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Abstract. This paper is a continuation of authors work: Fatou and Julia like sets, Ukranian Math. J., to
appear/arXiv:2006.08308[math.CV](see [5]). Here, we introduce escaping like set and generalized escaping
like set for a family of holomorphic functions on an arbitrary domain, and establish some distinctive
properties of these sets. The connectedness of the Julia like set is also proved.

1. Introduction

We shall have the following notations throughout the paper:

• M (D) : the class of all meromorphic functions on a domain D ⊆ C;

• H (D), the class of all holomorphic functions on a domain D ⊆ C; and

• D: the open unit disk in C.

A family F of meromorphic functions defined on a domain D ⊆ C is said to be normal in D if every
sequence in F contains a subsequence that converges locally uniformly on D with respect to the spherical
metric. F is said to be normal at a point z ∈ D if it is normal in some neighborhood of z in D (see [25, 27]).
Let f : C → C be a meromorphic function and denote by f n the nth iterate of f for n ∈ N. Then f n(z) is
defined for all z ∈ C except for a countable set which consists of the poles of f , f 2, . . . , f n−1. The basic objects
studied in iteration theory are the Fatou set F = F( f ) and the Julia set J = J( f ) of a meromorphic function f
defined as follows:

F :=
{
z ∈ C : { f n : n ∈N} is defined and normal in some neighborhood of z

}
and

J := C \ F.
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The requirement that f n be defined is always satisfied if f is rational and so does for transcendental entire
functions, where f n is defined for all z ∈ C, and in this case, we always have ∞ ∈ J. The study of Fatou
and Julia sets of f is a subject matter of iteration theory of meromorphic functions which was initiated by
P. Fatou and G. Julia (see [11, 17] and was kept alive mainly by I. N. Baker (for his contributions one may
refer to [19]. For recent developments in Fatou Julia theory the reader is urged to refer to [1, 2, 4, 19, 26].

A natural generalization of the Fatou and Julia theory is the dynamics of semigroups of meromorphic
functions initiated by A. Hinkkanen and G. Martin (see [13, 14]) for rational functions and for transcendental
entire functions this study is initiated by K.K. Poon (see [23, 24], also see [9, 13, 14, 21] ). A semigroup
F of entire functions is a semigroup with binary operation defined by the function composition. If the
semigroup F is generated by the functions f1, f2, . . ., then we denote it by

〈
f1, f2, . . .

〉
. The Fatou set of the

semigroup F , denoted by F(F ) is defined as

F(F ) :=
{
z ∈ C : F is a normal family at z

}
and the complement C \ F(F ) of F( f ) is called the Julia set of F and is denoted by J(F ). F(F ) is an open
subset of C and J(F ) is a closed subset of C. The study of Fatou and Julia sets of semigroups of entire and
rational functions is a subject matter of Dynamics of Semigroups of meromorphic functions. It has been seen
that there are significant differences between the dynamics of a rational function (as well as transcendental
entire function) and that of its semigroup and hence the study of the dynamics of semigroups is not merely
a generalization.

A natural question arises:

Question 1.1. Can one have a Fatou and Julia like theory on (F ,D), where F is a subfamily ofM(D) and D is an
arbitrary domain in C?

In [5], the authors have initiated their work on Question 1.1. For a subfamily F ofH (D), the authors in [5]
introduced Fatou like set F(F ) and Julia like set J(F ) of the family F as follows:
Fatou like set F(F ) of F is defined to be a subset of D on which F is a normal family and Julia like set J(F )
of F is the complement D \ F(F ) of F(F ). If F happens to be a family of iterates of an entire function
f , then F(F ) and J(F ) reduce to the Fatou set of f and the Julia set of f respectively. Various interesting
properties of the sets F(F ) and J(F ) are studied there, and it is found that this generalization does not work
as smoothly as of semigroups.

The present paper is a continuation of our work in [5] and introduces the escaping like set and generalized
escaping like set for a family of holomorphic functions on an arbitrary domain. We have divided our findings
into the following four sections:

• Properties of Julia like set J(F ) of F ;

• Escaping like set, generalized escaping like set and their properties;

• Discussion on limit functions and fixed points of F ; and

• Concluding Remarks.

