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Abstract. In the present paper, our purpose is to obtain a nonlinear approximation by using convergence
in ϕ-variation. Angeloni and Vinti prove some approximation results considering linear sampling-type
discrete operators. These types of operators have close relationships with generalized sampling series. By
improving Angeloni and Vinti’s one, we aim to get a nonlinear approximation which is also generalized
by means of summability process. We also evaluate the rate of approximation under appropriate Lipschitz
classes of ϕ-absolutely continuous functions. Finally, we give some examples of kernels, which fulfill our
kernel assumptions.

1. Introduction

Sampling-type operators have numerous applications in speech processing, geophysics, medicine and
etc (see [4, 9, 20–28, 42]). These operators are dealing with the generalized sampling series. In this study,
we concentrate on the paper [2], where Angeloni and Vinti have some convergence results concerning
sampling-type discrete operators. Our goal is to obtain more general approximations than their studies. To
this end, we construct a nonlinear form of the operators

Tw
(

f ; x
)

=
∑

k∈Z
f
(
x − k

w

)
lk,w (x ∈ R and w ∈N) (1)

given in [7, 8] and we improve them via Bell-type summability method [18, 19]. Note that, Bell’s method is
considerably general and beside the classical convergence, it includes Cesàro convergence, almost conver-
gence and so on (see [30, 32, 33, 36]). Although there are many works about usages of Bell’s methods on
positive linear operators [10, 29, 34, 35, 40, 44, 46], there are only a few works on nonlinear cases [11–14] in
approximation theory.

Assume thatA = {Aυ
} =

{(
aυnw

)}
(w,n, υ ∈N) is a family of infinite matrices of real or complex numbers.

Then for a given sequence (xw)w∈N , the double sequence tυn :=
∑
∞

w=1 aυnwxw is called A−transform of (xw)
provided that it is convergent for all n, υ ∈N. In addition, it is called “(xw) isA−summable to L” if

lim
n→∞

∞∑
w=1

aυnwxw = L (uniformly in υ) [18].
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This approximation is denoted byA− lim x = L. A is called regular if limw xw = L impliesA− lim x = L. A
characterization of regularity ofA is also given by Bell in [19]: A is regular if and only if

(a1) for every w ∈N, limn aυnw = 0 (uniformly in υ)
(a2) limn

∑
∞

w=1aυnw = 1 (uniformly in υ)
(a3) for each n, υ ∈ N,

∑
∞

w=1

∣∣∣aυnw

∣∣∣ =: an,υ is finite and there exist positive integers N,M satisfying that
supn≥N,υ∈N

∑
∞

w=1

∣∣∣aυnw

∣∣∣ ≤M.

The variation of a function was first given by Jordan in [31] and then it was developed, e.g., in [37, 45, 47,
48]. Afterwards, taking these generalizations into account, Musielak and Orlicz introducedϕ-variation [41],
which is known as the Musielak Orliczϕ-variation. This concept is a strict generalization of classical Jordan
variation and retains many properties of it. For other applications about ϕ-variation, see [1, 4, 6–8, 17, 39].
We also refer to [5, 15], which are related to the topic of this paper.

Let ϕ : R+
0 → R

+
0 be a ϕ-function, that is, ϕ is continuous, nondecreasing such that ϕ (0) = 0, ϕ (x) > 0

for all x > 0 and limx→∞ ϕ (x) = ∞.
Throughout the paper, we assume that A is regular with nonnegative real entries and ϕ is a convex

ϕ-function together with the following limit condition

lim
x→0+

ϕ (x)
x

= 0. (+)

Note that, this limit condition is needed to have the following inclusion BV (R) ⊂ BVϕ (R), i.e., the inclusion
is strict in general (for further information, see Remark 4.5. in [1]).

Suppose thatP = {xi}
m
i=0 is an increasing sequence inR. Then ϕ-variation of a given measurable function

f : R→ R is defined by

Vϕ
[

f
]

= sup
P

m∑
i=1
ϕ

(∣∣∣ f (xi) − f (xi−1)
∣∣∣) [41].

In addition, f is called bounded ϕ-variation, if there exists a λ > 0 such that Vϕ
[
λ f

]
< ∞. By BVϕ (R) , we

denote the space of all functions of bounded ϕ-variation.
One significant property of ϕ-variation is that,

Vϕ[
n∑

i=1
fi] ≤

1
n

n∑
i=1

Vϕ
[
n fi

]
(2)

holds for every measurable function fi : R→ R (i = 1, . . . ,n) (see [41]).
By ACϕ (R) ,we denote the space of all ϕ-absolutely continuous functions onR, namely, the space of all

functions of bounded ϕ-variation such that there exists a λ > 0 for which for all ε > 0 and for all bounded
interval I = [a, b] ⊂ R, there exists a δ > 0 satisfying that

m∑
i=1
ϕ

(
λ
∣∣∣ f (
βi
)
− f (αi)

∣∣∣) < ε
holds for any collections of non-overlapping intervals

[
αi, βi

]
⊂ I, whenever

m∑
i=1
ϕ

(
βi − αi

)
< δ.

Now that we have given some basic concepts, we can define our operator as follows.
Let f : R→ R be a bounded function. Then consider the following operator

Tn,υ
(

f ; x
)

=
∞∑

w=1
aυnw

∑
k∈Z

Hw

(
f
(
x − k

w

))
lk,w (x ∈ R and n, υ ∈N), (3)
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where Hw : R→ R,Hw (0) = 0 and Hw is aψ-Lipschitz kernel (
∣∣∣Hw (x) −Hw

(
y
)∣∣∣ ≤ Kψ

(∣∣∣x − y
∣∣∣) for all x, y ∈ R).

