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Abstract. In domain theory, by a poset model of a T1 topological space X we usually mean a poset P
such that the subspace Max(P) of the Scott space of P consisting of all maximal points is homeomorphic
to X. The poset models of T1 spaces have been extensively studied by many authors. In this paper we
investigate another type of poset models: lower topology models. The lower topology ω(P) on a poset
P is one of the fundamental intrinsic topologies on the poset, which is generated by the sets of the form
P \ ↑x, x ∈ P. A lower topology poset model (poset LT-model) of a topological space X is a poset P such
that the space Maxω(P) of maximal points of P equipped with the relative lower topology is homeomorphic
to X. The studies of such new models reveal more links between general T1 spaces and order structures.
The main results proved in this paper include (i) a T1 space is compact if and only if it has a bounded
complete algebraic dcpo LT-model; (ii) a T1 space is second-countable if and only if it has an ω-algebraic
poset LT-model; (iii) every T1 space has an algebraic dcpo LT-model; (iv) the category of all T1 space is
equivalent to a category of bounded complete posets. We will also prove some new results on the lower
topology of different types of posets.

1. Introduction

The primary motivation for the study of domains, which was initiated by Dana Scott in the late 1960s,
was to search for a denotational semantics of the lambda calculus. Domain theory also provides a platform
to study the interlinks between topology and order. One of the most important topologies in domain
theory is the Scott topology: a topology on a poset with respect to which every directed subset converges
to its supremum. In general, the Scott space of a poset is only T0. However, if we take the set Maxσ(P) of
maximal points of P with the relative Scott topology, a more abundant number of spaces can be obtained.
A poset model of a topological space X is a poset P with a homeomorphism φ : X −→ Maxσ(P). Spaces
with a domain model enjoy many favourable properties and have been studied by many authors. See
[1, 11, 12, 17–19] for more details.

Zhao [24] and Erné [3] independently proved that every T1 space has a bounded complete algebraic
poset model. Therefore, the T1 spaces are exactly those spaces which have a poset model. Recently, Xi
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and Zhao [25] further proved that every T1 space has a directed complete poset model. The Xi-Zhao dcpo
models have been used in several other recent work ([8, 20, 22, 26]).

Note that the poset models based on other topologies, such as Lawson topology and the strong Scott
topology have also been studied by other people ([12, 16, 27]).

Besides the Scott topology, there are also other intrinsic topologies defined on a poset P, one of them is
the lower topology of which {P \ ↑x : x ∈ P} forms a subbase, denoted by ω(P). We write ΩP = (P, ω(P)).

The set Max(P) of maximal points of P with the relative lower topology will be denoted by Maxω(P).
A natural question arising here is: which topological spaces are homeomorphic to Maxω(P) for some

poset P?
We call a poset P a lower topology poset model (poset LT-model, for short) of a space X if Maxω(P) is

homeomorphic to X. This notion is not new, and was originally called the totally space by Kamimura and
Tang [10] (see Section 5). They proved that a space X is second-countable compact T1 if and only if it has a
bounded complete ω-algebraic dcpo LT-model.

Recently Hui Li and Qingguo Li also studied such model [14] and obtained the following:

(1) Every T1 space has a bounded complete algebraic poset LT-model;

(2) A T1 space has a dcpo LT-model if and only if it has a local dcpo LT-model, where a local dcpo is a
poset that every upper bounded directed subset has a supremum.

As every bounded complete poset is a local dcpo, thus combing the above results (1) and (2), one can
immediately deduce that every T1 space has a dcpo LT-model (note that the authors did not state this most
important result on LT-models explicitly in [14]). We have also obtained this result independently and
presented at the Third Pan-Pacific International Conference on Topology and Applications. But here we
shall focus on the new results on the lower topology model listed in the abstract.

In Section 3, we prove that a topological space X is second-countable if and only if Ω(C∗X,⊇) is second-
countable; X is compact if and only if Ω(C∗X,⊇) is compact, where C∗(X) is the set of all nonempty closed
sets. The main results proved in Sections 4 include (i) T1 spaces are precisely the spaces that have a poset
LT-model; a T1 space X is second-countable if and only if it has an ω-algebraic poset LT-model; (ii) A
T1 space X is compact if and only if it has a bounded complete dcpo LT-model. In Section 5, we prove
that every T1 space has an algebraic dcpo LT-model, which strengthens the result deduced from [14]. In
Section 6, based on the results in the previous sections we explore the existence of functors derived from
lower topology models. We prove that the category of all T1 spaces is equivalent to a category of bounded
complete posets. This result indicates some advantages of considering lower topology models.

2. Preliminaries

We first recall some basic notions and results to be used later. We refer readers to [2, 6, 7] for more
details.

