Approximation by Sampling-Type Nonlinear Discrete Operators in φ-Variation

İsmail Aslan ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Hacettepe University, Çankaya TR-06800, Ankara, Turkey

Abstract

In the present paper, our purpose is to obtain a nonlinear approximation by using convergence in φ-variation. Angeloni and Vinti prove some approximation results considering linear sampling-type discrete operators. These types of operators have close relationships with generalized sampling series. By improving Angeloni and Vinti's one, we aim to get a nonlinear approximation which is also generalized by means of summability process. We also evaluate the rate of approximation under appropriate Lipschitz classes of φ-absolutely continuous functions. Finally, we give some examples of kernels, which fulfill our kernel assumptions.

1. Introduction

Sampling-type operators have numerous applications in speech processing, geophysics, medicine and etc (see $[4,9,20-28,42]$). These operators are dealing with the generalized sampling series. In this study, we concentrate on the paper [2], where Angeloni and Vinti have some convergence results concerning sampling-type discrete operators. Our goal is to obtain more general approximations than their studies. To this end, we construct a nonlinear form of the operators

$$
\begin{equation*}
T_{w}(f ; x)=\sum_{k \in \mathbb{Z}} f\left(x-\frac{k}{w}\right) l_{k, w}(x \in \mathbb{R} \text { and } w \in \mathbb{N}) \tag{1}
\end{equation*}
$$

given in [7, 8] and we improve them via Bell-type summability method [18, 19]. Note that, Bell's method is considerably general and beside the classical convergence, it includes Cesàro convergence, almost convergence and so on (see $[30,32,33,36]$). Although there are many works about usages of Bell's methods on positive linear operators [10, 29, 34, 35, 40, 44, 46], there are only a few works on nonlinear cases [11-14] in approximation theory.

Assume that $\mathcal{A}=\left\{A^{v}\right\}=\left\{\left(a_{n w}^{v}\right)\right\}(w, n, v \in \mathbb{N})$ is a family of infinite matrices of real or complex numbers. Then for a given sequence $\left(x_{w}\right)_{w \in \mathbb{N}}$, the double sequence $t_{n}^{v}:=\sum_{w=1}^{\infty} a_{n w}^{v} x_{w}$ is called \mathcal{A}-transform of $\left(x_{w}\right)$ provided that it is convergent for all $n, v \in \mathbb{N}$. In addition, it is called " $\left(x_{v}\right)$ is \mathcal{A}-summable to L^{\prime} " if

$$
\lim _{n \rightarrow \infty} \sum_{w=1}^{\infty} a_{n w}^{v} x_{w}=L \text { (uniformly in } v \text {) [18]. }
$$

[^0]This approximation is denoted by $\mathcal{A}-\lim x=L . \mathcal{A}$ is called regular if $\lim _{w} x_{w}=L$ implies $\mathcal{A}-\lim x=L$. A characterization of regularity of \mathcal{A} is also given by Bell in [19]: \mathcal{A} is regular if and only if
$\left(a_{1}\right)$ for every $w \in \mathbb{N}, \lim _{n} a_{n w}^{v}=0$ (uniformly in v)
(a_{2}) $\lim _{n} \sum_{w=1}^{\infty} a_{n v}^{v}=1$ (uniformly in v)
$\left(a_{3}\right)$ for each $n, v \in \mathbb{N}, \sum_{w=1}^{\infty}\left|a_{n w v}^{v}\right|=: a_{n, v}$ is finite and there exist positive integers N, M satisfying that $\sup _{n \geq N, v \in \mathbb{N}} \sum_{w=1}^{\infty}\left|a_{n w}^{v}\right| \leq M$.

The variation of a function was first given by Jordan in [31] and then it was developed, e.g., in [37, 45, 47, 48]. Afterwards, taking these generalizations into account, Musielak and Orlicz introduced φ-variation [41], which is known as the Musielak Orlicz φ-variation. This concept is a strict generalization of classical Jordan variation and retains many properties of it. For other applications about φ-variation, see [1, 4, 6-8, 17, 39]. We also refer to $[5,15]$, which are related to the topic of this paper.

Let $\varphi: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}$be a φ-function, that is, φ is continuous, nondecreasing such that $\varphi(0)=0, \varphi(x)>0$ for all $x>0$ and $\lim _{x \rightarrow \infty} \varphi(x)=\infty$.

Throughout the paper, we assume that \mathcal{A} is regular with nonnegative real entries and φ is a convex φ-function together with the following limit condition

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}} \frac{\varphi(x)}{x}=0 \tag{+}
\end{equation*}
$$

Note that, this limit condition is needed to have the following inclusion $B V(\mathbb{R}) \subset B V_{\varphi}(\mathbb{R})$, i.e., the inclusion is strict in general (for further information, see Remark 4.5. in [1]).

Suppose that $\mathcal{P}=\left\{x_{i}\right\}_{i=0}^{m}$ is an increasing sequence in \mathbb{R}. Then φ-variation of a given measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by

$$
V_{\varphi}[f]=\sup _{\mathcal{P}} \sum_{i=1}^{m} \varphi\left(\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|\right) \text { [41]. }
$$

In addition, f is called bounded φ-variation, if there exists a $\lambda>0$ such that $V_{\varphi}[\lambda f]<\infty$. By $B V_{\varphi}(\mathbb{R})$, we denote the space of all functions of bounded φ-variation.

One significant property of φ-variation is that,

$$
\begin{equation*}
V_{\varphi}\left[\sum_{i=1}^{n} f_{i}\right] \leq \frac{1}{n} \sum_{i=1}^{n} V_{\varphi}\left[n f_{i}\right] \tag{2}
\end{equation*}
$$

holds for every measurable function $f_{i}: \mathbb{R} \rightarrow \mathbb{R}(i=1, \ldots, n)$ (see [41]).
$\operatorname{By} A C_{\varphi}(\mathbb{R})$, we denote the space of all φ-absolutely continuous functions on \mathbb{R}, namely, the space of all functions of bounded φ-variation such that there exists a $\lambda>0$ for which for all $\varepsilon>0$ and for all bounded interval $I=[a, b] \subset \mathbb{R}$, there exists a $\delta>0$ satisfying that

$$
\sum_{i=1}^{m} \varphi\left(\lambda\left|f\left(\beta_{i}\right)-f\left(\alpha_{i}\right)\right|\right)<\varepsilon
$$

holds for any collections of non-overlapping intervals $\left[\alpha_{i}, \beta_{i}\right] \subset I$, whenever

$$
\sum_{i=1}^{m} \varphi\left(\beta_{i}-\alpha_{i}\right)<\delta
$$

Now that we have given some basic concepts, we can define our operator as follows.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a bounded function. Then consider the following operator

$$
\begin{equation*}
\mathcal{T}_{n, v}(f ; x)=\sum_{w=1}^{\infty} a_{n w}^{v} \sum_{k \in \mathbb{Z}} H_{w}\left(f\left(x-\frac{k}{w}\right)\right) l_{k, w}(x \in \mathbb{R} \text { and } n, v \in \mathbb{N}), \tag{3}
\end{equation*}
$$

where $H_{w}: \mathbb{R} \rightarrow \mathbb{R}, H_{w}(0)=0$ and H_{w} is a ψ-Lipschitz kernel $\left(\left|H_{w}(x)-H_{w}(y)\right| \leq K \psi(|x-y|)\right.$ for all $\left.x, y \in \mathbb{R}\right)$. Here, ψ is a φ-function and $l_{k, w} \in l^{1}(\mathbb{Z})$ is a family of discrete kernels for every $w \in \mathbb{N}$. Then, it is not hard to see that (3) is well-defined for all real-valued bounded functions f.

In this work, by using φ-absolutely continuous functions, we investigate the existence of $\mu>0$ such that the following limit holds

$$
\lim _{n \rightarrow \infty} V_{\varphi}\left[\mu\left(\mathcal{T}_{n, v}(f)-f\right)\right]=0(\text { uniformly in } v \in \mathbb{N})
$$

where $\mathcal{T}_{n, v}(f)$ is defined above.
Then, we will check the rate of approximation under some Lipschitz classes of φ-absolutely continuous functions. By using the relation between them, we also get the following result

$$
\lim _{n \rightarrow \infty} V_{\varphi}\left[\mu\left(\mathcal{S}_{n, v}(f)-f\right)\right]=0(\text { uniformly in } v \in \mathbb{N})
$$

where

$$
\begin{equation*}
\mathcal{S}_{n, v}(f ; x)=\sum_{w=1}^{\infty} a_{n w}^{v} \sum_{k \in \mathbb{Z}} H_{w}\left(f\left(\frac{k}{w}\right)\right) \chi(w x-k), \tag{4}
\end{equation*}
$$

namely, $\mathcal{S}_{n, v}(f)$ is \mathcal{A}-transform of nonlinear generalized sampling series. Furthermore, we give an application of Theorem 2.4 and Theorem 3.1 at the end of the paper.