Here, ψ is a ϕ-function and lk,w ∈ l1 (Z) is a family of discrete kernels for every w ∈ N. Then, it is not hard
to see that (3) is well-defined for all real-valued bounded functions f .

In this work, by using ϕ-absolutely continuous functions, we investigate the existence of µ > 0 such
that the following limit holds

lim
n→∞

Vϕ
[
µ
(
Tn,υ

(
f
)
− f

)]
= 0 (uniformly in υ ∈N),

where Tn,υ
(

f
)

is defined above.
Then, we will check the rate of approximation under some Lipschitz classes of ϕ-absolutely continuous

functions. By using the relation between them, we also get the following result

lim
n→∞

Vϕ
[
µ
(
Sn,υ

(
f
)
− f

)]
= 0 (uniformly in υ ∈N),

where

Sn,υ
(

f ; x
)

=
∞∑

w=1
aυnw

∑
k∈Z

Hw

(
f
(

k
w

))
χ (wx−k) , (4)

namely, Sn,υ
(

f
)

isA−transform of nonlinear generalized sampling series. Furthermore, we give an appli-
cation of Theorem 2.4 and Theorem 3.1 at the end of the paper.

2. Convergence inϕ-Variation

In this section, we prove our main approximation theorem using convergence in ϕ-variation.
We require the following conditions:

(l1) supw∈N

∥∥∥lk,w
∥∥∥

l1 = A < ∞ for some constant A > 0,

(l2) A− lim
( ∑

k∈Z
lk,w

)
= 1,

(l3) ∃r > 0 such thatA− lim
( ∑
|k|≥r

∣∣∣lk,w∣∣∣) = 0,

(h) For every γ > 0, there exists a λ > 0 such that, for every (proper) bounded interval J ⊂ R,

A− lim
Vϕ [λGw, J]
ϕ

(
γm (J)

) = 0 uniformly in J ⊂ R, where Gw (u) = Hw (u) − u and Vϕ [λGw, J] denotes

the ϕ-variation of λGw on the interval J.

It can be easily seen that takingA = {I}, the identity matrix, then (l1) − (l3) turn into (A1)-(A2) given in
[2]. Here, condition (h) is a natural condition due to the nonlinearity of the kernel. For the examples of Hw
in case ofA = {I}, see [1, 8]. At the end of the paper, we give a specific kernel satisfying (l1) − (l3) and (h).

The following growth condition on ψ corresponding to ψ−Lipschitz condition of Hw is also needed.

Definition 2.1. Let ϕ, η, ψ be a ϕ-function. If for all γ ∈ (0, 1) , there exists a constant Cγ such that

ϕ
(
Cγψ

(∣∣∣1∣∣∣)) ≤ η (
γ
∣∣∣1∣∣∣) (5)

for every measurable function 1 : R→R, then
(
ϕ, η, ψ

)
is called properly directed.

Throughout the paper, we will assume that
(
ϕ, η, ψ

)
is properly directed. In the nonlinear setting, this

condition is common (see [1, 7, 16, 17, 38, 43]) and some examples of the triple
(
ϕ, η, ψ

)
can be found in [1].



İ. Aslan / Filomat 35:8 (2021), 2731–2746 2734

Lemma 2.2. Let f ∈ BVη (R) . If (l1) is satisfied, then Tn,υ maps from BVη (R) into BVϕ (R), namely, there exists a
µ > 0 such that

Vϕ
[
µTn,υ f

]
≤ Vη

[
λ f

]
holds, where λ > 0 is sufficiently small for which Vη

[
λ f

]
< ∞.

Proof. Let {xi}i∈{1,...,m} be an increasing sequence in R. For all µ > 0, it is not hard to see from Jensen’s
inequality that

m∑
i=1
ϕ

(
µ
∣∣∣Tn,υ

(
f ; xi

)
− Tn,υ

(
f ; xi−1

)∣∣∣)
≤

m∑
i=1
ϕ

(
µ
∞∑

w=1
aυnw

∑
k∈Z

∣∣∣lk,w∣∣∣ ∣∣∣∣Hw

(
f
(
xi −

k
w

))
−Hw

(
f
(
xi−1 −

k
w

))∣∣∣∣)
≤

1
an,υ

m∑
i=1

∞∑
w=1

aυnwϕ

(
µan,υ

∑
k∈Z

∣∣∣lk,w∣∣∣ ∣∣∣∣Hw

(
f
(
xi −

k
w

))
−Hw

(
f
(
xi−1 −

k
w

))∣∣∣∣)
where an,υ =

∑
∞

w=1aυnw < ∞ by (a3). Then, using Jensen’s inequality one more time and taking supremum,
we get the following inequality,

m∑
i=1
ϕ

(
µ
∣∣∣Tn,υ

(
f ; xi

)
− Tn,υ

(
f ; xi−1

)∣∣∣)
≤

1
an,υA

∞∑
w=1

aυnw
∑

k∈Z

∣∣∣lk,w∣∣∣ m∑
i=1
ϕ

(
µan,υA

∣∣∣∣Hw

(
f
(
xi −

k
w

))
−Hw

(
f
(
xi−1 −

k
w

))∣∣∣∣) .
Since Hw is ψ-Lipschitz, then there holds

m∑
i=1
ϕ

(
µ
∣∣∣Tn,υ

(
f ; xi

)
− Tn,υ

(
f ; xi−1

)∣∣∣)
≤

1
an,υA

∞∑
w=1

aυnw
∑

k∈Z

∣∣∣lk,w∣∣∣ m∑
i=1
ϕ

(
µan,υAKψ

(∣∣∣∣ f (
xi −

k
w

)
− f

(
xi−1 −

k
w

)∣∣∣∣))
where K is ψ-Lipschitz constant of Hw.Now, from (5) for every λ ∈ (0, 1) for which Vη