For a set X, the family of all finite subsets of X will be denoted by X(<ω).
Let P be a poset. A nonempty subset D of P is directed if every two elements of D have an upper bound

in D. A poset P is a directed complete poset, or dcpo for short, if for any directed subset D ⊆ P,
∨

D exists.
A poset P is bounded complete if for any A ⊆ P,

∨
A exists whenever A has an upper bound in P, or

equivalently,
∧

A exists whenever A , ∅.
For x, y ∈ P, x is way-below y, denoted by x � y, if for any directed subset D of P for which

∨
D exists,

y 6
∨

D implies x ≤ d for some d ∈ D. Denote �x = {y ∈ P : x � y} and �x = {y ∈ P : y � x}. A poset P is
continuous, if for any x ∈ P, the set �x is directed and x =

∨

�x. A continuous dcpo is also called a domain.
An element x in a poset P is compact if x� x, and we use K(P) to denote the set of all compact elements

of P. A poset P is algebraic, if for any x ∈ P, the set K(P) ∩ ↓x is directed and x =
∨

(K(P) ∩ ↓x). An algebraic
poset P is called ω-algebraic if K(P) is countable.

A subset U of a poset P is Scott open if (i) U = ↑U and (ii) for any directed subset D of P for which
∨

D
exists,

∨
D ∈ U implies D ∩ U , ∅. All Scott open subsets of P form a topology, and we call this topology
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the Scott topology on P and denote it by σ(P). The space ΣP = (P, σ(P)) is called the Scott space of P. In an
algebraic dcpo P, the family {↑x : x ∈ K(P)} forms a base for the Scott topology on P.

For any T0 space X, the specialization order ≤ on X is defined by x ≤ y iff x ∈ cl({y}), where cl is the
closure operator. A subset S of X is saturated if S = ↑S with respect to the specialization order.

Remark 2.1. For each poset P, the specialization order on ΣP (resp., ΩP) is exactly the (resp., dual of) partial
order on P.

Definition 2.2. A T0 space X is called well-filtered if for any filtered family {Qi : i ∈ ∆} of compact saturated
subsets of X and any open set U ⊆ X,

⋂
i∈∆ Qi ⊆ U implies Qi0 ⊆ U for some i0 ∈ ∆.

Definition 2.3. A nonempty subset A of a topological space X is irreducible if for any closed sets F1, F2 of X,
A ⊆ F1 ∪ F2 implies A ⊆ F1 or A ⊆ F2. A T0 space X is sober, if for any irreducible closed set F of X there is a
point x ∈ X such that F = cl({x}).

3. The Lower Topology

The standard name ‘lower topology’ was originally given by Gierz and Lawson [5] as the open sets are
lower sets. In [9], it is called the INF-topology while in [13] it is called the closure of points (COP) topology.
Two recent results on the lower topology are due to Wen and Xu [21], who proved that for any bounded
complete dcpo P,

(i) the lower topology on P is sober;

(ii) the Scott closed sets of P are exactly the compact saturated subsets of P with the lower topology.

In this section, we prove some more properties of the lower topology.

Lemma 3.1. Let X be a T0 space and Q ⊆ X. Then Q is compact saturated if and only if Q = ↑Min(Q) and Min(Q)
is compact, where Min(Q) is the set of minimal elements of Q with respect to the specialization order.

Proof. Note that for any A ⊆ X, A is compact iff ↑A is compact (see [6, after Definition O-5.7]). Thus the
Sufficiency is trivial.

Suppose now that Q is a compact saturated set. To prove Q = ↑Min(Q), it suffices to prove Q ⊆ ↑Min(Q).
Let x ∈ Q. Then there is a maximal chain C ⊆ Q (with respect to the specialization order) that contains x,
here we use the Hausdorff Maximality Theorem. As Q is compact and ↓y∩Q , ∅ for all y ∈ C, we have that⋂

y∈C ↓y ∩ Q , ∅. Let x0 ∈
⋂

y∈C ↓y ∩ Q. Since x0 is a lower bound of C and x0 ∈ Q, C ∪ {x0} is also a chain
in Q. By the maximality of C, we deduce that x0 ∈ C and x0 =

∧
C. It follows that x0 ∈ MinQ and x0 ≤ x,

implying that x ∈ ↑Min(Q). Thus Q ⊆ ↑Min(Q). It is straightforward to check that Min(Q) is compact. Thus
the necessity follows.

Lemma 3.2. Let P be a bounded complete dcpo. Then both spaces ΩP and Maxω(P) are compact.

Proof. We first show that ΩP is compact. Let {↑xi : i ∈ ∆} be a family of subbasic closed subsets of ΩP such
that for any J ∈ ∆(<ω),

⋂
i∈J ↑x j , ∅. Then {x j : j ∈ J} has an upper bound, and since P is bounded complete,

xJ :=
∨
{xi : i ∈ J} exists. Note that

{
xJ : J ∈ ∆(<ω)

}
is a directed subset of the dcpo P, so x :=

∨{
xJ : J ∈ ∆(<ω)

}
exists. It follows that x =

∨
{xi : i ∈ ∆}, which implies that x ∈

⋂
i∈∆ ↑xi. Thus

⋂
i∈∆ ↑xi , ∅. Using Alexander

Subbase Lemma, we obtain that ΩP is compact.
By Remark 2.1 and Lemma 3.1, Maxω(P) is compact.

Theorem 3.3. For any bounded complete poset P, the following statements are equivalent.

(1) P is a dcpo.

(2) ΩP is compact.
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Proof. (1)⇒ (2) is immediate by Lemma 3.2.
(2) ⇒ (1). Assume D is a directed subset of P. Then {↑d : d ∈ D} is a filtered family of closed sets in

ΩP. Since ΩP is compact, we have that
⋂

d∈D ↑d , ∅, showing that D has an upper bound, Thus
∨

D exists
because P is bounded complete. Therefore, P is a dcpo.