2. Properties of Julia like set J(F ) of F

Let F be a subfamily ofH(D) and z ∈ C. We define the backward orbit of z with respect to F as

O
−

F
(z) :=

{
w ∈ D : f (w) = z, for some f ∈ F

}
and the exceptional set of F is defined as

E(F ) :=
{
z ∈ C : O−

F
(z) is finite

}
.

If F is a semigroup of entire functions and z ∈ J(F ) \ E(F ), then the backward invariance of J(F ) (see
[13], Theorem 2.1) implies that O−

F
(z) ⊆ J(F ). The other way inclusion is true for any F ⊆ H(D) with

E(F ) , ∅ (see, [5], Theorem 1.9). Thus we have:
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Theorem 2.1. Suppose that F is a semigroup of entire functions with E(F ) , ∅, and z ∈ J(F ) \ E(F ). Then
J(F ) = O−

F
(z).

We know (see [5], Theorem 1.1) that if N is a neighborhood of a point z0 ∈ J(F ), then C \ ∪ f∈F f (N)
contains at most one point. If J(F ) has an isolated point, the following counterpart holds:

Theorem 2.2. (a) Suppose that J(F ) has an isolated point. Then C \
⋃

f∈F f (U) has at most one point, for some
open set U ⊆ F(F ).

(b) Suppose that N is a neighborhood of a point in J(F ). If E(F ) , φ, then

C \
⋃
f∈F

f (N) ⊂ E(F ).

Proof. Let z0 ∈ J(F ) be an isolated point. Then we can choose a neighborhood N of z0 such that U :=
N \ {z0} ⊆ F(F ). Since F is not normal at z0, by an extension of Montel’s theorem (see [3], p. 203), F omits
at most one point in N \ {z0}. This proves (a).
Let N be a neighborhood of z0 ∈ J(F ) and w0 ∈ C \

⋃
f∈F f (N). Suppose that w0 < E(F ) and let w1 ∈ E(F ).

Then we can choose a deleted neighborhood N1 ⊂ N of z0 such that O−
F

(w1)∩N1 = φ showing that F omits
two points w0,w1 in the deleted neighborhood N1 of z0. Now by extension of Montel’s Theorem, z0 ∈ F(F ),
a contradiction. This proves (b).

Example 2.3. Consider the family F := {nz : n ∈N} of entire functions . Then F(F ) = C \ {0} . For any deleted
neighborhood N of 0,

⋃
f∈F f (N) = C \ {0} and the set C \ ∪ f∈F f (N) contains exactly one point.

Theorem 2.4. Let F be a family of transcendental entire functions with nonempty backward invariant Julia like set
J(F ). Then J(F ) is a singleton or an infinite set. If J(F ) is a singleton {z0} , say, then for any f ∈ F , z0 is a fixed
point of f or a Picard exceptional value of f , and if J(F ) is infinite, then J(F ) has no isolated points.

Proof. Suppose that J(F ) is finite and has at least two points. Then there is some z ∈ J(F ) and f ∈ F such
that f−1({z}) is infinite. Backward invariance of J(F ) implies that f−1({z}) ⊆ J(F ), which is a contradiction.
Hence J(F ) reduces to a singleton, {z0} , say. Since for any f ∈ F , f−1({z0}) ⊆ J(F ), f−1({z0}) = {z0} or
f−1({z0}) = ∅.

Next, if J(F ) is infinite and has an isolated point w0, say, then by Theorem 2.2, there exists an open subset
U in F(F ) such that C \

(
∪ f∈F f (U)

)
has at most one point. We claim that f (U)∩ J(F ) = ∅ for any f ∈ F . For,

suppose f (U) ∩ J(F ) , ∅ for some f ∈ F . Then there is w ∈ f (U) ∩ J(F ) such that w = f (z) for some z ∈ U.
Since w ∈ J(F ), z ∈ f−1({w}) ⊆ J(F ), a contradiction. Thus it follows that J ⊆ C \

(
∪ f∈F f (U)

)
, showing that

J(F ) is finite which is not the case. Hence J(F ) has no isolated points.