2. Convergence in φ-Variation

In this section, we prove our main approximation theorem using convergence in φ-variation.
We require the following conditions:
$\left(l_{1}\right) \sup _{w \in \mathbb{N}}\left\|l_{k, v}\right\|_{l^{1}}=A<\infty$ for some constant $A>0$,
($\left.l_{2}\right) \mathcal{A}-\lim \left(\sum_{k \in \mathbb{Z}} l_{k, w}\right)=1$,
(l_{3}) $\exists r>0$ such that $\mathcal{A}-\lim \left(\sum_{|k| \geq r}\left|l_{k, w}\right|\right)=0$,
(h) For every $\gamma>0$, there exists a $\lambda>0$ such that, for every (proper) bounded interval $J \subset \mathbb{R}$, $\mathcal{A}-\lim \frac{V_{\varphi}\left[\lambda G_{w}, J\right]}{\varphi(\gamma m(J))}=0$ uniformly in $J \subset \mathbb{R}$, where $G_{w}(u)=H_{w}(u)-u$ and $V_{\varphi}\left[\lambda G_{w}, J\right]$ denotes the φ-variation of λG_{w} on the interval J.

It can be easily seen that taking $\mathcal{A}=\{I\}$, the identity matrix, then $\left(l_{1}\right)-\left(l_{3}\right)$ turn into (A1)-(A2) given in [2]. Here, condition (h) is a natural condition due to the nonlinearity of the kernel. For the examples of H_{w} in case of $\mathcal{A}=\{I\}$, see $[1,8]$. At the end of the paper, we give a specific kernel satisfying $\left(l_{1}\right)-\left(l_{3}\right)$ and (h).

The following growth condition on ψ corresponding to ψ-Lipschitz condition of H_{w} is also needed.
Definition 2.1. Let φ, η, ψ be a φ-function. If for all $\gamma \in(0,1)$, there exists a constant C_{γ} such that

$$
\begin{equation*}
\varphi\left(C_{\gamma} \psi(|g|)\right) \leq \eta(\gamma|g|) \tag{5}
\end{equation*}
$$

for every measurable function $g: \mathbb{R} \rightarrow \mathbb{R}$, then (φ, η, ψ) is called properly directed.
Throughout the paper, we will assume that (φ, η, ψ) is properly directed. In the nonlinear setting, this condition is common (see $[1,7,16,17,38,43]$) and some examples of the triple (φ, η, ψ) can be found in [1].

Lemma 2.2. Let $f \in B V_{\eta}(\mathbb{R})$. If $\left(l_{1}\right)$ is satisfied, then $\mathcal{T}_{n, v}$ maps from $B V_{\eta}(\mathbb{R})$ into $B V_{\varphi}(\mathbb{R})$, namely, there exists a $\mu>0$ such that

$$
V_{\varphi}\left[\mu \mathcal{T}_{n, v} f\right] \leq V_{\eta}[\lambda f]
$$

holds, where $\lambda>0$ is sufficiently small for which $V_{\eta}[\lambda f]<\infty$.
Proof. Let $\left\{x_{i}\right\}_{i \in\{1, \ldots, m\}}$ be an increasing sequence in \mathbb{R}. For all $\mu>0$, it is not hard to see from Jensen's inequality that

$$
\begin{aligned}
& \sum_{i=1}^{m} \varphi\left(\mu\left|\mathcal{T}_{n, v}\left(f ; x_{i}\right)-\mathcal{T}_{n, v}\left(f ; x_{i-1}\right)\right|\right) \\
& \leq \sum_{i=1}^{m} \varphi\left(\mu \sum_{w=1}^{\infty} a_{n w}^{v} \sum_{k \in \mathbb{Z}}\left|l_{k, w}\right|\left|H_{w}\left(f\left(x_{i}-\frac{k}{w}\right)\right)-H_{w}\left(f\left(x_{i-1}-\frac{k}{w}\right)\right)\right|\right) \\
& \leq \frac{1}{a_{n, v}} \sum_{i=1}^{m} \sum_{w=1}^{\infty} a_{n w}^{v} \varphi\left(\mu a_{n, v} \sum_{k \in \mathbb{Z}}\left|l_{k, w}\right|\left|H_{w}\left(f\left(x_{i}-\frac{k}{w}\right)\right)-H_{w}\left(f\left(x_{i-1}-\frac{k}{w}\right)\right)\right|\right)
\end{aligned}
$$

where $a_{n, v}=\sum_{w=1}^{\infty} a_{n w}^{v}<\infty$ by $\left(a_{3}\right)$. Then, using Jensen's inequality one more time and taking supremum, we get the following inequality,

$$
\begin{aligned}
& \sum_{i=1}^{m} \varphi\left(\mu\left|\mathcal{T}_{n, v}\left(f ; x_{i}\right)-\mathcal{T}_{n, v}\left(f ; x_{i-1}\right)\right|\right) \\
& \leq \frac{1}{a_{n, v} A} \sum_{w=1}^{\infty} a_{n w}^{v} \sum_{k \in \mathbb{Z}}\left|l_{k, w}\right| \sum_{i=1}^{m} \varphi\left(\mu a_{n, v} A\left|H_{w}\left(f\left(x_{i}-\frac{k}{w}\right)\right)-H_{w}\left(f\left(x_{i-1}-\frac{k}{w}\right)\right)\right|\right)
\end{aligned}
$$

Since H_{w} is ψ-Lipschitz, then there holds

$$
\begin{aligned}
& \sum_{i=1}^{m} \varphi\left(\mu\left|\mathcal{T}_{n, v}\left(f ; x_{i}\right)-\mathcal{T}_{n, v}\left(f ; x_{i-1}\right)\right|\right) \\
& \leq \frac{1}{a_{n, v} A} \sum_{w=1}^{\infty} a_{n w}^{v} \sum_{k \in \mathbb{Z}}\left|l_{k, w}\right| \sum_{i=1}^{m} \varphi\left(\mu a_{n, v} A K \psi\left(\left|f\left(x_{i}-\frac{k}{w}\right)-f\left(x_{i-1}-\frac{k}{w}\right)\right|\right)\right)
\end{aligned}
$$

where K is ψ-Lipschitz constant of H_{w}. Now, from (5) for every $\lambda \in(0,1)$ for which $V_{\eta}[\lambda f]<\infty$, there exists a constant $C_{\lambda} \in(0,1)$ such that

$$
\begin{aligned}
& \sum_{i=1}^{m} \varphi\left(\mu\left|\mathcal{T}_{n, v}\left(f ; x_{i}\right)-\mathcal{T}_{n, v}\left(f ; x_{i-1}\right)\right|\right) \\
& \leq \frac{1}{a_{n, v} A_{w=1}^{\infty} a_{n w w}^{v} \sum_{k \in \mathbb{Z}}\left|l_{k, w}\right| \sum_{i=1}^{m} \eta\left(\lambda\left|f\left(x_{i}-\frac{k}{w}\right)-f\left(x_{i-1}-\frac{k}{w}\right)\right|\right)} \\
& \leq \frac{1}{a_{n, v} A_{w=1}^{\infty} \sum_{n=1}^{v} \sum_{k \in \mathbb{Z}}^{v}\left|l_{k, w}\right| V_{\eta}\left[\lambda f\left(\cdot-\frac{k}{w}\right)\right]}
\end{aligned}
$$

holds for all $0<\mu \leq C_{\lambda} /\left(a_{n, v} A K\right)$. Since

$$
V_{\eta}\left[\lambda f\left(\cdot-\frac{k}{w}\right)\right]=V_{\eta}[\lambda f]
$$

we derive from $\left(l_{1}\right)$ that

$$
\begin{aligned}
\sum_{i=1}^{m} \varphi\left(\mu\left|\mathcal{T}_{n, v}\left(f ; x_{i}\right)-\mathcal{T}_{n, v}\left(f ; x_{i-1}\right)\right|\right) & \leq \frac{V_{\eta}[\lambda f]}{a_{n, v} A} \sum_{w=1}^{\infty} a_{n w}^{v} \sum_{k \in \mathbb{Z}}\left|l_{k, v}\right| \\
& \leq V_{\eta}[\lambda f]
\end{aligned}
$$

Consequently, if we take supremum over $\left\{x_{i}\right\}_{i \in\{1, \ldots, m\}}$, the proof is done.

Lemma 2.3. Let $f \in A C_{\eta}(\mathbb{R})$. If $\left(l_{1}\right)$ is satisfied, then $\mathcal{T}_{n, v}(f) \in A C_{\varphi}(\mathbb{R})$ for all $n, v \in \mathbb{N}$.