Definition 3.4. A subset B of a poset P is called join-dense (resp., directed-join-dense) if for each x ∈ P, (resp.,
↓x ∩ B is directed and) x =

∨
(↓x ∩ B), and ⊥ ∈ B whenever the least element ⊥ of P exists.

Remark 3.5. Let P be a poset and B a join-dense subset of P. Then for any x ∈ P, ↓x ∩ B , ∅. It is trivial if
x , ⊥. For the case x = ⊥, we have ⊥ ∈ ↓⊥ ∩ B.

Proposition 3.6. Let P be a poset. If B is a join-dense subset of P, then B is dense in ΩP, that is, clΩP(B) = P.

Proof. It suffices to verify that every nonempty basic open set meets B. Let F be a finite subset of P such that
P \ ↑F , ∅. We need to show (P \ ↑F) ∩ B , ∅. Take x ∈ P \ ↑F. By Remark 3.5, we have that ↓x ∩ B , ∅. Let
b ∈ ↓x∩B. Note that P \ ↑F is a lower set that contains x, so b ∈ (P \ ↑F). Thus b ∈ (P \ ↑F)∩B , ∅. Therefore,
B is dense in ΩP.

The converse conclusion of Proposition 3.6 is not true in general.

Example 3.7. Let P be an infinite set with the discrete order (i.e., ∀x, y ∈ P, x � y and y � x). Fix an element
x0 ∈ P, and let S := P \ {x0}. Then S is a dense subset of ΩP, but ↓x0 ∩S = ∅, whose supremum does not exist
in P. Thus S is not join-dense in P.

Proposition 3.8. Let P be a poset and B ⊆ P. Then the following statements are equivalent:

(1) B is join-dense.

(2) {↑x : x ∈ B} is a subbase for the closed sets in ΩP.

(3)
{
↑F : F ∈ B<(ω)

}
is a base for the closed sets in ΩP.

Proof. (2)⇔ (3) is trivial.
(1)⇒ (3) For the sake of convenience, we denote B =

{
↑F : F ∈ B<(ω)

}
. Suppose F0 = {x1, x2, . . . , xk} is a

finite subset of P. Without loss of generality, we assume the least element of P (when it exists) is not in F0.
Since B is join-dense, we have that xk =

∨
(↓xk ∩ B) for all 1 ≤ k ≤ n. It follows that

↑F0 =
⋃

1≤k≤n ↑xk =
⋃

1≤k≤n ↑
∨

(↓xk ∩ B)
=

⋃
1≤k≤n

⋂
y∈↓xk∩B ↑y =

⋂
ϕ∈∆

⋃
1≤k≤n ↑ϕ(k),

where ∆ =
∏

1≤k≤n ↓xk ∩ B. Since for any ϕ ∈ ∆ and 1 ≤ k ≤ n, ϕ(k) ∈ B, we have that
⋃

1≤k≤n ↑ϕ(k) = {↑ϕ(k) :
1 ≤ k ≤ n} ⊆ B. So ↑F0 can be expressed as the intersection of some subfamily of B. Since

{
↑F : F ∈ P(<ω)

}
is

a base for the closed sets in ΩP, we conclude that B is a base.
(3)⇒ (1) Let x ∈ P. As ↑x is closed in ΩP andB =

{
↑F : F ∈ B<(ω)

}
is a base for the closed sets in ΩP, there

exists a subfamily {Fi : i ∈ ∆} ⊆ B such that ↑x =
⋂

i∈∆ ↑Fi. Then for each i ∈ ∆, x ∈ ↑Fi, and thus there exists
ai ∈ Fi such that x ∈ ↑ai. It follows that ↑x ⊆

⋂
i∈∆ ↑ai ⊆

⋂
i∈∆ ↑Fi = ↑x, so ↑x =

⋂
i∈∆ ↑ai. Thus x =

∨
i∈∆ ai,

implying that {ai : i ∈ ∆} ⊆ ↓x ∩ B. Thus x =
∨

i∈∆ ai ≤
∨

(↓x ∩ B) ≤ x, so x =
∨

(↓x ∩ B). Therefore, B is a
join-dense subset of P.

Lemma 3.9. Let P be a bounded complete poset. If B is a join-dense subset of P, then

B0 :=
{∨

F : F is a finite subset of B such that
∨

F exists
}

is a directed-join-dense subset of P.
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Proof. We prove this in two steps.
Step 1. For each x ∈ P, ↓x ∩ B0 is directed. First, from Remark 3.5 and the fact B ⊆ B0, it follows that

↓x∩B0 , ∅. Let x1, x2 ∈ ↓x∩B0. Then x is an upper bound of x1, x2, which implies that x1 ∨ x2 exists because
P is bounded complete. Since x1, x2 ∈ B0, there exist two finite subsets F1,F2 ⊆ B such that x1 =

∨
F1 and

x2 =
∨

F2. Now let F3 = F1∪F2. Then F3 is a finite subset of B and x1∨x2 =
∨

F1∨
∨

F2 =
∨

(F1∪F2) =
∨

F3,
showing that x1 ∨ x2 ∈ ↓x ∩ B0. Therefore, ↓x ∩ B0 is directed.