[
λ f

]
< ∞, there exists

a constant Cλ ∈ (0, 1) such that

m∑
i=1
ϕ

(
µ
∣∣∣Tn,υ

(
f ; xi

)
− Tn,υ

(
f ; xi−1

)∣∣∣)
≤

1
an,υA

∞∑
w=1

aυnw
∑

k∈Z

∣∣∣lk,w∣∣∣ m∑
i=1
η
(
λ
∣∣∣∣ f (

xi −
k
w

)
− f

(
xi−1 −

k
w

)∣∣∣∣)
≤

1
an,υA

∞∑
w=1

aυnw
∑

k∈Z

∣∣∣lk,w∣∣∣ Vη

[
λ f

(
· −

k
w

)]
holds for all 0 < µ ≤ Cλ/(an,υAK). Since

Vη

[
λ f

(
· −

k
w

)]
= Vη

[
λ f

]
,

we derive from (l1) that

m∑
i=1
ϕ

(
µ
∣∣∣Tn,υ

(
f ; xi

)
− Tn,υ

(
f ; xi−1

)∣∣∣) ≤ Vη
[
λ f

]
an,υA

∞∑
w=1

aυnw
∑

k∈Z

∣∣∣lk,w∣∣∣
≤ Vη

[
λ f

]
.

Consequently, if we take supremum over {xi}i∈{1,...,m} , the proof is done.
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Lemma 2.3. Let f ∈ ACη (R) . If (l1) is satisfied, then Tn,υ
(

f
)
∈ ACϕ (R) for all n, υ ∈N.

Proof. Assume that ε > 0 be given and let δ := δ (ε) > 0 corresponds to η-absolute continuity of f where{[
αi, βi

]}m
i=1 be a finite nonoverlapping intervals of I = [a, b] ⊂ R such that

∑m
i=1ϕ

(
βi − αi

)
< δ. Then, applying

Jensen’s inequality we may clearly see that

m∑
i=1
ϕ

(
µ
∣∣∣Tn,υ

(
f ; βi

)
− Tn,υ

(
f ;αi

)∣∣∣)
≤

m∑
i=1
ϕ

(
µ
∞∑

w=1
aυnw

∑
k∈Z

∣∣∣lk,w∣∣∣ ∣∣∣∣Hw

(
f
(
βi −

k
w

))
−Hw

(
f
(
αi −

k
w

))∣∣∣∣)
≤

1
an,υA

∞∑
w=1

aυnw
∑

k∈Z

∣∣∣lk,w∣∣∣ m∑
i=1
ϕ

(
µan,υA

∣∣∣∣Hw

(
f
(
βi −

k
w

))
−Hw

(
f
(
αi −

k
w

))∣∣∣∣)
≤

1
an,υA

∞∑
w=1

aυnw
∑

k∈Z

∣∣∣lk,w∣∣∣ m∑
i=1
ϕ

(
µan,υAKψ

∣∣∣∣ f (
βi −

k
w

)
− f

(
αi −

k
w

)∣∣∣∣) .
Since

(
ϕ, η, ψ

)
is properly directed, then for every λ ∈ (0, 1) there exists a Cλ > 0 such that

m∑
i=1
ϕ

(
µ
∣∣∣Tn,υ

(
f ; βi

)
− Tn,υ

(
f ;αi

)∣∣∣)
≤

1
an,υA

∞∑
w=1

aυnw
∑

k∈Z

∣∣∣lk,w∣∣∣ m∑
i=1
η
(
λ
∣∣∣∣ f (
βi −

k
w

)
− f

(
αi −

k
w

)∣∣∣∣)
holds for all 0 < µ ≤ Cλ/(an,υAK). Moreover, seeing that f is η-absolutely continuous, then there exists a
γ > 0 such that

m∑
i=1
η
(
γ
∣∣∣∣ f (
βi −

k
w

)
− f

(
αi −

k
w

)∣∣∣∣) < ε
whenever

m∑
i=1
η
((
βi −

k
w

)
−

(
αi −

k
w

))
=

m∑
i=1
η
(
βi − αi

)
< δ.

Using the previous expression together with (l1) and (a3) , we finally get

m∑
i=1
ϕ

(
µ
∣∣∣Tn,υ

(
f ; βi

)
− Tn,υ

(
f ;αi

)∣∣∣) < 1
an,υA

∞∑
w=1

aυnw
∑

k∈Z

∣∣∣lk,w∣∣∣ ε
≤ ε

for all 0 < λ ≤ γ.

Now, we state our main approximation theorem.