Proof. Assume that $\varepsilon>0$ be given and let $\delta:=\delta(\varepsilon)>0$ corresponds to η-absolute continuity of f where $\left\{\left[\alpha_{i}, \beta_{i}\right]\right\}_{i=1}^{m}$ be a finite nonoverlapping intervals of $I=[a, b] \subset \mathbb{R}$ such that $\sum_{i=1}^{m} \varphi\left(\beta_{i}-\alpha_{i}\right)<\delta$. Then, applying Jensen's inequality we may clearly see that

$$
\begin{aligned}
& \sum_{i=1}^{m} \varphi\left(\mu\left|\mathcal{T}_{n, v}\left(f ; \beta_{i}\right)-\mathcal{T}_{n, v}\left(f ; \alpha_{i}\right)\right|\right) \\
& \leq \sum_{i=1}^{m} \varphi\left(\mu \sum_{w=1}^{\infty} a_{n w}^{v} \sum_{k \in \mathbb{Z}}\left|l_{k, w}\right|\left|H_{w}\left(f\left(\beta_{i}-\frac{k}{w}\right)\right)-H_{w}\left(f\left(\alpha_{i}-\frac{k}{w}\right)\right)\right|\right) \\
& \leq \frac{1}{a_{n, v} A} \sum_{w=1}^{\infty} a_{n w}^{v} \sum_{k \in \mathbb{Z}}\left|l_{k, w}\right| \sum_{i=1}^{m} \varphi\left(\mu a_{n, v} A\left|H_{w}\left(f\left(\beta_{i}-\frac{k}{w}\right)\right)-H_{w}\left(f\left(\alpha_{i}-\frac{k}{w}\right)\right)\right|\right) \\
& \leq \frac{1}{a_{n, v} A} \sum_{w=1}^{\infty} a_{n w}^{v} \sum_{k \in \mathbb{Z}}\left|l_{k, w}\right| \sum_{i=1}^{m} \varphi\left(\mu a_{n, v} A K \psi\left|f\left(\beta_{i}-\frac{k}{w}\right)-f\left(\alpha_{i}-\frac{k}{w}\right)\right|\right)
\end{aligned}
$$

Since (φ, η, ψ) is properly directed, then for every $\lambda \in(0,1)$ there exists a $C_{\lambda}>0$ such that

$$
\begin{aligned}
& \sum_{i=1}^{m} \varphi\left(\mu\left|\mathcal{T}_{n, v}\left(f ; \beta_{i}\right)-\mathcal{T}_{n, v}\left(f ; \alpha_{i}\right)\right|\right) \\
& \leq \frac{1}{a_{n, v} A} \sum_{w=1}^{\infty} a_{n w}^{v} \sum_{k \in \mathbb{Z}}\left|l_{k, w}\right| \sum_{i=1}^{m} \eta\left(\lambda\left|f\left(\beta_{i}-\frac{k}{w}\right)-f\left(\alpha_{i}-\frac{k}{w}\right)\right|\right)
\end{aligned}
$$

holds for all $0<\mu \leq C_{\lambda} /\left(a_{n, v} A K\right)$. Moreover, seeing that f is η-absolutely continuous, then there exists a $\gamma>0$ such that

$$
\sum_{i=1}^{m} \eta\left(\gamma\left|f\left(\beta_{i}-\frac{k}{w}\right)-f\left(\alpha_{i}-\frac{k}{w}\right)\right|\right)<\varepsilon
$$

whenever

$$
\sum_{i=1}^{m} \eta\left(\left(\beta_{i}-\frac{k}{w}\right)-\left(\alpha_{i}-\frac{k}{w}\right)\right)=\sum_{i=1}^{m} \eta\left(\beta_{i}-\alpha_{i}\right)<\delta .
$$

Using the previous expression together with $\left(l_{1}\right)$ and $\left(a_{3}\right)$, we finally get

$$
\begin{aligned}
\sum_{i=1}^{m} \varphi\left(\mu\left|\mathcal{T}_{n, v}\left(f ; \beta_{i}\right)-\mathcal{T}_{n, v}\left(f ; \alpha_{i}\right)\right|\right) & <\frac{1}{a_{n, v} A} \sum_{w=1}^{\infty} a_{n w}^{v} \sum_{k \in \mathbb{Z}}\left|l_{k, v}\right| \varepsilon \\
& \leq \varepsilon
\end{aligned}
$$

for all $0<\lambda \leq \gamma$.

Now, we state our main approximation theorem.

Theorem 2.4. Assume that $\left(l_{1}\right)-\left(l_{3}\right)$ and (h) hold. Then, there exists a $\mu>0$ such that for a given $f \in A C_{\varphi}(\mathbb{R}) \cap$ $B V_{\eta}(\mathbb{R})$, we have

$$
\begin{equation*}
\left.\lim _{n \rightarrow \infty} V_{\varphi}\left[\mu\left(\mathcal{T}_{n, v}(f)-f\right)\right]=0 \text { (uniformly in } v \in \mathbb{N}\right) \tag{6}
\end{equation*}
$$

Proof. Let $\left\{x_{i}\right\}_{i \in\{1, \ldots, m\}}$ be an increasing sequence in \mathbb{R}. Then, for all $\mu>0$

$$
\begin{aligned}
I & =\sum_{i=1}^{m} \varphi\left(\mu\left|\mathcal{T}_{n, v}\left(f ; x_{i}\right)-f\left(x_{i}\right)-\mathcal{T}_{n, v}\left(f ; x_{i-1}\right)+f\left(x_{i-1}\right)\right|\right) \\
& =\sum_{i=1}^{m} \varphi\left(\mu \left\lvert\, \sum_{w=1}^{\infty} a_{n w}^{v} \sum_{k \in \mathbb{Z}} l_{k, w}\left\{H_{w}\left(f\left(x_{i}-\frac{k}{w}\right)\right)-f\left(x_{i}-\frac{k}{w}\right)\right.\right.\right. \\
& \left.-H_{w}\left(f\left(x_{i-1}-\frac{k}{w}\right)\right)+f\left(x_{i-1}-\frac{k}{w}\right)\right\} \\
& +\sum_{w=1}^{\infty} a_{n w w}^{v} \sum_{k \in \mathbb{Z}} l_{k, w}\left\{f\left(x_{i}-\frac{k}{w}\right)-f\left(x_{i}\right)-f\left(x_{i-1}-\frac{k}{w}\right)+f\left(x_{i-1}\right)\right\} \\
& \left.+\left\{f\left(x_{i}\right)-f\left(x_{i-1}\right)\right\}\left(\sum_{w=1}^{\infty} a_{n w}^{v} \sum_{k \in \mathbb{Z}} l_{k, w}-1\right) \mid\right)
\end{aligned}
$$

holds. Now, using the convexity of φ, one can observe the following,

$$
\begin{aligned}
I & \leq \frac{1}{3} \sum_{i=1}^{m} \varphi\left(3 \mu \sum_{w=1}^{\infty} a_{n w}^{v} \sum_{k \in \mathbb{Z}}\left|l_{k, w}\right| \left\lvert\, H_{w}\left(f\left(x_{i}-\frac{k}{w}\right)\right)-f\left(x_{i}-\frac{k}{w}\right)\right.\right. \\
& \left.\left.-H_{w}\left(f\left(x_{i-1}-\frac{k}{w}\right)\right)+f\left(x_{i-1}-\frac{k}{w}\right) \right\rvert\,\right) \\
& +\frac{1}{3} \sum_{i=1}^{m} \varphi\left(3 \mu \sum_{w=1}^{\infty} a_{n w}^{v} \sum_{k \in \mathbb{Z}}\left|l_{k, w}\right|\left|f\left(x_{i}-\frac{k}{w}\right)-f\left(x_{i}\right)-f\left(x_{i-1}-\frac{k}{w}\right)+f\left(x_{i-1}\right)\right|\right) \\
& +\frac{1}{3} \sum_{i=1}^{m} \varphi\left(3 \mu\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|\left|\sum_{w=1}^{\infty} a_{n w}^{v} \sum_{k \in \mathbb{Z}} l_{k, w}-1\right|\right) \\
& =: I_{1}+I_{2}+I_{3} .
\end{aligned}
$$

In I_{1}, using two times Jensen's inequality we immediately get

$$
\begin{aligned}
I_{1} & \leq \frac{1}{3 a_{n, v} A} \sum_{w=1}^{\infty} a_{n w}^{v} \sum_{k \in \mathbb{Z}}\left|l_{k, w}\right| \sum_{i=1}^{m} \varphi\left(3 \mu a_{n, v} A \left\lvert\, H_{w}\left(f\left(x_{i}-\frac{k}{w}\right)\right)-f\left(x_{i}-\frac{k}{w}\right)\right.\right. \\
& \left.\left.-H_{w}\left(f\left(x_{i-1}-\frac{k}{w}\right)\right)+f\left(x_{i-1}-\frac{k}{w}\right) \right\rvert\,\right) .
\end{aligned}
$$