2.1. Connectedness of Julia like set

Kisaka [18] characterized the connectedness of the Julia set of a transcendental entire function, as a
subset of C.Here, we also characterize the connectedness of Julia like set J(F ) of a family F of holomorphic
functions on a simply connected domain in C.

Let D be a domain in C. Let D0 be a subset of D. We shall denote by ∂D0, the set of boundary points of
D0 in D and denote by D0, the set of adherent points of D0 in D.

Lemma 2.5. Let D be a simply connected domain in C. Let D1 and D2 be two disjoint open connected subsets of D
such that ∂D1 ⊂ ∂D2. Then ∂D1 is connected.
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Proof. Suppose on the contrary that ∂D1 = A ∪ B, where A and B be two nonempty disjoint closed subsets
of ∂D1. Let ζ1 ∈ B. Since A is closed and {ζ1} is compact, d(A, ζ1) = ε > 0 (where d is the Euclidean metric)
and so we can choose z1 ∈ D1 and z2 ∈ D2 with d(ζ1, zi) < ε

2 (i = 1, 2) and a line segment L1 joining z1 and
z2. Clearly L1 ∩ A = φ. Similarly, we can choose ζ2 ∈ A, z′1 ∈ D1, z

′

2 ∈ D2 and a line segment L2 joining z′1
and z′2 with L2 ∩ B = φ. Since z1 and z′1 are in D1, there is a curve γ1 ⊂ D1 joining z1 and z′1 such that γ1

does not intersect L1 and L2. Similarly, we can choose a curve γ2 ⊂ D2 joining z2 and z′2 such that γ2 does
not intersect L1 and L2. Let U be the region bounded by the closed curve γ1 ∪ γ2 ∪ L1 ∪ L2. Then A∩U and
B∩U are compact and hence are at a positive distance apart. Now from this it follows that we can choose a
curve γ3 ⊂ D joining a point at γ1 and a point at γ2 and which does not intersect ∂D1 = A∪B which implies
that D1 ∩D2 , φ, a contradiction.

Simple connectedness of D in Theorem 2.5 is essential:

Example 2.6. Consider the annulus D = {z ∈ C : r1 < |z| < r2}, where 0 < r1 < r2 and consider D1 = D ∩
{z : Im(z) > 0} and D2 = D∩ {z : Im(z) < 0} as two disjoint open connected subsets of D. Then ∂D1 ⊂ ∂D2, and ∂D1
is not connected.

As an immediate consequence of Lemma 2.5, we have

Lemma 2.7. Let D be a simply connected domain in C and D1 be an open connected subset of D. If U is a component
of D \D1, then ∂U is connected.

Theorem 2.8. Let K be a closed subset of a simply connected domain D in C. Then K is connected if, and only if the
boundary of each component of the complement D \ K of K is connected.

Proof. The connectedness of K is achieved-without any significant modification-by following the proof of
Proposition 1 in [18]. The converse is proved by using the ideas of Newman([22], Theorem 14.4) as follows:
Suppose on the contrary that there is a component G of D \ K with disconnected boundary. Let A be the
component of ∂G and put B := ∂G \ A. Since ∂(D \ G) = ∂G ⊂ ∂G, Lemma 2.7 implies that the boundary
of any component of D \ G does not meet A and B simultaneously which leads to a natural division of the
class C of components of D \ G into two subclasses:

C1 := {U ∈ C : ∂U ⊂ A} ,

and
C2 := {V ∈ C : ∂V ⊂ B} .

Put
U1 :=

⋃
U∈C1

U,

and
U2 :=

⋃
V∈C2

V.