Theorem 2.4. Assume that (l1) − (l3) and (h) hold. Then, there exists a µ > 0 such that for a given f ∈ ACϕ (R) ∩
BVη (R) , we have

lim
n→∞

Vϕ
[
µ
(
Tn,υ

(
f
)
− f

)]
= 0 (uniformly in υ ∈N). (6)



İ. Aslan / Filomat 35:8 (2021), 2731–2746 2736

Proof. Let {xi}i∈{1,...,m} be an increasing sequence in R. Then, for all µ > 0

I =
m∑

i=1
ϕ

(
µ
∣∣∣Tn,υ

(
f ; xi

)
− f (xi) − Tn,υ

(
f ; xi−1

)
+ f (xi−1)

∣∣∣)
=

m∑
i=1
ϕ

(
µ

∣∣∣∣∣∣ ∞∑w=1
aυnw

∑
k∈Z

lk,w
{
Hw

(
f
(
xi −

k
w

))
− f

(
xi −

k
w

)
−Hw

(
f
(
xi−1 −

k
w

))
+ f

(
xi−1 −

k
w

)}
+
∞∑

w=1
aυnw

∑
k∈Z

lk,w
{

f
(
xi −

k
w

)
− f (xi) − f

(
xi−1 −

k
w

)
+ f (xi−1)

}
+

{
f (xi) − f (xi−1)

} ( ∞∑
w=1

aυnw
∑

k∈Z
lk,w − 1

)∣∣∣∣∣∣
)

holds. Now, using the convexity of ϕ, one can observe the following,

I ≤
1
3

m∑
i=1
ϕ

(
3µ

∞∑
w=1

aυnw
∑

k∈Z

∣∣∣lk,w∣∣∣ ∣∣∣∣Hw

(
f
(
xi −

k
w

))
− f

(
xi −

k
w

)
−Hw

(
f
(
xi−1 −

k
w

))
+ f

(
xi−1 −

k
w

)∣∣∣∣)
+

1
3

m∑
i=1
ϕ

(
3µ

∞∑
w=1

aυnw
∑

k∈Z

∣∣∣lk,w∣∣∣ ∣∣∣∣ f (
xi −

k
w

)
− f (xi) − f

(
xi−1 −

k
w

)
+ f (xi−1)

∣∣∣∣)
+

1
3

m∑
i=1
ϕ

(
3µ

∣∣∣ f (xi) − f (xi−1)
∣∣∣ ∣∣∣∣∣∣ ∞∑w=1

aυnw
∑

k∈Z
lk,w − 1

∣∣∣∣∣∣
)

=: I1 + I2 + I3.

In I1, using two times Jensen’s inequality we immediately get

I1 ≤
1

3an,υA

∞∑
w=1

aυnw
∑

k∈Z

∣∣∣lk,w∣∣∣ m∑
i=1
ϕ

(
3µan,υA

∣∣∣∣Hw

(
f
(
xi −

k
w

))
− f

(
xi −

k
w

)
−Hw

(
f
(
xi−1 −

k
w

))
+ f

(
xi−1 −

k
w

)∣∣∣∣) .
It is known from (a3) that an,υ :=

∑
∞

w=1aυnw ≤M for sufficiently large n ∈N. Then, from the convexity of ϕ

I1 ≤
1

3MA

∞∑
w=1

aυnw
∑

k∈Z

∣∣∣lk,w∣∣∣ m∑
i=1
ϕ

(
3µMA

∣∣∣∣Hw

(
f
(
xi −

k
w

))
− f

(
xi −

k
w

)
−Hw

(
f
(
xi−1 −

k
w

))
+ f

(
xi−1 −

k
w

)∣∣∣∣)
≤

1
3MA

∞∑
w=1

aυnw
∑

k∈Z

∣∣∣lk,w∣∣∣ Vϕ

[
3µMA

(
Hw

(
f
(
· −

k
w

))
− f

(
· −

k
w

))]
yields. Now, using the fact that

Vϕ

[
3µMA

(
Hw

(
f
(
· −

k
w

))
− f

(
· −

k
w

))]
= Vϕ

[
3µMA

(
Hw

(
f
)
− f

)]
,

then there holds

I1 ≤
1

3M

∞∑
w=1

aυnwVϕ
[
3µMA

(
Hw

(
f
)
− f

)]
.

Considering (h) together with Lemma 1 in [8], we observe that for all γ > 0, there exists a λ > 0 such that
∀ε > 0, there exists a number n0 satisfying that

I1 <
Vϕ

[
γ f

]
3M

ε
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for all n > n0 and 0 < µ ≤ λ
3MA .

About I2, using the convexity of ϕ, Jensen’s inequality and (a3) , there holds

I2

≤
1

3MA

∞∑
w=1

aυnw
∑

k∈Z

∣∣∣lk,w∣∣∣ϕ (
3µMA

∣∣∣∣ f (
xi −

k
w

)
− f (xi) − f

(
xi−1 −

k
w

)
+ f (xi−1)

∣∣∣∣)
≤

1
3MA

∞∑
w=1

aυnw
∑

k∈Z

∣∣∣lk,w∣∣∣ Vϕ

[
3µMA

(
f
(
· −

k
w

)
− f (·)

)]
(7)

for sufficiently large n ∈ N. Here, one can observe the ϕ-modulus of smoothness of f ∈ ACϕ (R) by
Subsection 2.4. in [41], that is, if ϕ satisfies (+), then limδ→0+ sup

|t|<δ Vϕ
[
λ
(

f (· − t) − f (·)
)]

= 0 for some
λ > 0 if and only if f ∈ ACϕ (R) . So, one can find a λ1 > 0 such that for all ε > 0, there exists a δ > 0 such
that