It is known from $\left(a_{3}\right)$ that $a_{n, v}:=\sum_{w=1}^{\infty} a_{n w}^{v} \leq M$ for sufficiently large $n \in \mathbb{N}$. Then, from the convexity of φ

$$
\begin{aligned}
I_{1} & \leq \frac{1}{3 M A} \sum_{w=1}^{\infty} a_{n w}^{v} \sum_{k \in \mathbb{Z}}\left|l_{k, w}\right| \sum_{i=1}^{m} \varphi\left(3 \mu M A \left\lvert\, H_{w}\left(f\left(x_{i}-\frac{k}{w}\right)\right)-f\left(x_{i}-\frac{k}{w}\right)\right.\right. \\
& \left.\left.-H_{w}\left(f\left(x_{i-1}-\frac{k}{w}\right)\right)+f\left(x_{i-1}-\frac{k}{w}\right) \right\rvert\,\right) \\
& \leq \frac{1}{3 M A} \sum_{w=1}^{\infty} a_{n w}^{v} \sum_{k \in \mathbb{Z}}\left|l_{k, w}\right| V_{\varphi}\left[3 \mu M A\left(H_{w}\left(f\left(\cdot-\frac{k}{w}\right)\right)-f\left(\cdot-\frac{k}{w}\right)\right)\right]
\end{aligned}
$$

yields. Now, using the fact that

$$
V_{\varphi}\left[3 \mu M A\left(H_{w}\left(f\left(\cdot-\frac{k}{w}\right)\right)-f\left(\cdot-\frac{k}{w}\right)\right)\right]=V_{\varphi}\left[3 \mu M A\left(H_{w}(f)-f\right)\right]
$$

then there holds

$$
I_{1} \leq \frac{1}{3 M} \sum_{w=1}^{\infty} a_{n w}^{v} V_{\varphi}\left[3 \mu M A\left(H_{w}(f)-f\right)\right]
$$

Considering (h) together with Lemma 1 in [8], we observe that for all $\gamma>0$, there exists a $\lambda>0$ such that $\forall \varepsilon>0$, there exists a number n_{0} satisfying that

$$
I_{1}<\frac{V_{\varphi}[\gamma f]}{3 M} \varepsilon
$$

for all $n>n_{0}$ and $0<\mu \leq \frac{\lambda}{3 M A}$.
About I_{2}, using the convexity of φ, Jensen's inequality and $\left(a_{3}\right)$, there holds

$$
\begin{align*}
& I_{2} \\
& \leq \frac{1}{3 M A} \sum_{w=1}^{\infty} a_{n w}^{v} \sum_{k \in \mathbb{Z}}\left|l_{k, w}\right| \varphi\left(3 \mu M A\left|f\left(x_{i}-\frac{k}{w}\right)-f\left(x_{i}\right)-f\left(x_{i-1}-\frac{k}{w}\right)+f\left(x_{i-1}\right)\right|\right) \\
& \leq \frac{1}{3 M A} \sum_{w=1}^{\infty} a_{n w}^{v} \sum_{k \in \mathbb{Z}}\left|l_{k, w}\right| V_{\varphi}\left[3 \mu M A\left(f\left(\cdot-\frac{k}{w}\right)-f(\cdot)\right)\right] \tag{7}
\end{align*}
$$

for sufficiently large $n \in \mathbb{N}$. Here, one can observe the φ-modulus of smoothness of $f \in A C_{\varphi}(\mathbb{R})$ by Subsection 2.4. in [41], that is, if φ satisfies (+), then $\lim _{\delta \rightarrow 0^{+}} \sup _{|t|<\delta} V_{\varphi}[\lambda(f(\cdot-t)-f(\cdot))]=0$ for some $\lambda>0$ if and only if $f \in A C_{\varphi}(\mathbb{R})$. So, one can find a $\lambda_{1}>0$ such that for all $\varepsilon>0$, there exists a $\delta>0$ such that

$$
\begin{equation*}
V_{\varphi}\left[\lambda_{1}(f(\cdot-t)-f(\cdot))\right]<\varepsilon \tag{8}
\end{equation*}
$$

whenever $|t|<\delta$. Now, from (2) we can divide the sum in (7) as follows

$$
\begin{aligned}
I_{2} & \leq \frac{1}{3 M A} \sum_{w=1}^{w_{1}} a_{n w}^{v} \sum_{k \in \mathbb{Z}}\left|l_{k, w}\right| V_{\varphi}\left[3 \mu M A\left(f\left(\cdot-\frac{k}{w}\right)-f(\cdot)\right)\right] \\
& +\frac{1}{3 M A} \sum_{w=w_{1}+1}^{\infty} a_{n w}^{v} \sum_{||k|<r}\left|l_{k, v}\right| V_{\varphi}\left[3 \mu M A\left(f\left(\cdot-\frac{k}{w}\right)-f(\cdot)\right)\right] \\
& +\frac{1}{3 M A} \sum_{w=w_{1}+1}^{\infty} a_{n w}^{v} \sum_{|k| \geq r}\left|l_{k, w}\right| V_{\varphi}\left[3 \mu M A\left(f\left(\cdot-\frac{k}{w}\right)-f(\cdot)\right)\right] \\
& :=I_{2}^{1}+I_{2}^{2}+I_{2}^{3}
\end{aligned}
$$

where $r>0$ is given in $\left(l_{3}\right)$ and w_{1} is such that

$$
\frac{k}{w}<\frac{r}{w}<\delta
$$

for all $w>w_{1}$.
In I_{2}^{1}, since $V_{\varphi}\left[6 \mu M A f\left(\cdot-\frac{k}{w}\right)\right]=V_{\varphi}[6 \mu M A f]$, it can easily be observed from $\left(l_{1}\right)$ that

$$
\begin{aligned}
I_{2}^{1} & \leq \frac{1}{3 M A} \sum_{w=1}^{w_{1}} a_{n w}^{v} \sum_{k \in \mathbb{Z}}\left|l_{k, w}\right| V_{\varphi}[6 \mu M A f] \\
& \leq \frac{1}{3 M} \sum_{w=1}^{w_{1}} a_{n w}^{v} V_{\varphi}[6 \mu M A f]
\end{aligned}
$$

Then, there holds

$$
I_{2}^{1}<\frac{w_{1} V_{\varphi}[6 \mu M A f]}{3 M} \varepsilon
$$

for all $0<\mu \leq \tilde{\mu} /(6 M A)$ and for sufficiently large $n \in \mathbb{N}$.
From (8), (l_{1}) and $\left(a_{3}\right)$ we obtain

$$
I_{2}^{2}<\frac{\varepsilon}{3}
$$

for all $0<\mu \leq \lambda_{1} /(6 M A)$.
From $\left(l_{3}\right)$, we get

$$
I_{2}^{3} \leq \frac{V_{\varphi}[6 \mu M A f]}{3 M A} \varepsilon
$$

for sufficiently large $n \in \mathbb{N}$.
On the other hand, since $\left|\sum_{w=1}^{\infty} a_{n w}^{v} \sum_{k \in \mathbb{Z}} l_{k, w}-1\right|<1$ for sufficiently large $n \in \mathbb{N}$, by the convexity of φ

$$
\begin{aligned}
I_{3} & \leq \frac{1}{3} \sum_{i=1}^{m} \varphi\left(3 \mu\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|\right)\left|\sum_{w=1}^{\infty} a_{n w}^{v} \sum_{k \in \mathbb{Z}} l_{k, v}-1\right| \\
& \leq \frac{1}{3} V_{\varphi}[3 \mu f]\left|\sum_{w=1}^{\infty} a_{n w}^{v} \sum_{k \in \mathbb{Z}} l_{k, w}-1\right|
\end{aligned}
$$

holds. Then from (l_{2}), we get

$$
I_{3}<{\frac{V_{\varphi}[3 \mu f]}{3} \varepsilon}^{3}
$$

for sufficiently large $n \in \mathbb{N}$. Finally, taking supremum over $\left\{x_{i}\right\}_{i \in\{1, \ldots, m\}}$ in the first inequality, we complete the proof.