Claim: U1 ∪ A and U2 ∪ B are closed sets.
First, we show that ∂U1 ⊂ A. For, let z0 ∈ ∂U1. We consider the following two cases:
Case-I: There exists a component D0 ∈ C1 such that z0 ∈ ∂D0 and hence ∂U1 ⊂ A.
Cases-II: There does not exist a component D0 ∈ C1 such that z0 ∈ ∂D0. Then for each neighborhood
N0 := {z : |z − z0| < ε} of z0, we see that N0 ∩ U1 , φ. Thus, there exists a component D1 ∈ C1 such that
N0 ∩ D1 , φ. This implies that for each n ∈ N there is a component Dn ∈ C1 with z0 < ∂Dn such that
Nn ∩ Dn , φ, where Nn = {|z − z1| < ε/n} . Hence Nn ∩ ∂Dn , φ. Since ∂Dn ⊂ A, Nn ∩ A , φ. That is,
Nn ∩ A , φ,∀ n ∈N. This implies that z0 ∈ A = A. Thus ∂U1 ⊂ A, as desired.
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Thus, U1 ∪ ∂U1 ∪ A = U1 ∪ A is closed. Similarly, U2 ∪ B is closed, and hence the claim.
Further, we have

(U1 ∪ A) ∪ (U2 ∪ B) =
(
D \D1

)
∪ ∂D1 = (D \D1)o

∪ ∂ (D \D1) = D \D1.

Since D \ D1 contains K, the union (U1 ∪ A) ∪ (U2 ∪ B) contains K. Since A and B are non empty disjoint
subsets of K, (U1 ∪ A)∩K and (U2 ∪ B)∩K are non empty disjoint closed subsets of K whose union is equal
to K showing that K is disconnected, a contradiction.

From Theorem 2.8, we immediately obtain the connectedness of J(F ) as follows:

Theorem 2.9. Let F be a family of holomorphic functions in a simply connected domain D. Then J(F ) is connected
if, and only if the boundary of each component of F(F ) is connected.

3. Escaping like set, generalized escaping like set and their properties

In the following discussion, by an infinite sequence in a subfamily F ⊆ H(D) we mean a sequence
{ fn} ⊂ F with fm , fn for m , n.

Definition 3.1. For a subfamily F ⊆ H(D), we define escaping like set and generalized escaping like set of F as:

I (F ) :=
{
z ∈ D : fn(z)→∞ for every infinite sequence

{
fn
}

in F
}
,

and
U (F ) :=

{
z ∈ D : fn(z)→∞ for some sequence

{
fn
}

in F
}
,

respectively.

Remark 3.2. (i) I(F ) ⊂ U(F ).
(ii) If F1 and F2 are two subfamilies ofH(D), then the following hold:

1. If F1 ⊆ F2, then I (F2) ⊂ I (F1) and U (F1) ⊂ U (F2).
2. I (F1 ∪ F2) = I (F1) ∩ I (F2) and U (F1 ∪ F2) = U (F1) ∪U (F2).
3. If F1 ∩ F2 is infinite, then I (F1 ∩ F2) ⊇ I (F1) ∪ I (F2) .
4. U (F1 ∩ F2) ⊂ U (F1) ∩U (F2).

Following examples show that the equality need not hold in (3) and (4) in Remark 3.2:

Example 3.3. Consider
F1 := {enz : n ∈N} ∪ {zn : n ∈N}

and
F2 := {enz : n ∈N} ∪ {(z − x)n : n ∈N} ,

where x > 1 is chosen such that the disk {z : |z − x| < 1} intersects the unit disk {z : |z| < 1} . Then

I (F1) = {z : Re(z) > 0 and |z| > 1} ,

I (F2) = {z : Re(z) > 0 and |z − x| > 1}

and
I (F1 ∩ F2) = {z : Re(z) > 0} .

Clearly, I (F1 ∩ F2) , I (F1) ∪ I (F2) .
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Example 3.4. Consider the subfamilies
F1 := {nz : n ∈N}

and

F2 :=
{
n(z −

1
2

) : n ∈N
}

ofH(D).Then U (F1 ∩ F2) = φ and U (F1)∩U (F2) = {z : |z| < 1}\
{
0, 1

2

}
. Therefore, U (F1 ∩ F2) , U (F1)∩U (F2).

Further, I(F ) and F(F ) possess the following-easy to verify-properties:

(a) F (F1 + F2) = F(F1) ∩ F(F2).

(b) I (F1 + F2) ⊆ I(F1) ∩ I(F2).

(c) F (F1F2) = F(F1) ∪ F(F2).

(d) I (F1F2) ⊆ I(F1) ∪ I(F2).