Vϕ
[
λ1

(
f (· − t) − f (·)

)]
< ε (8)

whenever |t| < δ. Now, from (2) we can divide the sum in (7) as follows

I2 ≤
1

3MA

w1∑
w=1

aυnw
∑

k∈Z

∣∣∣lk,w∣∣∣ Vϕ

[
3µMA

(
f
(
· −

k
w

)
− f (·)

)]
+

1
3MA

∞∑
w=w1+1

aυnw
∑
|k|<r

∣∣∣lk,w∣∣∣ Vϕ

[
3µMA

(
f
(
· −

k
w

)
− f (·)

)]
+

1
3MA

∞∑
w=w1+1

aυnw
∑
|k|≥r

∣∣∣lk,w∣∣∣ Vϕ

[
3µMA

(
f
(
· −

k
w

)
− f (·)

)]
:= I1

2 + I2
2 + I3

2

where r > 0 is given in (l3) and w1 is such that

k
w
<

r
w
< δ

for all w > w1.
In I1

2, since Vϕ

[
6µMA f

(
· −

k
w

)]
= Vϕ

[
6µMA f

]
, it can easily be observed from (l1) that

I1
2 ≤

1
3MA

w1∑
w=1

aυnw
∑

k∈Z

∣∣∣lk,w∣∣∣ Vϕ
[
6µMA f

]
≤

1
3M

w1∑
w=1

aυnwVϕ
[
6µMA f

]
.

Then, there holds

I1
2 <

w1Vϕ
[
6µMA f

]
3M

ε

for all 0 < µ ≤ µ̃/(6MA) and for sufficiently large n ∈N.
From (8), (l1) and (a3) we obtain

I2
2 <

ε
3

for all 0 < µ ≤ λ1/(6MA).
From (l3) , we get

I3
2 ≤

Vϕ
[
6µMA f

]
3MA

ε
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for sufficiently large n ∈N.

On the other hand, since

∣∣∣∣∣∣ ∞∑w=1
aυnw

∑
k∈Z

lk,w − 1

∣∣∣∣∣∣ < 1 for sufficiently large n ∈N, by the convexity of ϕ

I3 ≤
1
3

m∑
i=1
ϕ

(
3µ

∣∣∣ f (xi) − f (xi−1)
∣∣∣) ∣∣∣∣∣∣ ∞∑w=1

aυnw
∑

k∈Z
lk,w − 1

∣∣∣∣∣∣
≤

1
3

Vϕ
[
3µ f

] ∣∣∣∣∣∣ ∞∑w=1
aυnw

∑
k∈Z

lk,w − 1

∣∣∣∣∣∣
holds. Then from (l2) , we get

I3 <
Vϕ

[
3µ f

]
3

ε

for sufficiently large n ∈ N. Finally, taking supremum over {xi}i∈{1,...,m} in the first inequality, we complete
the proof.

3. Order of Approximation

In this section, we examine the order of approximation. For this reason, we first consider the following
Lipschitz class

VϕLip (α) =
{

f ∈ ACϕ (R) : ∃ρ > 0 s.t. Vϕ

[
ρ
∣∣∣ f (· − t) − f (·)

∣∣∣] = O (|t|α) as t→ 0
}

for any α > 0 (see also [3]).
For a given nonnegative regular method A =

{(
aυnw

)}
υ∈N and α > 0, we take into account the following

orders of approximations:

(
∞∑

w=1
aυnw

∑
k∈Z

lk,w − 1
)

= O
(
n−α

)
as n→∞ (uniformly in υ), (9)

there exists a number r̄ > 0 such that
∞∑

w=1
aυnw

∑
|k|<r̄

1
wα

= O
(
n−α

)
as n→∞ (uniformly in υ), (10)

∞∑
w=1

aυnw
∑
|k|≥r̄

∣∣∣lk,w∣∣∣ = O
(
n−α

)
as n→∞ (uniformly in υ) (11)

and for each w ∈N,

aυnw = O
(
n−α

)
as n→∞ (uniformly in υ). (12)

Theorem 3.1. Assume that (9)-(12) and (l1) hold. Assume further that for every γ > 0, there exists a λ > 0 such
that

∞∑
w=1

aυnw
Vϕ [λGw, J]
ϕ

(
γm (J)

) = O
(
n−α

)
as n→∞ (uniformly in υ and (13)

uniformly in every proper bounded interval J ⊂ R).

Then, there exists a µ > 0 such that

Vϕ
[
µ
(
Tn,υ

(
f
)
− f

)]
= O

(
n−α

)
as n→∞ (uniformly in υ)

for all f ∈ VϕLip (α) ∩ BVη (R) .
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Proof. By the proof of Theorem 2.4, we may easily obtain the following inequality

Vϕ
[
µ
(
Tn,υ

(
f
)
− f

)]
≤

1
3MA

∞∑
w=1

aυnw
∑

k∈Z

∣∣∣lk,w∣∣∣ Vϕ
[
3µAM

(
Hw

(
f
)
− f

)]
+

1
3MA

∞∑
w=1

aυnw
∑

k∈Z

∣∣∣lk,w∣∣∣ Vϕ

[
3µAM( f (· − k

w ) − f (·))
]