Step 2. B0 is join-dense. For each x ∈ P, since B ⊆ B0 and B is a join-dense subset of P, we have that
x =

∨
↓x ∩ B ≤

∨
↓x ∩ B0 ≤ x, so x =

∨
↓x ∩ B0. Hence, B0 is a join-dense subset of P.

All these show that B0 is a directed-join-dense subset of P.

It is important to note that the set B0 in the proceeding lemma is countable whenever B is countable.

Lemma 3.10. ([2, Theorem 1.1.15]) If the minimal cardinality of the bases for a topological space X is ≤ m, then for
every base B for X, there exists a base B0 ⊆ B such that |B0| ≤ m.

Recall that a topological space is said to be second-countable if it has a countable base.

Theorem 3.11. Let P be a poset. The following statements are equivalent:

(1) ΩP is second-countable.

(2) P has a countable join-dense subset.

If P is bounded complete, these are equivalent to

(3) P has a countable directed-join-dense subset.

Proof. (1) ⇒ (2) Assume ΩP is second-countable. Since
{
↑F : F ∈ P(<ω)

}
is a base for the closed sets in ΩP

and by Lemma 3.10, there exists a countable subfamily B ⊆
{
↑F : F ∈ P(<ω)

}
which is a base for the closed

sets in ΩP. We may assume B = {↑Fn : n < ω}. Let B =
⋃

n<ω Fn, which is countable. Since B is a base for
the closed sets in ΩP and B ⊆

{
↑F : F ∈ B(<ω)

}
, we conclude that

{
↑F : F ∈ B(<ω)

}
is also a base for the closed

sets in ΩP. Thus by Proposition 3.8, B is a join-dense subset of P.
(2) ⇒ (1) Assume B is a countable join-dense subset of P. By Proposition 3.8, the family B ={

↑F : F ∈ B(<ω)
}

is a countable base for ΩP, completing the proof.
If P is bounded complete, then (2)⇒ (3) is a direct consequence of Lemma 3.9, and (3)⇒ (2) is trivial.

For a topological space X, denote by C∗(X) the set of all nonempty closed subsets of X. Consider the
poset (C∗(X),⊇).

1. The poset (C∗(X),⊇) is bounded complete: for each nonempty subsetA ⊆ C∗(X),∧
A = cl

(⋃
A

)
.

2. If B is a base for the closed sets in X, then B is a join-dense subset of (C∗(X),⊇). This is because for
each C ∈ C∗(X),

C =
⋂
{B ∈ B : C ⊆ B} =

∨
↓C∗(X)C ∩ B.

By the above arguments and Theorem 3.11, we deduce the following.

Corollary 3.12. For any topological space X, the following statements are equivalent:

(1) X is second-countable.

(2) Ω(C∗(X),⊇) is second-countable.
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(3) (C∗(X),⊇) has a countable join-dense subset.

(4) (C∗(X),⊇) has a countable directed-join-dense subset.

Note that a topological space X is compact if and only if the intersection of each filtered (under the
set inclusion order) subfamily of C∗(X) is nonempty, which is equivalent to that (C∗(X),⊇) is a (bounded
complete) dcpo. Thus by Theorem 3.3, we obtain the following result.

Corollary 3.13. Let X be a topological space. The following statements are equivalent:

(1) X is compact.

(2) Ω(C∗(X),⊇) is compact.

(3) (C∗(X),⊇) is a bounded complete dcpo.

4. Bounded Complete Poset LT-Models of T1 Spaces

In this section, we prove that T1 spaces are exactly the set of maximal points of posets with the relative
lower topology. Furthermore, we show that some topological properties can be characterized via lower
topology poset models.

Definition 4.1. A lower topology poset model (poset LT-model) of a topological space X is a poset P with a
homeomorphism φ : X −→ Maxω(P), where Maxω(P) is the set of maximal points of P with the relative
lower topology.

Remark 4.2. For any poset P, the space Maxω(P) is always T1 because for every x ∈Max(P), ↑x∩Max(P) = {x}.
Thus topological spaces having a poset LT-model must be T1.

Given a T1 space X, let C∗(X) be the set of all nonempty closed subsets of X. The poset (C∗(X),⊇) is
bounded complete by the argument before Corollary 3.12. The set of maximal points of (C∗(X),⊇) are the
singleton sets:

Max(C∗(X),⊇) = {{x} : x ∈ X}.

The following result shows that the space Maxω(C∗(X),⊇) is homeomorphic to X.

Lemma 4.3. Let X be a T1 space. The mapping φ : X −→Maxω(C∗(X),⊇) defined by

φ(x) = {x}, ∀x ∈ X

is a homeomorphism.

Proof. Clearly, φ is a bijection. For any closed set C ⊆ X, we have that

φ(C) = {{x} : x ∈ C} = ↑C∗(X)C ∩Maxω(C∗(X),⊇),

which is closed in Maxω(C∗(X),⊇). So φ is a closed mapping. It is also a continuous mapping since for any
C ∈ C∗(X),

φ−1
(
↑C∗(X)C ∩Maxω(C∗(X),⊇)

)
= {x : x ∈ C} = C,

which is closed in X. Thus φ is a homeomorphism.

As a consequence, we obtain the following result.

