

[Vl dn <1l 25177, 7
2B

and using Holder’s inequality and by (8)

f |b2 (y2) — {2} 3‘ )fz (]/2)|
(zB)C )XO _ y2|2n

sfm@)mmmm|fwﬂwz

(@B o1
1-(L+1) dt
Sf 162 (v2) = Bl oy 12l e 1B o P # pZ)t2n_+1
2r
1-L dt
+‘{b2}B(xot) {ba XOV)H‘fZHL , (B(xo,1)) B (xo, £)] " 72 £2n+1
L) 1-(L+1) dt
< ”bZHLCZ(}A}ZJ‘B (x0, )7 2||f2”L,,2(B(xO,t)) IB (xp, )] (Fz az)m
2r
t A 1-L dt
S Mozl i f (1+1n;)|B<xo,t>| *(1Aell, e VB G0 O
e 2r
s dt
< leal, . f(1+1n ) o y
2 o} J ”fZ”L,Z(B(xO 1) t(“i_)\z)“ (18)
Hence, by (17) and (18), it follows that:
[T, 20~ tbak) £57] )]
_1 dt
< lleal, 28 [ (1410 by _ &
2 chh(}/\lz ”fl”Lp] (2B) J ”fZ”Lp2 (B(xo,1)) t (“i‘AZ)H
( dt
~ ||b2|| }0] f(1+ln ) H”ﬁ”LVI(B(XOt))—'
C 2 £ ((P1+Pz) AZ)”

This completes the proof of inequality (16).
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Thus, let 1 < T < o0, such that ;—1 = qll + % Then, to estimate Gy, similar to the estimates for G;1, using
Holder’s inequality and from (18), we get

Gy = ||[(b1 — {ba) T [£7, (b2 - {bz}B)fz""]H

Ly(B(xo,r))

S 11 = bk, o [|[T [, 02 = o) £,

(e8]

2
<TI0 a5t [(1m? )I]umhﬂmmm i
i=1 i (( P12 ) )+1

i
2r

2 N . dt
< HH b ”Lc{ﬁO]_rV f(l +In - ) H||fz||Lp (B(xo 1)) ; [+ o)

2r

P11 P2

Similarly, G»3 has the same estimate above, here we omit the details, thus the inequality

Gos = b2 = ol T [01 - 0119) £, 77|

Ly (B(xo,7))
: s dt
1+1 )
1:!: ({7 J( +In - H“fi”Lp (B(xo,t)) . ((% pz) (/\1+/\2))

is valid.
Now we turn to estimate Go4. Similar to (18), we have to prove the following estimate for Go4:

T2 (b1 = (1)) £, 2 (b2) 7] )

2
H LCXO f(1+ln )H“fz|L,,(B(xot)) ((1 1dt ) (19)

ie1 ﬁ*ﬁ)‘(’“””)”

2r

Firstly, using the condition (9) with m = 2, we have
706y = 1)s) £, (b2~ (b)) 7] )
|b2 (12) — (b2}8] | f2 (]/2)’
sf%%%%MMMW%f P

2B (ZB)C |.X'0 - ]/2
It’s obvious that
f)lh (y1) — b} |1 (v2)| o < ||b1||LCixDA} B ||f1||Lp1 B (20)

2B

Then, by (18) and (20) we get (19). This completes the proof of inequality (19). Therefore, by (19) we deduce
that

b = ”T@) [(b1 —{b1}p) £, (bs — {bz}B)fz‘”]

Ly(B(xo,7))

: s dt
tn ) T
1:1[ i 2!‘(1 +In H“f”Lp (B(xo,t)) e ((% pz) (/\1+/\2))
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Considering estimates Gz1, G2, Go3, Ga4 together, we get the desired conclusion

0o

Ly(B(xo,) H b f (1+1n ) H”J(’HL”(B"‘“”
’ ,

— 9
i=1 B

N

HTEZ)E,) fl'fz

dt
tn(( Led ) (A1+/\2))

X

Similar to G,, we can also get the estimates for F3,

N

2
t 2
(1 +ln;) | 1|||ﬁ||Lpi(B(xo,f))
i=

Gy =12, (F~ )

X 1’}’
L,(B(xo,7)) H LC{ o

i=1 il

Q’%g

dt

tn(( Lel ) hh +/\2))

X

Finally, for G4 = HT(b1 b) f1 fr )” (B’ , we write

H[(m 1102 = (b)) TO (£, £5° )H

Ly(B(xo,7)
||[(b1 {b1}p)] T@ [fl (b2 = {b2) 5 ]||L »(B(x0,1))
||[(b2 — {b2}p)] ]1T® [(bl {buke) 17, 12 ]”L »(B(x0,7))
”T(Z) [(b1 {b1}p) /17, (b2 = {b2}p) f5° ]“L (B(xo,1)

= G41 + G42 + G43 + G44.

Now, let us estimate Gy, Gaz, Ga3, Gaa, respectively.