+
Vϕ

[
3µ f

]
3

∣∣∣∣∣∣ ∞∑w=1
aυnw

∑
k∈Z

lk,w − 1

∣∣∣∣∣∣
=: J1 + J2 + J3

for sufficiently large n ∈N. Considering (13) in [8], there exists a constant L > 0 such that

J1 =
1

3MA

∞∑
w=1

aυnwVϕ
[
3µAM

(
Hw

(
f
)
− f

)] ∑
k∈Z

∣∣∣lk,w∣∣∣
≤

L
3M

Vϕ
[
γ f

]
n−α

= O
(
n−α

)
as n→∞ (uniformly in υ)

for sufficiently small µ > 0.
In J2, since f ∈ VϕLip (α) , there exist ρ,N, δ > 0 s.t. Vϕ

[
ρ
∣∣∣ f (· − t) − f (·)

∣∣∣] ≤ N |t|α if |t| < δ. Moreover, for
a given r̄ > 0, we can find a number w′ such that

k
w
<

r̄
w
< δ

for every w > w′. Taking these arguments into account, we divide J2 as follows,

J2 =
1

3MA

w′∑
w=1

aυnw
∑
|k|<r̄

∣∣∣lk,w∣∣∣ Vϕ

[
3µAM

(
f
(
· −

k
w

)
− f (·)

)]
+

1
3MA

∞∑
w=w′+1

aυnw
∑
|k|<r̄

∣∣∣lk,w∣∣∣ Vϕ

[
3µAM

(
f
(
· −

k
w

)
− f (·)

)]
+

1
3MA

∞∑
w=1

aυnw
∑
|k|≥r̄

∣∣∣lk,w∣∣∣ Vϕ

[
3µAM

(
f
(
· −

k
w

)
− f (·)

)]
=: J1

2 + J2
2 + J3

2.

Then, it follows from (10) that

J2
2 ≤

N
3MA

∞∑
w=w′+1

aυnw
∑
|k|<r̄

∣∣∣lk,w∣∣∣ ∣∣∣ k
w

∣∣∣α
≤

Nr̄α

3M

∞∑
w=w′+1

aυnw
∑
|k|<r̄

1
wα

= O
(
n−α

)
as n→∞ (uniformly in υ)

for all 0 < µ ≤ ρ
3MA . On the other hand, for J1

2 it is not hard to see from (2) that

J1
2 ≤

1
3M

w′∑
w=1

aυnwVϕ
[
6µAM f

]
and therefore, from (12)

J1
2 = O

(
n−α

)
as n→∞ (uniformly in υ)
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holds. About J3
2, from (2) and (11), we observe the following

J3
2 ≤

Vϕ
[
6µAM f

]
3MA

∞∑
w=1

aυnw
∑
|k|≥r̄

∣∣∣lk,w∣∣∣
= O

(
n−α

)
as n→∞ (uniformly in υ).

Finally, directly from (9) we get

J3 = O
(
n−α

)
as n→∞ (uniformly in υ).

Now, we investigate a special case of the operator (3), where lk,w ≡ χ (k) and χ : R → R, namely, lk,w is
not depending on w. Then, (3) reduces to

T̄n,υ
(

f ; x
)

=
∞∑

w=1
aυnw

∑
k∈Z

Hw

(
f
(
x − k

w

))
χ (k) ,

which is (in some cases) equivalent toA-transform of nonlinear generalized sampling series given in (4)
Under these considerations, (l1) and (l2) turn into the following assumptions(

l′1
)
χ ∈ l1 (Z)(

l′2
) ∑

k∈Z
χ (k) = 1

where on the other hand (l3) is clearly not satisfied. But these two conditions are still enough to verify the
following theorem.

Theorem 3.2. Let f ∈ ACϕ (R) ∩ BVη (R) . If
(
l′1
)
,
(
l′2
)

and (h) hold, then there exists a µ > 0 such that

lim
n→∞

Vϕ

[
µ
(
T̄n,υ

(
f
)
− f

)]
= 0 (uniformly in υ ∈N).

Proof. Considering
(
l′2
)

in the proof of Theorem 2.4, then for every µ > 0

Vϕ

[
µ
(
T̄n,υ

(
f
)
− f

)]
≤

1
3MĀ

∞∑
w=1

aυnw
∑

k∈Z
|χ (k)|Vϕ

[
3µMĀ

(
Hw ◦ f − f

)]
+

1
3MĀ

∞∑
w=1

aυnw
∑

k∈Z
|χ (k)|Vϕ

[
3µMĀ

(
f
(
· −

k
w

)
− f (·)

)]
+

1
3

Vϕ
[
3µ f

] ∣∣∣∣∣ ∞∑
w=1

aυnw − 1
∣∣∣∣∣

=: L1 + L2 + L3

holds, where Ā = ‖χ‖l1 . From (h),
(
l′1
)
, and Lemma 1 in [8], one can clearly see that

L1 <
Vϕ

[
γ f

]
3M

ε

for sufficiently large n ∈ N and for all 0 < µ ≤ λ/(3MĀ) where λ and γ correspond to Lemma 1 in [8]. On
the other hand, since χ ∈ l1 (Z) , for all ε > 0 there exists a r̃ > 0 such that∑

|k|≥r̃
|χ (k)| < ε.
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Hence, if we divide L2 into two parts as follows,

L2 =
1

3MĀ

∞∑
w=1

aυnw
∑
|k|≥r̃
|χ (k)|Vϕ

[
3µMĀ

(
f
(
· −

k
w

)
− f (·)

)]
+

1
3MĀ

∞∑
w=1

aυnw
∑
|k|<r̃
|χ (k)|Vϕ

[
3µMĀ

(
f
(
· −

k
w

)
− f (·)

)]
=: L1

2 + L2
2

then, there holds

L1
2 <

Vϕ
[
6µMĀ f

]
3Ā

ε

For L2
2, using ϕ-modulus of smoothness of the function f ∈ ACϕ (R), we obviously see that for all ε > 0

there exists a δ > 0 such that
k
w <

r̃
w < δ

for all w > w̃, which implies

Vϕ
[
3µMA

(
f (· − t) − f (·)

)]
< ε.