Theorem 4.4. Every T1 space has a bounded complete poset LT-model.
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The above theorem and Remark 4.2 show that the T1 spaces are precisely the spaces that have a poset
LT-model.

Recall that a subset I of a poset P is an ideal if I is directed and I = ↓I. In the following, we use Id(P) to
denote the set of all ideals on the poset P. For a subset B ⊆ P, let Id∨(B) = {I ∈ Id(B) :

∨
I exists in P}. We

should note that the sets Id(B) and Id∨(B) coincide whenever P is a dcpo.

Lemma 4.5. Let P be a poset and B a directed-join-dense subset of P. Then Max (Id∨(B),⊆) = {↓a∩B : a ∈Max(P)}.

Proof. First, as B is a directed-join-dense subset of P, we have that for each x ∈ P, ↓x ∩ B is directed and
x =

∨
(↓x ∩ B). Since ↓x ∩ B is a lower subset of B, we have that ↓x ∩ B ∈ Id∨(B).

Let I ∈ Max(Id∨(B),⊆). Then
∨

I exists and I ⊆ (↓
∨

I) ∩ B. Since (↓
∨

I) ∩ B ∈ Id∨(B) and I is maximal,
we have that I = (↓

∨
I)∩B. We now show that

∨
I ∈Max(P). Let x ∈ P with

∨
I ≤ x. Then I ⊆ ↓x∩B. Since

↓x∩ B ∈ Id∨(B) and I is maximal, we have that I = ↓x∩ B. This implies that
∨

I =
∨

(↓x∩ B) = x. Therefore,∨
I ∈Max(P).
Conversely, assume that a ∈Max(P). Let I ∈ Id∨(B) such that ↓a ∩ B ⊆ I. Then a =

∨
(↓a ∩ B) ≤

∨
I. As a

is maximal in P, it follows that a =
∨

I. Thus we have that ↓a ∩ B ⊆ I ⊆ (↓
∨

I) ∩ B = ↓a ∩ B, implying that
↓a ∩ B = I. Hence ↓a ∩ B ∈Max(Id∨(B),⊆).

Lemma 4.6. Let P be a poset and B a directed-join-dense subset of P. Then Maxω(P) and Maxω(Id∨(B),⊆) are
homeomorphic.

Proof. Define φ : Maxω(P) −→Maxω(Id∨(B),⊆) by

φ(a) = ↓a ∩ B, ∀a ∈Max(P).

By Lemma 4.5, φ is a bijection. Since B is a directed-join-dense subset of P, we have that for any x, y ∈ P,
x ≤ y iff ↓x ∩ B ⊆ ↓y ∩ B. Thus for any x ∈ P, we have

φ(↑x ∩Max(P)) = {↓a ∩ B : x ≤ a and a ∈Max(P)}
= {↓a ∩ B : ↓x ∩ B ⊆ ↓a ∩ B and a ∈Max(P)}
= {I ∈Max(Id∨(B),⊆) : ↓x ∩ B ⊆ I}
= ↑Id∨(B)(↓x ∩ B) ∩Max(Id∨(B),⊆),

which is closed in Maxω(Id∨(B)). Thus φ is a closed mapping. For any I ∈ Id∨(B), we have

φ−1(↑Id∨(B)I ∩Max(Id∨(B),⊆)) = {a ∈Max(P) : I ⊆ ↓a ∩ B}
= {a ∈Max(P) :

∨
I ≤ a}

= ↑(
∨

I) ∩Max(P),

which is closed in Maxω(P). Thus φ is a continuous mapping. Therefore, φ is a homeomorphism.

Let B be a directed-join-dense subset of a poset P. Then (Id∨(B),⊆) is an algebraic poset whose compact
elements are ↓b, b ∈ B. In particular, P is a directed-join-dense subset of itself. Thus we obtain the following
result.

Corollary 4.7. Let P be a poset. Then Maxω(P) and Maxω(Id∨(P),⊆) are homeomorphic.

Lemma 4.8. Let P be a bounded complete poset and B a join-dense subset of P. Define

B0 =
{∨

F : F is a finite subset of B such that
∨

F exists
}
.

Then (Id∨(B0),⊆) is a bounded complete algebraic poset.
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Proof. nLet {Iα : α ∈ ∆} ⊆ Id∨(B0) be a nonempty family. We prove the following.
(c1) B0 ∩

⋂
α∈∆ Iα , ∅.

As Iα , ∅ and P is bounded complete,
∧

Iα exists. Similarly, x0 :=
∧
{
∧

Iα : α ∈ ∆} exists. Since B0 is a
directed-join-dense subset of P, by Remark 3.5, we have ∅ , B0 ∩ ↓x0 ⊆ B0 ∩

⋂
α∈∆ Iα, so B0 ∩

⋂
α∈∆ Iα , ∅.

(c2)
⋂
α∈∆ Iα is an ideal of B0.

Let x, y ∈
⋂
α∈∆ Iα. Fix an arbitrary β ∈ ∆. Since x, y ∈ Iβ ⊆ B0 and Iβ is an ideal, there exists z ∈ Iβ which

is an upper bound of {x, y}, thus x ∨ y exists because P is bounded complete. From the definition of B0,
it follows that x ∨ y ∈ B0. Note that x ∨ y ≤ z ∈ Iβ and Iβ is a lower subset of B0, so x ∨ y ∈ Iβ. By the
arbitrariness of β, we have that x ∨ y ∈

⋂
α∈∆ Iα. It is trivial that

⋂
α∈∆ Iα is a lower subset of B0 because Iα is

lower for each α ∈ ∆. By (c1),
⋂
α∈∆ Iα is an ideal of B0.