3. Order of Approximation

In this section, we examine the order of approximation. For this reason, we first consider the following Lipschitz class

$$
V_{\varphi} \operatorname{Lip}(\alpha)=\left\{f \in A C_{\varphi}(\mathbb{R}): \exists \rho>0 \text { s.t. } V_{\varphi}[\rho|f(\cdot-t)-f(\cdot)|]=O\left(|t|^{\alpha}\right) \text { as } t \rightarrow 0\right\}
$$

for any $\alpha>0$ (see also [3]).
For a given nonnegative regular method $\mathcal{A}=\left\{\left(a_{n w}^{v}\right)\right\}_{v \in \mathbb{N}}$ and $\alpha>0$, we take into account the following orders of approximations:

$$
\begin{equation*}
\left(\sum_{w=1}^{\infty} a_{n w}^{v} \sum_{k \in \mathbb{Z}} l_{k, w}-1\right)=O\left(n^{-\alpha}\right) \text { as } n \rightarrow \infty \text { (uniformly in } v \text {), } \tag{9}
\end{equation*}
$$

there exists a number $\bar{r}>0$ such that

$$
\begin{align*}
& \sum_{w=1}^{\infty} a_{n w}^{v} \sum_{|k|<\bar{r}} \frac{1}{w^{\alpha}}=O\left(n^{-\alpha}\right) \text { as } n \rightarrow \infty(\text { uniformly in } v), \tag{10}\\
& \sum_{w=1}^{\infty} a_{n w}^{v} \sum_{||k| \geq \bar{r}}\left|l_{k, w}\right|=O\left(n^{-\alpha}\right) \text { as } n \rightarrow \infty(\text { uniformly in } v) \tag{11}
\end{align*}
$$

and for each $w \in \mathbb{N}$,

$$
\begin{equation*}
a_{n w}^{v}=O\left(n^{-\alpha}\right) \text { as } n \rightarrow \infty(\text { uniformly in } v) \tag{12}
\end{equation*}
$$

Theorem 3.1. Assume that (9)-(12) and (l_{1}) hold. Assume further that for every $\gamma>0$, there exists a $\lambda>0$ such that
$\sum_{w=1}^{\infty} a_{n w}^{v} \frac{V_{\varphi}\left[\lambda G_{w}, J\right]}{\varphi(\gamma m(J))}=O\left(n^{-\alpha}\right)$ as $n \rightarrow \infty$ (uniformly in v and
uniformly in every proper bounded interval $J \subset \mathbb{R}$).
Then, there exists a $\mu>0$ such that

$$
V_{\varphi}\left[\mu\left(\mathcal{T}_{n, v}(f)-f\right)\right]=O\left(n^{-\alpha}\right) \text { as } n \rightarrow \infty \text { (uniformly in } v \text {) }
$$

for all $f \in V_{\varphi} \operatorname{Lip}(\alpha) \cap B V_{\eta}(\mathbb{R})$.

Proof. By the proof of Theorem 2.4, we may easily obtain the following inequality

$$
\begin{aligned}
V_{\varphi}\left[\mu\left(\mathcal{T}_{n, v}(f)-f\right)\right] & \leq \frac{1}{3 M A} \sum_{w=1}^{\infty} a_{n w}^{v} \sum_{k \in \mathbb{Z}}\left|l_{k, w}\right| V_{\varphi}\left[3 \mu A M\left(H_{w}(f)-f\right)\right] \\
& +\frac{1}{3 M A} \sum_{w=1}^{\infty} a_{n w}^{v} \sum_{k \in \mathbb{Z}}\left|l_{k, w}\right| V_{\varphi}\left[3 \mu A M\left(f\left(\cdot-\frac{k}{w}\right)-f(\cdot)\right)\right] \\
& +\frac{V_{\varphi}[3 \mu f]}{3}\left|\sum_{w=1}^{\infty} a_{n w}^{v} \sum_{k \in \mathbb{Z}} l_{k, w}-1\right| \\
& =: J_{1}+J_{2}+J_{3}
\end{aligned}
$$

for sufficiently large $n \in \mathbb{N}$. Considering (13) in [8], there exists a constant $L>0$ such that

$$
\begin{aligned}
J_{1} & =\frac{1}{3 M A} \sum_{w=1}^{\infty} a_{n w}^{v} V_{\varphi}\left[3 \mu A M\left(H_{w}(f)-f\right)\right] \sum_{k \in \mathbb{Z}}\left|l_{k, w}\right| \\
& \leq \frac{L}{3 M} V_{\varphi}[\gamma f] n^{-\alpha} \\
& =O\left(n^{-\alpha}\right) \text { as } n \rightarrow \infty(\text { uniformly in } v)
\end{aligned}
$$

for sufficiently small $\mu>0$.
In J_{2}, since $f \in V_{\varphi} \operatorname{Lip}(\alpha)$, there exist $\rho, N, \delta>0$ s.t. $V_{\varphi}[\rho|f(\cdot-t)-f(\cdot)|] \leq N|t|^{\alpha}$ if $|t|<\delta$. Moreover, for a given $\bar{r}>0$, we can find a number w^{\prime} such that

$$
\frac{k}{w}<\frac{\bar{r}}{w}<\delta
$$

for every $w>w^{\prime}$. Taking these arguments into account, we divide J_{2} as follows,

$$
\begin{aligned}
J_{2} & =\frac{1}{3 M A} \sum_{w=1}^{w^{\prime}} a_{n w}^{v} \sum_{|k|<\bar{r}}\left|l_{k, w}\right| V_{\varphi}\left[3 \mu A M\left(f\left(\cdot-\frac{k}{w}\right)-f(\cdot)\right)\right] \\
& +\frac{1}{3 M A} \sum_{w=w^{\prime}+1}^{\infty} a_{n w}^{v} \sum_{|k|<\bar{r}}\left|l_{k, w}\right| V_{\varphi}\left[3 \mu A M\left(f\left(\cdot-\frac{k}{w}\right)-f(\cdot)\right)\right] \\
& +\frac{1}{3 M A} \sum_{w=1}^{\infty} a_{n w}^{v} \sum_{|k| \geq \bar{r}}\left|l_{k, w}\right| V_{\varphi}\left[3 \mu A M\left(f\left(\cdot-\frac{k}{w}\right)-f(\cdot)\right)\right] \\
& =: J_{2}^{1}+J_{2}^{2}+J_{2}^{3} .
\end{aligned}
$$

Then, it follows from (10) that

$$
\begin{aligned}
J_{2}^{2} & \leq \frac{N}{3 M A} \sum_{w=w^{\prime}+1}^{\infty} a_{n w}^{v} \sum_{|k|<\bar{r}}\left|l_{k, w}\right|\left|\frac{k}{w}\right|^{\alpha} \\
& \leq \frac{N \bar{r}^{\alpha}}{3 M} \sum_{w=w^{\prime}+1}^{\infty} a_{n w}^{v} \sum_{|k|<\bar{r}} \frac{1}{w^{\alpha}} \\
& =O\left(n^{-\alpha}\right) \text { as } n \rightarrow \infty(\text { uniformly in } v)
\end{aligned}
$$

for all $0<\mu \leq \frac{\rho}{3 M A}$. On the other hand, for J_{2}^{1} it is not hard to see from (2) that

$$
J_{2}^{1} \leq \frac{1}{3 M} \sum_{w=1}^{w w^{\prime}} a_{n v}^{v} V_{\varphi}[6 \mu A M f]
$$

and therefore, from (12)

$$
J_{2}^{1}=O\left(n^{-\alpha}\right) \text { as } n \rightarrow \infty(\text { uniformly in } v)
$$

holds. About J_{2}^{3}, from (2) and (11), we observe the following

$$
\begin{aligned}
J_{2}^{3} & \leq \frac{V_{\varphi}[6 \mu A M f]}{3 M A} \sum_{w=1}^{\infty} a_{n w}^{v} \sum_{|k| \geq r}\left|l_{k, w}\right| \\
& =O\left(n^{-\alpha}\right) \text { as } n \rightarrow \infty(\text { uniformly in } v) .
\end{aligned}
$$

Finally, directly from (9) we get

$$
\left.J_{3}=O\left(n^{-\alpha}\right) \text { as } n \rightarrow \infty \text { (uniformly in } v\right) .
$$

Now, we investigate a special case of the operator (3), where $l_{k, w} \equiv \chi(k)$ and $\chi: \mathbb{R} \rightarrow \mathbb{R}$, namely, $l_{k, w}$ is not depending on w. Then, (3) reduces to

$$
\overline{\mathcal{T}}_{n, v}(f ; x)=\sum_{w=1}^{\infty} a_{n w}^{v} \sum_{k \in \mathbb{Z}} H_{w}\left(f\left(x-\frac{k}{w}\right)\right) \chi(k),
$$

which is (in some cases) equivalent to \mathcal{A}-transform of nonlinear generalized sampling series given in (4)
Under these considerations, $\left(l_{1}\right)$ and $\left(l_{2}\right)$ turn into the following assumptions
$\left(l_{1}^{\prime}\right) \chi \in l^{1}(\mathbb{Z})$
$\left(l_{2}^{\prime}\right) \sum_{k \in \mathbb{Z}} \chi(k)=1$
where on the other hand $\left(l_{3}\right)$ is clearly not satisfied. But these two conditions are still enough to verify the following theorem.