For the term Gy, let 1 < T < o0, such that ’1—] = (l + l) + %, % = pl] + plz. Then, by Holder’s inequality we

n q2
get

Gar = |11 = w1112 = w211 T (77, 15, (B0

< 101 = bk, oy 102 — (badll o | T (£, 57|

L.(B)
2 (o]
< H |B|(A1+Az)+(1 LIZ) f(l +1In - ) H”f’HLP (B(xo,t) iifl
i=1 2r
f[ f(lﬂn I ]—[uf,nL Baty
=1 ‘h'r/\i 5, P t ((%+%)7(/\1+/\2))+1

where in the second inequality we have used the following fact:

Noting that |(x0 - Y1, Xo — y2)|2n > |x0 - y1|n |x0 - y2|n. Using the condition (9) with m = 2 and by
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Holder’s inequality, we get

19 (7 £7) @)
ff A1 (1) X | |2 (92) xapy |
(xo —Y1,%0 — yz)|

|f1 (y1)| |f2 (yz))
—di1dy,
ff|xo—y11 |xo—y2 ey

(2BY° ZB)

fi (vi)

dy1dy2

= 1B( 21717)\B(x0,2/7) ) Yo~ Yi

co 2

<Y [I@n" f |fi ()] v

j=1i=1 B(X(] Djtly )

o > _1
S Z <2]T ' H ||ﬁ||L (B(xo 27+ 1r)) (X() 2] 1’) !

j=1

o 202y - 5 1

o N=2n— ) -1

$Zf(2]+lr) HHﬁHLm(B(xo,Z/”r)) B(x0,2]+1},) P

=%, i=1

) 2
S H”f’”L (B(xo, t)) IB (xo, t)llh t2n+1

]:12/+1r

%8

: (ret) dt
H HﬁHLp,-(B(XQ,t)) |B (XO, t)lz (Vl +}72) m
i=1

dt
= f “f 1“% (B(xo,)) ”f ZHL,,Z (B(xo.,) t’j'
2r

where - p1 —. Thus, for p1, p2 € [1, ) the inequality

LG S tf[ﬂﬂu@mm -

I (7, 1)

is valid.

2863

For the terms G4, Ga3, similar to the estimates used for (16), we have to prove the following inequality:

[

[ 157 = al) 7] 0] < ol f@+m)IUmumw

2r

(21)

Indeed, noting that |(x0 - VY1, X0 — yz))zn > |x0 - yl(n |x0 — y2|n. Recalling the estimates used for Gy, Gas,
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Go4 and also using the condition (9) with m = 2, we have

|T(2) [fl‘”, 2 - {bZ}B)fzoo] (x)|

< ff|b2 (y2) - {b2}3| |f1 (yl)X(zg)C‘ ’{: (v2) X(ZB)C|dy1dy2
R"* R" |(x0 - ylr Xo — y2)|
3 f |b2 (v2) - {bZ}BJl |f1 (y1)| |{2 (yz))dyldy2
oo Pomwl -l
= A ()] b2 (y2) = (b2 |2 (12)
< _d L d
/ fo—wl / vl

B(xg,Zf*lr)\B(xo,Z/r)

s;(zfr)—zn f | (vo)|dy f 1B (y2) — (bl | (42)] .

]

B(xo,Z/*lr)\B(xo,2/r)

B(xo,Zf*lr) B(xU,Zf“r)

It’s obvious that

1-L
P , (22)

B (xo, 2j+1r)

A ()| dy: ”f1||L,,1 (B(0277))

B(xo,2/” r)

and using Holder’s inequality and by (8)

b2 (y2) = (b2} | f2 (v2)| dy2
B(x0,2f+1r)

1

B (o 21 %)

s ”b2 (v2) = b2y 2101 Ly, (B(x02717)) ”fZHLPz (B(w27"'r))

1
P2

B (xo, Zj*lr)

+ '{bZ}B(xg,Zf”r) — {b2}p(x ) ||f2)‘Lp2 (B(02"17))

1 1

B (x0,2j+1r)|1_(i’2+02)

1
92

B (xo, 2]'*17)

+A;
”f ZH Ly, (B(x0,2/*1r))

< ”bZHLc{’O\}
1212

_1
1 P2

B (xo, 2j+1r)

2j+1 ) A
+ ||b2”LC{XU} (1 +1In Tr) ’B (x()/ 2]+17’)’ 2 ||f2||Lp2 (B(xorzjﬂr))

A2

(o)

2i+17\? ,
sanHLc["U} f(1+ln . )|B(x0,2]+1r)

1
L
A=

1
HfZHLm (B(xo.2*17)) * (23)

a2
2r
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Hence, by (22) and (23), it follows that:

|T(2) [fl‘x’, (ba — {b2}p) fzoo] (x)|

sZ(ZjT)_2n f LA ()] dyn f |b2 (v2) = (ba}s| | f2 (v2)| dy2
j=1

B(x0,2/*17) B(x0,2/*1r)
] j+1, 27 P1 Vz
<t gy 32 (102 o2 AT,
2424 ( )
—2n-1 2i+1ly Aa=( 455 |42
<lball, . f (277) ( 1+1n ) B2
LCqZO\ZZZ 1 )
j+ly

2
X H Hﬂ“Lp’_(B(xO,zmr)) dt

2042y
= 2j+1,\2 ) N L+ L )2 (2 dt
< ||b2||LC ;0} Z f(l +1In 1’) 'B (x0,2]+11,)| 2 (m Pz) H “ﬁ“LPi(B(XU,ZjHV)) o
]_127”1’ #=1
L ‘zf(1+ln;) IB (xo, DI ® (p11+p12)+2H”ﬁ”Lpi(B(xo,t))tZH%
2r i=1
r dt
< bl s (1 I ) .
I ZHLC‘?ZOAZJ +1In- H“fz”Lpl(B(xot))t ((m pz) )+1

This completes the proof of inequality (21).