If z ∈ I(F ) ∩ F(F ), then by the definition of I(F ) and the normality of F at z imply that the component
of F(F ) which contains z is contained in I(F ). This conclusion also holds for U(F ). That is,

1. If I(F ) ∩ F(F ) , ∅, then I(F ) has non-empty interior. Moreover, if U ∩ I(F ) , ∅ for some component
U of F(F ), then U ⊆ I(F ).

2. If U(F )∩F(F ) , ∅, then U(F ) has non-empty interior. Moreover, if V∩U(F ) , ∅ for some component
V of F(F ), then V ⊆ U(F ).

As a consequence of the above conclusions, one can see that if J(F ) = ∅, then I(F ) and U(F ) are open
subsets of D.

In general, I(F ) is neither forward invariant nor backward invariant, for example, consider the family
F := {enz : n ∈N} . Then

I(F ) = {z ∈ C : Re(z) > 0} .

Since exponential function maps vertical lines onto circles, I(F ) is not forward invariant. Again, since
exponential function maps horizontal lines onto rays emanating from the origin, I(F ) is not backward
invariant. However, we have

Theorem 3.5. If F is a family of entire functions such that f ◦ 1 = 1 ◦ f , for each f , 1 ∈ F , then I(F ) and U(F ) are
backward invariant.

Proof. Let w ∈ I(F ) and 1 ∈ F . Let z ∈ 1−1({w}) be such that z < I(F ). Then there exists a sequence
{
fn
}

in F
which is bounded at z. Since 1 is continuous,

{
1 ◦ fn

}
is bounded at z. But 1 ◦ fn = fn ◦ 1, so the sequence fn

is bounded at 1(z) = w, a contradiction. This proves that I(F ) is backward invariant.
Let w ∈ U(F ) and 1 ∈ F . Let z ∈ 1−1({w}) be such that z < U(F ). Then each sequence

{
fn
}

in F is
bounded at z. By the same argument as above, we find that U(F ) is backward invariant.

For semigroups of transcendental entire functions, we have

Theorem 3.6. Let F be a semigroup of transcendental entire functions. Then U(F ) is non-empty and backward
invariant. Further, if F =

〈
f1, · · · , fm

〉
, where fi are transcendental entire functions, then for each z ∈ U(F ), there

exists fi ∈
{
f1, · · · , fm

}
such that fi(z) ∈ U(F ).
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Proof. Let f ∈ F . Then I( f ) , φ by Theorem 1 of Eremenko[10] and hence U(F ) , φ. Let z1 ∈ U(F ) and
f ∈ F . Put w1 ∈ f−1({z1}). Then there is a sequence

{
fn
}

in F such that fn(z1)→∞ as n→∞. Put 1n = fn ◦ f .
Then 1n ∈ F , ∀ n ∈N. Further, 1n(w1) = fn(z1)→∞, as n→∞ showing that w1 ∈ U(F ) and hence U(F ) is
backward invariant.

Further, let z0 ∈ U(F ). Then there is a sequence
{
1n

}
⊂ F such that 1n(z0) → ∞, as n → ∞ and hence

there exists an n0 ∈N such that 1n , fi,∀ i = 1, . . . ,m,∀ n ≥ n0. This implies that for each n ≥ n0,

1n = hn ◦ fi, for some i ∈ {1, . . . ,m} , and for some hn ∈ F .

Then we can choose a subsequence
{
1nk

}
of {1n} such that 1nk = hnk ◦ fi0 , for some fixed i0 ∈ {1, . . . ,m}.

Let w0 = fi0 (z0). Then hnk (w0) = hnk ◦ fi0 (z0) = 1nk (z0) → ∞, as k → ∞ showing that w0 ∈ U(F ). Hence
fi(z0) ∈ U(F ), for some fi ∈

{
f1, . . . , fm

}
.

If I(F ) and U(F ) are not open subsets of D, then one can easily see that I(F ) as well as U(F ) intersect
J(F ). Converse of this statement does not hold as seen through the following examples:

Example 3.7. (i) Let
U = {z : |z − 2| < 1/2} ,

fn(z) :=
[(

2 −
1
n

)
− z

]2

zn, z ∈ U,

and consider the family
F := { fn : n ∈N}.