Theorem 3.2. Let $f \in A C_{\varphi}(\mathbb{R}) \cap B V_{\eta}(\mathbb{R})$. If $\left(l_{1}^{\prime}\right),\left(l_{2}^{\prime}\right)$ and (h) hold, then there exists a $\mu>0$ such that

$$
\left.\lim _{n \rightarrow \infty} V_{\varphi}\left[\mu\left(\overline{\mathcal{T}}_{n, v}(f)-f\right)\right]=0 \text { (uniformly in } v \in \mathbb{N}\right)
$$

Proof. Considering $\left(l_{2}^{\prime}\right)$ in the proof of Theorem 2.4, then for every $\mu>0$

$$
\begin{aligned}
V_{\varphi}\left[\mu\left(\overline{\mathcal{T}}_{n, v}(f)-f\right)\right] & \leq \frac{1}{3 M \bar{A}} \sum_{w=1}^{\infty} a_{n w}^{v} \sum_{k \in \mathbb{Z}}|\chi(k)| V_{\varphi}\left[3 \mu M \bar{A}\left(H_{w} \circ f-f\right)\right] \\
& +\frac{1}{3 M \bar{A}} \sum_{w=1}^{\infty} a_{n w}^{v} \sum_{k \in \mathbb{Z}}|\chi(k)| V_{\varphi}\left[3 \mu M \bar{A}\left(f\left(\cdot-\frac{k}{w}\right)-f(\cdot)\right)\right] \\
& +\frac{1}{3} V_{\varphi}[3 \mu f]\left|\sum_{w=1}^{\infty} a_{n w w}^{v}-1\right| \\
& =: L_{1}+L_{2}+L_{3}
\end{aligned}
$$

holds, where $\bar{A}=\|\chi\|_{l^{1}}$. From $(h),\left(l_{1}^{\prime}\right)$, and Lemma 1 in [8], one can clearly see that

$$
L_{1}<\frac{V_{\varphi}[\gamma f]}{3 M} \varepsilon
$$

for sufficiently large $n \in \mathbb{N}$ and for all $0<\mu \leq \lambda /(3 M \bar{A})$ where λ and γ correspond to Lemma 1 in [8]. On the other hand, since $\chi \in l^{1}(\mathbb{Z})$, for all $\varepsilon>0$ there exists a $\tilde{r}>0$ such that

$$
\sum_{|k| \geq \tilde{r}}|\chi(k)|<\varepsilon .
$$

Hence, if we divide L_{2} into two parts as follows,

$$
\begin{aligned}
L_{2} & =\frac{1}{3 M \bar{A}} \sum_{w w=1}^{\infty} a_{n w}^{v} \sum_{|k| \geq \tilde{r}}|\chi(k)| V_{\varphi}\left[3 \mu M \bar{A}\left(f\left(\cdot-\frac{k}{w}\right)-f(\cdot)\right)\right] \\
& +\frac{1}{3 M \bar{A}} \sum_{w=1}^{\infty} a_{n z v}^{v} \sum_{|k|<\tilde{r}}|\chi(k)| V_{\varphi}\left[3 \mu M \bar{A}\left(f\left(\cdot-\frac{k}{w}\right)-f(\cdot)\right)\right] \\
& =: L_{2}^{1}+L_{2}^{2}
\end{aligned}
$$

then, there holds

$$
L_{2}^{1}<\frac{V_{\varphi}[6 \mu M \bar{A} f]}{3 \bar{A}} \varepsilon
$$

For L_{2}^{2}, using φ-modulus of smoothness of the function $f \in A C_{\varphi}(\mathbb{R})$, we obviously see that for all $\varepsilon>0$ there exists a $\delta>0$ such that

$$
\frac{k}{w}<\frac{\tilde{r}}{w}<\delta
$$

for all $w>\tilde{w}$, which implies

$$
V_{\varphi}[3 \mu M A(f(\cdot-t)-f(\cdot))]<\varepsilon
$$

Then, dividing L_{2}^{2} as follows,

$$
\begin{aligned}
L_{2}^{2} & =\frac{1}{3 M \bar{A}} \sum_{w=1}^{\tilde{w}} a_{n w}^{v} \sum_{|k|<\tilde{r}}|\chi(k)| V_{\varphi}\left[3 \mu M \bar{A}\left(f\left(\cdot-\frac{k}{w}\right)-f(\cdot)\right)\right] \\
& +\frac{1}{3 M \bar{A}} \sum_{w=\tilde{w}+1}^{\infty} a_{n w}^{v} \sum_{|k|<\tilde{r}}|\chi(k)| V_{\varphi}\left[3 \mu M \bar{A}\left(f\left(\cdot-\frac{k}{w}\right)-f(\cdot)\right)\right]
\end{aligned}
$$

we may easily obtain

$$
L_{2}^{2}<\left(\frac{\tilde{w} V_{\varphi}[6 \mu M \bar{A} f]}{3 M}+\frac{1}{3}\right) \varepsilon
$$

Finally, using $\left(a_{2}\right)$ we conclude

$$
L_{3}<\frac{V_{\varphi}[3 \mu f]}{3} \varepsilon
$$

for sufficiently large $n \in \mathbb{N}$, which completes the proof.
Remark 3.3. Note that, the operators $\overline{\mathcal{T}}$ and \mathcal{S} are different in general but, in some cases, they coincide.
Corollary 3.4. Assume that $f \in B_{\pi w}^{1}(\mathbb{R}) \cap B V_{\eta}(\mathbb{R})$ and $\psi(|f|) \in B_{\pi w}^{1}(\mathbb{R})$ (the Paley-Wiener Space $B_{\pi w}^{p}(\mathbb{R})=$ $\left\{f \in L^{p}(\mathbb{R}): f\right.$ has an extension to whole \mathbb{C} s.t. $|f(z)| \leq \exp (\pi z|z|)\|f\|$ for every $\left.z \in \mathbb{C}\right\}$) for some $w>0$, where $\|\cdot\|$ denotes supremum norm. If $\chi \in B_{\pi}^{\infty}(\mathbb{R})$ and $\left(l_{1}^{\prime}\right),\left(l_{2}^{\prime}\right),(h)$ are satisfied, then there exists a $\mu>0$ such that

$$
\left.\lim _{n \rightarrow \infty} V_{\varphi}\left[\mu\left(\mathcal{S}_{n, v}(f)-f\right)\right]=0 \text { (uniformly in } v \in \mathbb{N}\right)
$$

Proof. First of all, we should say that since $\left|H_{w}(f)\right| \leq K \psi(|f|)$ and $\psi(|f|) \in B_{\pi w}^{1}(\mathbb{R})$, then $H_{w}(f) \in B_{\pi w}^{1}(\mathbb{R})$. From Proposition 4.3. in [2] and (+), we may easily see that $B_{\pi v}^{1}(\mathbb{R}) \subset A C_{\varphi}(\mathbb{R})$. Therefore, using the similar arguments on Lemma 4.2. in [2], we deduce that

$$
\mathcal{S}_{n, v}(f)=\overline{\mathcal{T}}_{n, v}(f)
$$

for all $n, v \in \mathbb{N}$. Consequently, by the Theorem 3.2 the proof completes.
An example of $\chi \in B_{\pi}^{\infty}(\mathbb{R})$ satisfying $\left(l_{1}^{\prime}\right)$ and $\left(l_{2}^{\prime}\right)$ can be found in Example 4.5. in [2].

4. Conclusions and Applications

We remark that operator (3) can be written as

$$
\mathcal{T}_{n, v}(f ; x)=\sum_{w=1}^{\infty} a_{n w}^{v} T_{w}(f ; x)
$$

where $T_{w}(f ; x)$ is introduced by

$$
T_{w}(f ; x)=\sum_{k \in \mathbb{Z}} H_{w}\left(f\left(x-\frac{k}{w}\right)\right) l_{k, w}
$$

Using certain methods, some significant results of Theorem 2.4 are given below:

- If we take $\mathcal{A}=\left\{C_{1}\right\}$, Cesàro matrix [30], where $C_{1}=\left[c_{n w}\right]$ is such that

$$
c_{n w}= \begin{cases}\frac{1}{n} ; & \text { if } 1 \leq w \leq n \\ 0 ; & \text { otherwise }\end{cases}
$$

then we get

$$
\lim _{n \rightarrow \infty} V_{\varphi}\left[\frac{T_{1}(f)+T_{2}(f)+\cdots+T_{n}(f)}{n}-f\right]=0
$$

for all $f \in A C_{\varphi}(\mathbb{R})$.