Now we turn to estimate Gs. Let 1 < 7 < oo, such that % = qll + 1. Then, by Hélder’s inequality and
(21), we obtain

Gaa = |[6r = (b1 T2 [ £, (b2 = tbale) f5°

Ly(B(xo,7))

<11 = ko)l s || T2 [ £ 2 = o2k £57]

L.(B)

(o)

< ﬁ f(l +In- ) H||fz||Lp (B(xo,b) p ((1 : dt

J H+E)7(/\1+A2))+1

Similarly, G43 has the same estimate above, here we omit the details, thus the inequality

Gis = (b2 = bl T® [t - (b)) £, 17|

Ly(B(xo,7))

(o)

2
SHH—b)HLCj] f(1+ln ) HllszLp (B(xo,b) ((1 dt
t

1, 1)
1 5, P1+Vz) (A1+/\2))+1

is valid.
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Finally, to estimate G4, similar to the estimate of (21), we have

79 [(61 ~ tba)o) £, (02 = toale) £57] )

< Z (Zji’)_zn f ‘bl (y1) - {bl}B| |f1 (y1)| dy1 f 'bz (v2) = {b2}8| |f2 (]/2)| dy,

=1 (xo,Z/”r) (xo,Z/”r)
2 (o]
— dt
<TTiw “K[@+m) Il @y
1:1[ Foun H O (s )
r

Thus, we have

= [T 0 ) £, 02— 1l 7]

Ly, (B(xo,7))
2 [ee]

e d n dt
<|hWHhﬂa[@+m)||MMBuﬂ .
~ LC 0 0

i=1 i 5 t ((ﬁ+é)—(/\1+/\z))+1

By the estimates of G4; above, where j = 1, 2, 3, 4. We know that

Ly(B(xo,1) H *O’rpf 1+ln HIIﬁIIL,, (Blxo1))

i=1

N

G =2, (7 £)
dt
t”(( Vll P2 ) (AHAZ))

X

Recalling (15), and combining all the estimates for Gy, Gy, G3, G4, we get

2 (o]
n dt
, ol re 1+In- )
” i PPN ) H Lcko) f ( H“f’ It @0 (4 + aisan)t
= 2 t PP

Therefore, Theorem 1.14 is completely proved. [

2.2. Proof of Theorem 1.15.

Proof. To prove Theorem 1.15, we will use the following relationship between essential supremum and
essential infimum

1

(esxsEiEnf f (x)) = esssup —— f (24)

xeE

where f is any real-valued nonnegative function and measurable on E (see [17], page 143). Indeed, since
m

f € LMp1 oy Xt X LM;[f:me by (24) and the non-decreasing, with respect to ¢, of the norm Hll fi”L,,i(B(xU,t))/
i=1
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we get

m
[ T, @com Huf,u@,,(g(xo 0
i=1

< esssup

. n n 0<t<t<00 n
essinf H(p,-(xo, T)TPi | | @i(xo, T)T"
(o]
i=1 i=1

O<t<t<
HnﬁuL,, Gan

< esssup —————— H “ﬁ“LM‘*E’ .
0<t<co it Pidi
H@Z(XO/ T)TV

i=1

For1l <pi,...,pm < 00, since (¢1,...,Pu, @) satisfies (12) and by (25), we have

f(lﬂn o HnﬁuL By

r [ZZ]
¢ i=1 i=1

m m
% HII fillt,, B essinf H(pi(xo, )T

A <P dt
< f(l +In —) ln ! - T
’ = HWO' e tn[Zs,-—D]

i=1 i=1

m

n

00 essinf H(pi(xo, T)T?
m t<t<oc0

m [
< CH ||fl”LM;(zfq/i, f(l +1In ;) nl—l _ 0
i=1 r n[Z"li_ZAi]_ﬂ

t

i=1 i=1
< Cl;[ ”ﬁ”LMmi @(xo,7).
Then by (11) and (26), we get

20

o = sup ¢ (x0,7) B (x0, N[ 7

My 0

()

< LT[, oo sop 0 00 f (1+m7 ]"[ufan,,,B(th» e
i=1

q/\ >0

Ly(B(xo,7))

3

m
s 1:1[ ” ||LC {xo} H “fl“LMLfoq))I .

ﬁlel

Thus we obtain (13). Hence the proof is completed. [
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