(c3)
∨⋂

α∈∆ Iα exists.
For a fixed β ∈ ∆, since Iβ ∈ Id∨(B0), we have that

∨
Iβ exists and

⋂
α∈∆ Iα ⊆ Iβ ⊆ ↓

∨
Iβ, implying that∨

Iβ is an upper bound of
⋂
α∈∆ Iα, so

∨⋂
α∈∆ Iα exists because P is bounded complete.

All these show that
⋂
α∈∆ Iα ∈ Id∨(B0), and thus

∧
Id∨(B0){Iα : α ∈ ∆} =

⋂
α∈∆ Iα. Therefore, (Id∨(B0),⊆) is

bounded complete. It is algebraic by the argument before Corollary 4.7.

The following corollary is an immediate consequence of the above lemma.

Corollary 4.9. If P is a bounded complete poset, then Id∨(P) is a bounded complete algebraic poset.

By Lemma 4.3, Corollary 4.7 and Corollary 4.9, we deduce the following.

Corollary 4.10. Every T1 space has a bounded complete algebraic poset LT-model.

Remark 4.11. Compared with proof for the result in [14], the above construction provides a more straight
forward method to the bounded complete algebraic poset LT-models.

Theorem 4.12. Let X be a T1 space. The following statements are equivalent:

(1) X is second-countable.

(2) X has a bounded complete poset LT-model that has a countable directed-join-dense subset.

(3) X has a bounded complete ω-algebraic poset LT-model.

Proof. (1)⇒ (2) is immediate by Corollary 3.12 and Lemma 4.3.
(2) ⇒ (3) Let P be a bounded complete poset LT-model and B a countable directed-join-dense subset

of P. Then the set B0 constructed from B in Lemma 3.9 is a countable directed-join-dense subset of P, and
by Lemma 4.8, (Id∨(B0),⊆) is a bounded complete ω-algebraic poset with the compact elements ↓b, b ∈ B0.
Then by Lemma 4.6, (Id∨(B0),⊆) is a bounded complete ω-algebraic poset LT-model of X.

(3) ⇒ (1) Suppose P is a bounded complete ω-algebraic poset LT-model of X. Then the set K(P) of
all compact elements of P is a countable directed-join-dense subset of P. From Theorem 3.11, Ω(P) has a
countable base, so is Maxω(P). As X is homeomorphic to Maxω(P), X is second-countable.

The two families Id(P) and Id∨(P) coincide whenever P is a dcpo. Then by Corollary 4.7, we deduce the
following.

Corollary 4.13. For any dcpo P, Maxω(P) and Maxω(Id(P),⊆) are homeomorphic.

The above corollary need not be true for a general poset.

Example 4.14. Let N be the set of natural numbers with the usual order. Define P = N ∪ {a} such that a is
incomparable with any element of N. Then Max(P) = {a}, while Max(Id(P),⊆) = {N, {a}}. Hence, they are
not homeomorphic.

Lemma 4.15. If P is a (resp., bounded complete) dcpo, then (Id(P),⊆) is an (resp., bounded complete) algebraic dcpo.
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Proof. First, note that for any poset P, (Id(P),⊆) is an algebraic dcpo with the compact elements ↓x, x ∈ P.
Now assume P is a bounded complete dcpo. Then Id(P) = Id∨(P). Since P is a directed-join-dense subset of
itself and P0 constructed from P in Lemma 4.8 is exactly P, we have that (Id(P),⊆) is a bounded complete
algebraic dcpo.

The following is a corollary of Lemma 4.3, Lemma 4.15 and Corollary 4.13.

Corollary 4.16. If a topological space has a (resp., bounded complete) dcpo LT-model, then it also has an (resp.,
bounded complete) algebraic dcpo LT-model.

Xi and Zhao proved that spaces that have a bounded complete dcpo model must be well-filtered and
coherent [22]. Later, they showed that every Hausdorff k-space has a bounded complete dcpo model [26].
However, there is still no characterization for the spaces that have a bounded complete dcpo model, while
there is a fully description for the case of LT-model shown as follows.

Theorem 4.17. Let X be a T1 space. The following statements are equivalent:

(1) X is compact.

(2) X has a bounded complete dcpo LT-model.

(3) X has a bounded complete algebraic dcpo LT-model.

Proof. (1)⇒ (2) follows from Corollary 3.13 and Lemma 4.3.
(2)⇒ (3) is an immediate consequence of Corollary 4.16.
(3)⇒ (1) is an immediate consequence of Lemma 3.2.

The following result, originally proved by Wen and Xu (2018), will be used later. Here, we give a simpler
proof.

Lemma 4.18. [21] Let P be a poset. Then the following statements are equivalent:

(1) ΩP is sober.

(2) For each irreducible closed subset A of ΩP,
∧

A exists.

Proof. (1)⇒ (2) Let A be an irreducible closed set. As ΩP is sober, there exists x ∈ P such that A = ↑x with
respect to the partial order on P. Hence,

∧
A = x.