- Putting $\mathcal{A}=\mathcal{F}$, the almost convergence matrix [36], where $\mathcal{F}=\left\{\left[c_{n w}^{v}\right]\right\}$ is such that

$$
c_{n w}^{v}= \begin{cases}\frac{1}{n} ; & \text { if } v \leq w \leq n+v-1 \\ 0 ; & \text { otherwise }\end{cases}
$$

then we get

$$
\lim _{n \rightarrow \infty} V_{\varphi}\left[\frac{T_{v}(f)+T_{v+1}(f)+\cdots+T_{n+v-1}(f)}{n}-f\right]=0 \text { uniformly in } v
$$

for all $f \in A C_{\varphi}(\mathbb{R})$.

- If $\mathcal{A}=\{I\}$, the identity matrix, then we get

$$
\lim _{n \rightarrow \infty} V_{\varphi}\left[T_{n}(f)-f\right]=0
$$

where T_{n} is nonlinear form of (1).

- If one take $H_{w}(u)=u$, then T_{n} reduces to linear case given in (1) and the previous estimations hold for the operator (1).
- On the other hand, all the previous results are still valid for the generalized sampling series $\mathcal{S}_{n, v}(f)$ given in (4).

Now, we will investigate the existence of kernels which satisfy $\left(l_{1}\right)-\left(l_{3}\right)$, (h) and conditions (9)-(13). Let $\mathcal{A}=\mathcal{F}=\left\{F^{v}\right\}, \alpha=1 / 2$ and $l_{k, w}, H_{w}$ and ψ are defined by

$$
l_{k, w}:= \begin{cases}\frac{1}{2^{w|k|}-1} ; & w=m^{2}(m \in \mathbb{N}) \\ \frac{2^{w}-1}{2^{w|k|}\left(2^{w}+1\right)} ; & w \neq m^{2}(m \in \mathbb{N})\end{cases}
$$

$H_{w}(u):=u+\tanh \left(\frac{u}{w}\right)$ and $\psi(|u|):=|u|$. Then, if $w=m^{2}(m \in \mathbb{N})$, we have

$$
\sum_{k \in \mathbb{Z}}\left|l_{k, w}\right|=2\left(\frac{2^{w}+1}{2^{w}-1}\right) \leq 6
$$

and if $w \neq m^{2}$, we have

$$
\sum_{k \in \mathbb{Z}}\left|l_{k, w}\right|=1
$$

which implies $\left(l_{1}\right)$ for $A=6$.
For $\left(l_{2}\right)$ and (9), consider the following inequality

$$
\begin{aligned}
\left|\sum_{w=v}^{n+v-1} \frac{1}{n} \sum_{k \in \mathbb{Z}} l_{k, w}-1\right| & \leq \sum_{w=v}^{n+v-1} \frac{1}{n}\left|\sum_{k \in \mathbb{Z}} l_{k, w}-1\right| \\
& =\sum_{w=v, w=m^{2}}^{n+v-1} \frac{1}{n}\left|2\left(\frac{2^{w}+1}{2^{w}-1}\right)-1\right| \\
& \leq \sum_{w=v, w=m^{2}}^{n+v-1} \frac{5}{n} \\
& \leq \frac{5(\sqrt{n+v-1}-\sqrt{v}+1)}{n} \\
& =\frac{5(n-1)}{n(\sqrt{n+v-1}+\sqrt{v})}+\frac{5}{n} \\
& \leq \frac{5}{\sqrt{n+v-1}+\sqrt{v}}+\frac{5}{n} \\
& \leq \frac{10}{\sqrt{n}}=O\left(\frac{1}{\sqrt{n}}\right)(\text { uniformly in } v)
\end{aligned}
$$

which proves $\left(l_{2}\right)$ and (9).
For $\left(l_{3}\right)$ and (11), if $w=m^{2}$, then

$$
\sum_{|k| \geq r}\left|l_{k, w}\right|=4\left(\frac{2^{w}}{2^{w}-1}\right) \frac{1}{2^{w r}}
$$

and if $w \neq m^{2}$,

$$
\sum_{|k| \geq r}\left|l_{k, w}\right|=2\left(\frac{2^{w}-1}{2^{w}+1}\right)\left(\frac{2^{w}}{2^{w}-1}\right) \frac{1}{2^{w r}}
$$

hold. Therefore, we get the following expression

$$
\begin{aligned}
\sum_{w=v}^{n+v-1} \frac{1}{n} \sum_{|k| \geq r}\left|l_{k, w}\right| & \leq \frac{4}{n} \sum_{w=v}^{n+v-1}\left(\frac{2^{w}}{2^{w}-1}\right) \frac{1}{2^{w r}} \\
& \leq \frac{8}{n} \sum_{w=v}^{n+v-1} \frac{1}{2^{w r}} \\
& \leq \frac{8}{n} \sum_{w=0}^{\infty} \frac{1}{2^{w r}} \\
& =\frac{8}{n}\left(\frac{2^{r}}{2^{r}-1}\right)
\end{aligned}
$$

which shows $\left(l_{3}\right)$ is satisfied for $r=1$. Furthermore, by the fact that for all $r \geq 1$

$$
\left(\frac{2^{r}}{2^{r}-1}\right) \leq 2
$$

and so, we conclude

$$
\begin{aligned}
\sum_{w=v}^{n+v-1} \frac{1}{n} \sum_{|k| \geq r}\left|l_{k, v}\right| & \leq \frac{16}{n} \leq \frac{16}{\sqrt{n}} \\
& \left.=O\left(\frac{1}{\sqrt{n}}\right) \text { (uniformly in } v\right) .
\end{aligned}
$$

For the condition (10), we may clearly get

$$
\begin{align*}
\frac{1^{n}}{n} \sum_{w=v-1}^{\frac{1}{\sqrt{w}}} & \leq \frac{2(\sqrt{n+v-1}-\sqrt{v})}{n} \\
& \leq \frac{2(n-1)}{n(\sqrt{n+v-1}+\sqrt{v})} \tag{14}\\
& \leq \frac{2}{(\sqrt{n})} \\
& =O\left(\frac{1}{\sqrt{n}}\right)(\text { uniformly in } v) .
\end{align*}
$$

Moreover, by the definition of \mathcal{F}, we obtain the following

$$
\begin{aligned}
c_{n w}^{v} & \leq \frac{1}{n} \leq \frac{1}{\sqrt{n}} \\
& =O\left(\frac{1}{\sqrt{n}}\right)(\text { uniformly in } v) .
\end{aligned}
$$

On the other hand, by the definition of H_{w}, it is clear that $H_{w}(0)=0$ and H_{w} is 1-Lipschitz (see also Figure 1). In addition, $G_{w}(u)=H_{w}(u)-u=\tanh \left(\frac{u}{w}\right)$ is an increasing function and hence choosing $\lambda=\gamma$ and $J=[a, b]$ we have the following equality

$$
\frac{V_{\varphi}\left[\gamma G_{w}, J\right]}{\varphi(\gamma m(J))}=\frac{\varphi\left(\gamma\left(G_{w}(b)-G_{w v}(a)\right)\right)}{\varphi(\gamma m(J))} .
$$

Furthermore, by the convexity of φ

$$
\begin{aligned}
\frac{V_{\varphi}\left[\gamma G_{w}, J\right]}{\varphi(\gamma m(J))} & \leq \frac{\varphi\left(\gamma\left(\frac{b}{w}-\frac{a}{w}\right)\right)}{\varphi(\gamma m(J))} \\
& \leq \frac{1}{w} \frac{\varphi(\gamma(b-a))}{\varphi(\gamma m(J))} \\
& =\frac{1}{w}
\end{aligned}
$$

holds, where $1 / w \rightarrow 0$ as $w \rightarrow \infty$. Then we obtain from (14) that

$$
\begin{aligned}
\frac{1}{n} \sum_{w=v}^{n+v-1} \frac{1}{w} & \leq \frac{1}{n} \sum_{w=v}^{n+v-1} \frac{1}{\sqrt{w}} \\
& =O\left(\frac{1}{\sqrt{n}}\right) \text { as } n \rightarrow \infty(\text { uniformly in } v)
\end{aligned}
$$

which verifies (13) and (h).