Then fn(z) → ∞, as n → ∞, z ∈ U. But { fn(z)} does not tend to infinity uniformly in any neighborhood of 2.
Thus 2 ∈ J(F ) and I(F ) = U. Also, note that I(F ) is open.

(ii) Consider
F := {nz : n ∈N} ∪ {n(z − 1) : n ∈N} .

Then J(F ) = {0, 1} and U(F ) = C. Thus U(F ) ∩ J(F ) , φ and U(F ) is open.

Following example shows that I(F ) may be empty or non-empty independent of whether J(F ) is empty
or non-empty:

Example 3.8. (i) If F is locally uniformly bounded family of holomorphic functions on a domain D, then J(F ) = ∅
and I(F ) = ∅.

(ii) Consider the subfamily
F := {n(z − 2) : n ∈N}

ofH(D). Then J(F ) = ∅ and I(F ) = D, which is non-empty.

(iii) Consider the subfamily
F := {nz : n ∈N} ∪ {n(z − 1) : n ∈N}

ofH(D). Then J(F ) = {0, 1} and I(F ) = D \ {0, 1} . Thus both J(F ) and I(F ) are non-empty.

(iv) For the family F := ∪|a|<1 {n(z − a) : n ∈N} inH(D), we see that J(F ) = D and I(F ) = ∅.

If z ∈ ∂I(F ), then clearly F is not normal at z and hence ∂I(F ) ⊆ J(F ). The other way inclusion may not
hold, see (i) of Example 3.7.

Theorem 3.9. Suppose that F is a semigroup of entire functions and I(F ) has at least two points and is invariant.
Then J(F ) = ∂I(F ).
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Proof. Let z ∈ C \ I(F ) and let f ∈ F be such that f (z) ∈ I(F ). Then backward invariance of I(F ) implies that
z ∈ I(F ), a contradiction. This implies that F omits I(F ) on C \ I(F ). By Montel’s theorem, open subsets of
C \ I(F ) are contained in F(F ).

Since transcendental entire function has infinitely many periodic points, C \ I(F ) has at least two points.
Forward invariance of I(F ) implies that F omits C \ I(F ) on I(F ). and hence by Motel’s theorem, open
subsets of I(F ) are contained in F(F ). This implies that J(F ) ⊆ ∂I(F ).

Question 3.10. Under the hypothesis of Theorem 3.9, can J(F ) be empty? In the dynamics of entire functions, it is
always non-empty.

When J(F ) , ∅, the following result holds:

Theorem 3.11. If F is a subfamily ofH(D) such that J(F ) has an isolated point, then U(F ) , ∅.

Proof. Suppose that z0 is an isolated point of J(F ) and let N be a neighborhood of z0 such that N∩ J(F )\{z0} =
φ. Let

{
fn
}

be a sequence in F such that it has no uniformly convergent subsequence in N.

We shall show that fn(z) → ∞ in N \ {z0}. Suppose on the contrary that there is a subsequence
{
fnk

}
of{

fn
}

and a point z1 ∈ N \ {z0} such that | fnk (z1)| ≤ M for all k ∈ N and for some M > 0. By [[8], Lemma 2.9],
we see that

{
fnk

}
is locally uniformly bounded in N \ {z0}. Take a circle C with center z0 and radius ε in

N \ {z0}, there exists a constant M1 > 0 such that | fnk (z)| ≤ M1 for all z ∈ C and n ∈ N. Then by Maximum
Modulus Principle, | fnk (z)| ≤ M1 for all z ∈ {z : |z − z0| < ε} and for all n ∈ N. Thus

{
fnk

}
is normal at z0, a

contradiction.

Example 3.12. Let F :=
{
fn(z) = nz : n ∈N

}
. Then J(F ) = {0} and fn(z)→ ∞, n→ ∞, in any deleted neighbor-

hood of 0.

If J(F ) has an isolated point, it is implicit in the proof of Theorem 3.11 that U(F ) has non-empty interior.
Consequently, we have:

Corollary 3.13. If U(F ) has empty interior, then J(F ) is either empty or a perfect set.