(2)⇒ (1) Let A be an irreducible closed set. By assumption, x :=
∧

A exists. To prove A = ↑x, it suffices
to prove x ∈ A. Otherwise, x ∈ P \ A. Since P \ A is open in ΩP, there exists a finite subset F of P such that
x ∈ P \ ↑F ⊆ P \ A. It follows that A ⊆ ↑F =

⋃
y∈F ↑y. Since A is irreducible, there exists y0 ∈ F such that

A ⊆ ↑y0, implying that x =
∧

A ∈ ↑y0 ⊆ ↑F, a contradiction. Thus x ∈ A and A = ↑x. Therefore, ΩP is a
sober space.

Corollary 4.19. Every bounded complete poset is sober with respect to the lower topology.

The following example shows that neither the sobriety nor the well-filteredness of P endowed with the
lower topology is inherited by its maximal point space Maxω(P).

Example 4.20. Let X be an infinite set equipped with the co-finite topology (the proper closed sets are
finite subsets). It is easy to verify that X is not a well-filtered space, hence not sober. Let P = (C∗(X),⊇).
By Theorem 4.4, the T1 space X is homeomorphic to Maxω(P), implying that Maxω(P) is not well-filtered.
However, since P is a bounded complete poset, by Corollary 4.19, ΩP is a sober space.



C. Shen et al. / Filomat 35:8 (2021), 2645–2661 2654

5. Algebraic dcpo LT-Models of T1 Spaces

It is well-known that spaces that have a domain model must be Baire [17]. In this section, we show that
every T1 space has a domain LT-model. This means that spaces having a domain LT-model need not be
Baire.

In [24], Zhao (2009) proved that every T1 space has a bounded complete algebraic poset model. Sub-
sequently, from a bounded complete algebraic poset (P,≤P), Zhao and Xi (2016) constructed a dcpo P̂ as
follows:

P̂ = {(x, a) : x ∈ P, a ∈Max(P) and x ≤P a}

ordered by
(x, a) ≤ (y, b) iff either a = b and x ≤P y, or y = b and x ≤P b.

It was proved that a bounded complete algebraic poset P and the dcpo P̂ has the homeomorphic maximal
point space relative to the Scott topology, therefore every T1 space has a dcpo model [25].

We elaborate the construction of P̂ by the following simple example.

Example 5.1. ([8]) Let P = {a1, a2, . . . , an, . . .} ∪ {d1, d2, . . . , dn, . . .}with the partial order ≤P on P defined by

ai ≤P di and ai ≤P ai+1

for any i = 1, 2, . . .. Then (P,≤P) is a bounded complete algebraic poset, shown in Figure 1. The dcpo P̂
constructed from P is shown in Figure 2.

Figure 1: The poset P

Figure 2: The dcpo P̂

It needs to be reminded that P̂ need not be a dcpo if P is only a poset, which can be seen from Proposition
5.5.

Remark 5.2. The following facts on the poset P̂ constructed from a poset P will be used later. They can be
proved by using a similar approach to [25, Lemma 1].
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(i) The directed subset D of P̂ has two cases: either
∨
D ∈ D or D = {(xi, a) : i ∈ I} for some a ∈ Max(P)

and some directed subset {xi : i ∈ I} of P.

(ii) The set of maximal points of P̂ equals {(a, a) : a ∈Max(P)}.

We call a poset P conditionally directed complete if for every directed subset D,
∨

D exists whenever D has
an upper bound. Clearly, every bounded complete poset is conditionally directed complete.

Proposition 5.3. If P is a conditionally directed complete poset, then P̂ is a dcpo.

Proof. LetD be a directed subset of P̂. By Remark 5.2, we may assumeD = {(xi, a) : i ∈ I}, where {xi : i ∈ I}
is a directed subset of P and a ∈ Max(P). As P is conditionally directed complete,

∨
i∈I xi exists, and then∨

D = (
∨

i∈I xi, a). Hence P̂ is a dcpo.

Lemma 5.4. Let (P,≤P) be a poset and {(xi, a) : i ∈ I} a directed subset of P̂. If
∨

i∈I(xi, a) exists, then
∨

i∈I xi exists
and

∨
i∈I(xi, a) = (

∨
i∈I xi, a).

Proof. For the sake of convenience, let
∨

i∈I(xi, a) = (y, b). We prove this in two steps.
Step 1.

∨
i∈I xi = y. Since (y, b) is an upper bound of {(xi, a) : i ∈ I}, y is an upper bound of {xi : i ∈ I}. If

z ∈ P is another upper bound of {xi : i ∈ I}, then (z, a) is an upper bound of {(xi, a) : i ∈ I}, which implies that
(y, b) ≤ (z, a), hence y ≤P z. Therefore,

∨
i∈I xi = y.

Step 2. a = b. Suppose, on the contrary, that a , b. Since (xi, a) ≤ (y, b), we have that y = b. Note that
a is an upper bound of {xi : i ∈ I}, so y = b =

∨
i∈I xi ≤P a. Thus b <P a, contradicting that b is maximal.

Therefore, a = b holds.

Proposition 5.5. Let (P,≤P) be a poset such that P = ↓Max(P). Then P is a conditionally directed complete poset if
and only if P̂ is a dcpo.