Then, dividing L2
2 as follows,

L2
2 =

1
3MĀ

w̃∑
w=1

aυnw
∑
|k|<r̃
|χ (k)|Vϕ

[
3µMĀ

(
f
(
· −

k
w

)
− f (·)

)]
+

1
3MĀ

∞∑
w=w̃+1

aυnw
∑
|k|<r̃
|χ (k)|Vϕ

[
3µMĀ

(
f
(
· −

k
w

)
− f (·)

)]
we may easily obtain

L2
2 <

(
w̃Vϕ

[
6µMĀ f

]
3M

+
1
3

)
ε.

Finally, using (a2) we conclude

L3 <
Vϕ

[
3µ f

]
3

ε

for sufficiently large n ∈N, which completes the proof.

Remark 3.3. Note that, the operators T̄ and S are different in general but, in some cases, they coincide.

Corollary 3.4. Assume that f ∈ B1
πw (R) ∩ BVη (R) and ψ

(∣∣∣ f ∣∣∣) ∈ B1
πw (R) (the Paley-Wiener Space Bp

πw (R) ={
f ∈ Lp (R) : f has an extension to whole C s.t.

∣∣∣ f (z)
∣∣∣ ≤ exp (πw |z|)

∥∥∥ f
∥∥∥ for every z ∈ C

}
) for some w > 0, where

‖·‖ denotes supremum norm. If χ ∈ B∞π (R) and
(
l′1
)
,
(
l′2
)
, (h) are satisfied, then there exists a µ > 0 such that

lim
n→∞

Vϕ
[
µ
(
Sn,υ

(
f
)
− f

)]
= 0 (uniformly in υ ∈N).

Proof. First of all, we should say that since
∣∣∣Hw

(
f
)∣∣∣ ≤ Kψ

(∣∣∣ f ∣∣∣) and ψ
(∣∣∣ f ∣∣∣) ∈ B1

πw (R) , then Hw
(

f
)
∈ B1

πw (R).
From Proposition 4.3. in [2] and (+), we may easily see that B1

πw (R) ⊂ ACϕ (R) . Therefore, using the similar
arguments on Lemma 4.2. in [2], we deduce that

Sn,υ
(

f
)

= T̄n,υ
(

f
)

for all n, υ ∈N. Consequently, by the Theorem 3.2 the proof completes.

An example of χ ∈ B∞π (R) satisfying
(
l′1
)

and
(
l′2
)

can be found in Example 4.5. in [2].
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4. Conclusions and Applications

We remark that operator (3) can be written as

Tn,υ
(

f ; x
)

=
∞∑

w=1
aυnwTw

(
f ; x

)
where Tw

(
f ; x

)
is introduced by

Tw
(

f ; x
)

=
∑

k∈Z
Hw

(
f
(
x − k

w

))
lk,w.

Using certain methods, some significant results of Theorem 2.4 are given below:

• If we takeA = {C1} , Cesàro matrix [30], where C1 = [cnw] is such that

cnw =

{
1
n ; if 1 ≤ w ≤ n
0; otherwise,

then we get

lim
n→∞

Vϕ

[
T1

(
f
)

+ T2
(

f
)

+ · · · + Tn
(

f
)

n
− f

]
= 0

for all f ∈ ACϕ (R) .

• PuttingA = F , the almost convergence matrix [36], where F =
{[

cυnw
]}

is such that

cυnw =

{
1
n ; if υ ≤ w ≤ n + υ − 1
0; otherwise,

then we get

lim
n→∞

Vϕ

[
Tυ

(
f
)

+ Tυ+1
(

f
)

+ · · · + Tn+υ−1
(

f
)

n
− f

]
= 0 uniformly in υ

for all f ∈ ACϕ (R) .

• IfA = {I} , the identity matrix, then we get

lim
n→∞

Vϕ
[
Tn

(
f
)
− f

]
= 0,

where Tn is nonlinear form of (1).

• If one take Hw (u) = u, then Tn reduces to linear case given in (1) and the previous estimations hold
for the operator (1).

• On the other hand, all the previous results are still valid for the generalized sampling series Sn,υ
(

f
)

given in (4).