4. Discussion on limit functions and fixed points of F

Let F be a subfamily ofH(D) and let U be a component of F(F ).A holomorphic function f on D is said
to be a limit function of F on U if there is a sequence

{
fn
}

in F which converges locally uniformly on U to
f . If there is a sequence in F which converges locally uniformly to ∞, then ∞ also qualifies to be a limit
function of F . By LF (U), we denote the set of finite limit functions of F on U.

Suppose that f ◦ 1 = 1 ◦ f for every f , 1 ∈ F and U is a forward invariant component of F(F ). If a
constant c is a limit function of F on U, then one can see that either c = ∞ or c is a fixed point of every
f ∈ F . Further, if LF (U) contains only constant functions, then LF (U) is a singleton.

A point z0 ∈ D is said to be a fixed point of a subfamily F of H(D) if z0 is a fixed point of each
f ∈ F . Classification of fixed points of an entire function can be extended to the fixed points of a family of
holomorphic functions. In classical dynamics, if z0 is an attracting or repelling fixed point of f , then z0 is
in Fatou set F( f ) or Julia set J( f ) of f respectively. This is not true in this situation, even a super attracting
fixed point may not be in the Fatou like set F(F ). For example,

(i) 0 is an attracting (not super attracting) fixed point of

F :=
{

fn(z) =
(1

2
+

1
3n

)
zenz : n ∈N

}
and 0 ∈ J(F );



K. S. Charak et al. / Filomat 35:8 (2021), 2721–2730 2729

(ii) 0 is a super attracting fixed point of

F :=
{

fn(z) = nz2 : n ∈N
}

and 0 ∈ J(F );

(iii) 0 is a repelling fixed point of
F := {nz : n ≥ 2}

and 0 ∈ J(F ).

If z0 is a super attracting fixed point of a family F of holomorphic functions on a domain D and 1 is a non
constant limit function of F , then clearly z0 is super attracting fixed point of 1. But the same is not true if
z0 is an attracting fixed point of F , for example 0 is the attracting fixed point of

F :=
{

fn(z) = zez
(
1 −

1
2n

)
: n ∈N

}
but 0 is not an attracting fixed point of the limit function 1(z) = zez of F . With regard to repelling fixed
points, the Fatou like set may contain the repelling fixed points ofF , for example 0 is a repelling fixed point
of

F :=
{

fn(z) = a
(
1 +

1
n

)
zez : n ∈N

}
, |a| > 1.

It is well known that a Fatou component contains at most one fixed point. But this is not true in Fatou
like sets. That is, a component U of F(F ) can contain two fixed points, for example 0 is an indifferent fixed
point and 1/2 is a repelling fixed point of

F :=
{

fn(z) = zn(z −
1
2

) + z : n ∈N
}

and both lie in F(F ) since J(F ) = {z : |z| = 1}. The Fatou like set may contain two attracting fixed points of
F , for example consider 1(z) = a + (z − a)h(z), where

h(z) =
(a − b)(z − b) + (z − a)

(b − a)
, a, b ∈ R : 0 < b − a <

1
2
.

Then a and b are attracting fixed points of1. Let a = 0.1 and b = −0.1,and let fn(z) = 1(z)+((z − a)(z − b))n , ∀n ∈
N. Then a, b are attracting fixed points of

{
fn
}
.Moreover, { fn(z)} converges uniformly to 1(z) in {z : |z| < 0.3}.

Let U be the component of F(
{
fn
}
) containing {z : |z| < 0.3}. Then U contains two attracting fixed points a

and b of
{
fn
}
.

5. Concluding Remarks

The investigations initiated in [5] and the present paper are just the initial stages and there are many
aspects to be looked into. For example, one can look into the domains like the wandering domains and
Baker’s domains of transcendental semigroups ( see [9, 15]), and quasi-nested wandering domains(see [12]
and [20]). The interesting point is that this study differs from dynamics of a meromorphic function as
well as the dynamics of semigroups in the sense that many properties of the dynamics of meromorphic
function and that of dynamics of transcendental semigroups fail to hold in the present Fatou and Julia like
theory. One may also try to look at the Fatou and Julia like theory in the context of families of bicomplex
holomorphic functions (see [6, 7]).
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