Figure 1: The kernel function H_{w}

References

[1] L. Angeloni, Approximation results with Respect to multidimensional φ-variation for nonlinear integral operators, Z. Anal. Anwend., no 32 (1) (2013), 103-128.
[2] L. Angeloni and G. Vinti, Discrete operators of sampling type and approximation in φ-variation, Math. Nachr., no. 291 (4) (2018), 546-555.
[3] L. Angeloni, D. Costarelli and G. Vinti, Quantitative estimates for sampling type operators with respect to the Jordan variation, Atti della Accademia Nazionale dei Lincei Rendiconti Lincei Matematica e Applicazioni, 31 (2020), 269-284.
[4] L. Angeloni, D. Costarelli and G. Vinti, A characterization of the convergence in variation for the generalized sampling series, Annales Academiae Scientiarum Fennicae Mathematica, no. 43 (2018), 755-767.
[5] L. Angeloni and G. Vinti, Approximation with respect to Goffman-Serrin variation by means of non-convolution type integral operators, Numerical Functional Analysis and Optimization, 31 (5) (2010), 519-548.
[6] L. Angeloni and G. Vinti, Convergence and rate of approximation for linear integral operators in $B V^{\varphi}$-spaces in multidimensional setting, J. Math. Anal. Appl., no. 349 (2009), 317-334.
[7] L. Angeloni and G. Vinti, Approximation by means of nonlinear integral operators in the space of functions with bounded φ-variation, Differential and Integral Equations, no. 20 (2007), 339-360.
[8] L. Angeloni and G. Vinti, Errata corrige to: Approximation by means of nonlinear integral operators in the space of functions with bounded φ-variation, Differential and Integral Equations, no. 23 (2010), 795-799.
[9] F. Asdrubali, G. Baldinelli, F. Bianchi, D. Costarelli, L. Evangelisti, A. Rotili, M. Seracini and G. Vinti, A model for the improvement of thermal bridges quantitative assessment by infrared thermography, Applied Energy, 211 (2018), 854-864.
[10] İ. Aslan and O. Duman, A summability process on Baskakov-type approximation, Period. Math. Hungar., no. 72 (2) (2016), 186-199.
[11] I. Aslan, O. Duman, Summability on Mellin-type nonlinear integral operators, Integral Transform. Spec. Funct., 30 (6) (2019), 492-511.
[12] I. Aslan and O. Duman, Approximation by nonlinear integral operators via summability process, Math. Nachr., no. 293 (3) (2020), 430-448.
[13] I. Aslan, O. Duman, Characterization of absolute and uniform continuity, Hacet. J. Math. Stat., 49 (5) (2020), 1550-1565.
[14] I. Aslan, O. Duman, Nonlinear approximation in N-dimension with the help of summability methods, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, no. 115 (3) (2021), paper no. 105.
[15] C. Bardaro, C., H. Karsli and G. Vinti, On pointwise convergence of linear integral operators with homogeneous kernels, Integral Transforms and Special Functions, 19 (6) (2008), 429-439.
[16] C. Bardaro, J. Musielak, and G. Vinti, Nonlinear Integral Operators and Applications. de Gruyter Ser. Nonlin. Anal. Appl. 9. Berlin: de Gruyter 2003.
[17] C. Bardaro, S. Sciamannini and G. Vinti, Convergence in BV_{φ} by nonlinear Mellin-type convolution operators, Funct. Approx. Comment. Math., no. 29 (2001), 17-28.
[18] H. T. Bell, \mathcal{A}-summability, Dissertation, (Lehigh University, Bethlehem, Pa., 1971).
[19] H. T. Bell, Order summability and almost convergence, Proc. Amer. Math. Soc., no. 38 (1973), 548-552.
[20] L. Bezuglaya and V. Katsnelson, The sampling theorem for functions with limited multi-band spectrum I, Z. Anal. Anwend. 12, (1994), 511-534.
[21] A. Boccuto and X. Dimitriou, Rates of approximation for general sampling-type operators in the setting of filter convergence, Appl. Math. Comput. 229 (2014), 214-226.
[22] P.L. Butzer and R.L. Stens, Prediction of non-bandlimited signals from past samples in terms of splines of low degree, Math. Nachr. 132 (1987), 115-130.
[23] P.L. Butzer and R.L. Stens, Linear predictions in terms of samples from the past: an overview, Proceedings of Conference on Numerical Methods and Approximation Theory III (G. V. Milovanovic, ed.), University of Nis, Yugoslavia, 1988, pp. 1-22.
[24] P.L. Butzer and R.L. Stens, Sampling theory for not necessarily band-limited functions: a historical overview, SIAM Rev. 34 (1992), no.1, 40-53.
[25] P.L. Butzer, W. Splettstösser, and R.L. Stens, The sampling theorem and linear prediction in signal analysis, Jahresber. Deutsch. Math.-Verein. 90 (1988), 1-70.
[26] F. Cluni, D. Costarelli, V. Gusella and G. Vinti, Reliability increase of masonry characteristics estimation by sampling algorithm applied to thermographic digital images, Probabilistic Engineering Mechanics, 60 (2020), 103022.
[27] D. Costarelli, M. Seracini and G. Vinti, A segmentation procedure of the pervious area of the aorta artery from CT images without contrast medium, Mathematical Methods in the Applied Sciences, 43 (2020), 114-133.
[28] D. Costarelli, M. Seracini and G. Vinti, A comparison between the sampling Kantorovich algorithm for digital image processing with some interpolation and quasi-interpolation methods, Applied Mathematics and Computation, 374 (2020), 125046.
[29] T.Y. Gokcer and O. Duman, Summation process by max-product operators, Computational Analysis, AMAT 2015, Univ. Econ. \& Technol. Ankara, Turkey, 2016, pp. 59-67.
[30] G. H. Hardy, Divergent series, Oxford Univ. Press, London, 1949.
[31] C. Jordan, Sur la serie de Fourier, C. R. Acad. Sci. Paris, no. 92 (1881), 228-230.
[32] W. B. Jurkat and A. Peyerimhoff, Fourier effectiveness and order summability, J. Approx. Theory, no. 4 (1971), 231-244.
[33] W. B. Jurkat and A. Peyerimhoff, Inclusion theorems and order summability, J. Approx. Theory, no. 4 (1971), 245-262.
[34] T. A. Keagy and W. F. Ford, Acceleration by subsequence transformations, Pacific J. Math., no. 132 (2) (1988), 357-362.
[35] N. Küçük and O. Duman, Summability methods in weighted approximation to derivatives of functions, Serdica Math. J., 41 (4) (2015), 355-368.
[36] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math., no. 80, (1948), 167-190.
[37] E. R. Love and L.C. Young, Sur une classe de fonctionnelles linéaires, Fund. Math., no. 28 (1937), 243-257.
[38] I. Mantellini, G. Vinti, Ф-variation and nonlinear integral operators. Atti Sem. Mat. Fis. Univ. Modena 46 (1998), Suppl. (special issue of the International Conference in Honour of Prof. Calogero Vinti), 847-862.
[39] W. Matuszewska and W. Orlicz, On property B_{1} for functions of bounded φ-variation, Bulletin of the Polish Academy of Sciences Mathematics, no. 35 (1-2) (1987), 57-69.
[40] R. N. Mohapatra, Quantitative results on almost convergence of a sequence of positive linear operators, J. Approx. Theory, no. 20 (1977), 239-250
[41] J. Musielak and W. Orlicz, On generalized variations (I), Studia Math., no. 18 (1959), 11-41.
[42] S. Ries and R.L. Stens, Approximation by generalized sampling series, Proceedings of the International Conference on Constructive Theory of Functions (Varna, 1984), Bulgarian Academy of Science, Sofia, 1984, pp. 746-756.
[43] S. Sciamannini, G. Vinti, Convergence results in BV_{φ} for a class of nonlinear Volterra-Hammerstein integral operators and applications. J. Concrete Appl. Anal. 1 (4) (2003), 287-306.
[44] J. J. Swetits, On summability and positive linear operators, J. Approx. Theory, no. 25 (1979), 186-188.
[45] N. Wiener, The quadratic variation of a function and its Fourier coefficients, Massachusetts J. of Math., no. 3 (1924), 72-94.
[46] J. Wimp, Sequence Transformations and Their Applications, Academic Press, New York, 1981.
[47] L. C. Young, An inequality of the Hölder type, connected with Stieltjes integration, Acta Math., no. 67 (1936), 251-282.
[48] L. C. Young, Sur une généralisation de la notion de variation de puissance p ${ }^{\text {ieme }}$ bornée au sens de M. Wiener, et sur la convergence des séries de Fourier, C. R. Acad. Sci. Paris, no. 204 (1937), 470-472.

[^0]: 2020 Mathematics Subject Classification. Primary 26A45, 40A25, 41A25, 47H99, 40C05.
 Keywords. Approximation in φ-variation, discrete operators, generalized sampling series, rate of approximaiton, summability process

 Received: 12 July 2020; Revised: 07 October 2020; Accepted: 07 December 2020
 Communicated by Hemen Dutta
 This research is supported financially by the Scientific and Technological Research Council of Turkey (TÜBİTAK 3501 Career Development Program), Project ID: 119F262.

 Email address: ismail-aslan@hacettepe.edu.tr (İsmail Aslan)