Now, we will investigate the existence of kernels which satisfy (l1) − (l3), (h) and conditions (9)−(13).
LetA = F = {Fυ} , α = 1/2 and lk,w, Hw and ψ are defined by

lk,w :=


1

2w|k|−1
; w = m2 (m ∈N)

2w
− 1

2w|k| (2w + 1)
; w , m2 (m ∈N),
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Hw (u) := u + tanh
(

u
w

)
and ψ (|u|) := |u| . Then, if w = m2 (m ∈N), we have

∑
k∈Z

∣∣∣lk,w∣∣∣ = 2
(2w + 1

2w − 1

)
≤ 6

and if w , m2, we have∑
k∈Z

∣∣∣lk,w∣∣∣ = 1,

which implies (l1) for A = 6.
For (l2) and (9), consider the following inequality∣∣∣∣∣∣n+υ−1∑

w=υ

1
n

∑
k∈Z

lk,w − 1

∣∣∣∣∣∣ ≤ n+υ−1∑
w=υ

1
n

∣∣∣∣∣∣ ∑k∈Zlk,w − 1

∣∣∣∣∣∣
=

n+υ−1∑
w=υ,w=m2

1
n

∣∣∣∣∣2 (2w + 1
2w − 1

)
− 1

∣∣∣∣∣
≤

n+υ−1∑
w=υ,w=m2

5
n

≤

5
(√

n + υ − 1 −
√
υ + 1

)
n

=
5 (n − 1)

n
(√

n + υ − 1 +
√
υ
) +

5
n

≤
5

√
n + υ − 1 +

√
υ

+
5
n

≤
10
√

n
= O

(
1
√

n

)
(uniformly in υ),

which proves (l2) and (9).
For (l3) and (11) , if w = m2, then∑
|k|≥r

∣∣∣lk,w∣∣∣ = 4
( 2w

2w − 1

) 1
2wr

and if w , m2,∑
|k|≥r

∣∣∣lk,w∣∣∣ = 2
(2w
− 1

2w + 1

) ( 2w

2w − 1

) 1
2wr

hold. Therefore, we get the following expression

n+υ−1∑
w=υ

1
n

∑
|k|≥r

∣∣∣lk,w∣∣∣ ≤ 4
n

n+υ−1∑
w=υ

( 2w

2w − 1

) 1
2wr

≤
8
n

n+υ−1∑
w=υ

1
2wr

≤
8
n

∞∑
w=0

1
2wr

=
8
n

( 2r

2r − 1

)
,
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which shows (l3) is satisfied for r = 1. Furthermore, by the fact that for all r ≥ 1( 2r

2r − 1

)
≤ 2

and so, we conclude

n+υ−1∑
w=υ

1
n

∑
|k|≥r

∣∣∣lk,w∣∣∣ ≤ 16
n
≤

16
√

n

= O
(

1
√

n

)
(uniformly in υ).

For the condition (10), we may clearly get

1
n

n+υ−1∑
w=υ

1
√

w
≤

2(
√

n+υ−1−
√
υ)

n

≤
2(n−1)

n(
√

n+υ−1+
√
υ)

≤
2

(√n)
= O

(
1
√

n

)
(uniformly in υ).

(14)

Moreover, by the definition of F , we obtain the following

cυnw ≤
1
n
≤

1
√

n

= O
(

1
√

n

)
(uniformly in υ).

On the other hand, by the definition of Hw, it is clear that Hw (0) = 0 and Hw is 1-Lipschitz (see also
Figure 1). In addition, Gw (u) = Hw (u) − u = tanh

(
u
w

)
is an increasing function and hence choosing λ = γ

and J = [a, b] we have the following equality

Vϕ
[
γGw, J

]
ϕ

(
γm (J)

) =
ϕ

(
γ (Gw (b) − Gw (a))

)
ϕ

(
γm (J)

) .

Furthermore, by the convexity of ϕ

Vϕ
[
γGw, J

]
ϕ

(
γm (J)

) ≤ ϕ (
γ
(

b
w −

a
w

))
ϕ

(
γm (J)

)
≤

1
w
ϕ

(
γ (b − a)

)
ϕ

(
γm (J)

)
=

1
w

holds, where 1/w→ 0 as w→∞. Then we obtain from (14) that

1
n

n+υ−1∑
w=υ

1
w
≤

1
n

n+υ−1∑
w=υ

1
√

w

= O
(

1
√

n

)
as n→∞ (uniformly in υ)

which verifies (13) and (h) .
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Figure 1: The kernel function Hw
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[38] I. Mantellini, G. Vinti, Φ-variation and nonlinear integral operators. Atti Sem. Mat. Fis. Univ. Modena 46 (1998), Suppl. (special

issue of the International Conference in Honour of Prof. Calogero Vinti), 847-862.
[39] W. Matuszewska and W. Orlicz, On property B1 for functions of bounded ϕ-variation, Bulletin of the Polish Academy of Sciences

Mathematics, no. 35 (1-2) (1987), 57-69.
[40] R. N. Mohapatra, Quantitative results on almost convergence of a sequence of positive linear operators, J. Approx. Theory, no.

20 (1977), 239–250
[41] J. Musielak and W. Orlicz, On generalized variations (I), Studia Math., no. 18 (1959), 11-41.
[42] S. Ries and R.L. Stens, Approximation by generalized sampling series, Proceedings of the International Conference on Construc-

tive Theory of Functions (Varna, 1984), Bulgarian Academy of Science, Sofia, 1984, pp. 746-756.
[43] S. Sciamannini, G. Vinti, Convergence results in BVϕ for a class of nonlinear Volterra-Hammerstein integral operators and

applications. J. Concrete Appl. Anal. 1 (4) (2003), 287-306.
[44] J. J. Swetits, On summability and positive linear operators, J. Approx. Theory, no. 25 (1979), 186–188.
[45] N. Wiener, The quadratic variation of a function and its Fourier coefficients, Massachusetts J. of Math., no. 3 (1924), 72-94.
[46] J. Wimp, Sequence Transformations and Their Applications, Academic Press, New York, 1981.
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