Proof. Assume P̂ is a dcpo. Let D be a directed subset of P with an upper bound y. As y ∈ P = ↓Max(P),
there exists a ∈ Max(P) such that y ≤P a. It follows that {(x, a) : x ∈ D} is a directed subset of P̂. Thus by
Lemma 5.4,

∨
D exists in P. Therefore, P is a conditionally directed complete poset. The converse is trivial

by Proposition 5.3.

The following lemma shows that for a poset P, the maximal point spaces of P and P̂ are homeomorphic
when each equipped with the relative lower topology.

Lemma 5.6. Let (P,≤P) be a poset. Then Maxω(P) and Maxω(P̂) are homeomorphic.

Proof. Define f : Maxω(P) −→ Maxω(P̂) by f (a) = (a, a) for each a ∈ Max(P). Then f is a bijection. Let x ∈ P
such that ↑x ∩Max(P) , ∅, and fix an element a0 ∈ ↑x ∩Max(P). Then

f (↑x ∩Max(P)) = {(a, a) : a ∈Max(P) and x ≤P a}.

We claim that f (↑x∩Max(P)) = ↑(x, a0)∩Max(P̂). Suppose (a, a) ∈ f (↑x∩Max(P)). Then a ∈Max(P) and x ≤P

a. By the definition of the order on P̂, we have that (x, a0) ≤ (a, a), implying that (a, a) ∈ ↑(x, a0) ∩Max(P̂).
Conversely, suppose (b, b) ∈ ↑(x, a0) ∩Max(P̂). Then b ∈ Max(P) and (x, a0) ≤ (b, b), implying that x ≤P b, so
(b, b) ∈ f (↑x ∩Max(P)). All these show that f (↑x ∩Max(P)) = ↑(x, a0) ∩Max(P̂), which is closed in Maxω(P̂).
So f is a closed mapping.

For any (x, a) ∈ P̂, we have f−1(↑(x, a) ∩Max(P̂)) = {b ∈ Max(P) : (x, a) ≤ (b, b)} = ↑x ∩Max(P), which is
closed in Maxω(P). So f is a continuous mapping. Therefore, f is a homeomorphism.

Remark 5.7. The above lemma has been proved by H. Li and Q. Li [14] when (P,≤P) is assumed to be a
conditionally complete dcpo. Here, we generalize the result to any poset.
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Given a T1 space X, P = (C∗(X),⊇) is a bounded complete poset such that P = ↓Max(P). By Proposition
5.5, P̂ is a dcpo. Further, by Lemma 4.3 and Lemma 5.6, it follows that

X � Maxω(P) � Maxω(P̂).

As a consequence, we obtain the following result.

Theorem 5.8. Every T1 space has a dcpo LT-model.

Remark 5.9. As pointed out in the introduction, the above result is an immediate consequence of the results
in [14], though the authors did not state it.

In the following, the dcpo LT-model constructed above for a T1 space X will be denoted by D(X), that is,
D(X) = ̂(C∗(X),⊇).

By Corollary 4.16 and Theorem 5.8, we deduce the following result.

Corollary 5.10. Every T1 space has an algebraic dcpo LT-model.

Remark 5.11. The referee pointed out that the above result was also obtained by H. Li and Q. Li in [15],
which was published after our submission to this journal.

In the next part, we study some properties of the dcpo LT-model D(X) of a T1 space X.
For each a ∈Max(P) and Q ⊆ P̂, denote

Qa = {(x, a) ∈ Q : x ≤P a}.

Lemma 5.12. Let P be a bounded complete poset and Q ⊆ P̂ \Max(P̂). The following statements are equivalent:

(1) Q is compact saturated in Ω(P̂).

(2) For each a ∈Max(P), Qa is compact saturated in Ω(P̂).

(3) For each a ∈Max(P), Qa is Scott closed.

Proof. We first prove a useful result:
(F) If {↑(xi, ai) : i ∈ ∆} satisfies that for each J ∈ ∆(<ω),

⋂
i∈J ↑(xi, ai) ∩ Q , ∅, then there exists a ∈ Max(P)

such that ai = a for all i ∈ ∆.
Let i1 ∈ ∆. By assumption that ↑(xi1 , ai1 ) ∩ Q , ∅, there exists (x, a) ∈ Q such that (xi1 , ai1 ) ≤ (x, a). Note

that Q ∩Max(P̂) = ∅, so x , a. From the definition of the order on P̂, it follows that ai1 = a. Now take an
arbitrary i ∈ ∆. Then

↑(xi, ai) ∩ ↑(xi1 , ai1 ) ∩Q = ↑(xi, ai) ∩ ↑(xi1 , a) ∩Q , ∅,

so there exists (y, b) ∈ Q such that (xi, ai), (xi1 , a) ≤ (y, b). Since Q ∩Max(P̂) = ∅, we have that y , b. By the
definition of the order on P̂, it holds that ai = b = a. Therefore, ai = a for all i ∈ ∆.

We now prove the lemma.
(1)⇒ (2) Suppose {↑(xi, ai) : i ∈ ∆} satisfies that for each J ∈ ∆(<ω),

⋂
i∈J ↑(xi, ai)∩Qa , ∅. By the proceeding

argument, we deduce that ai = a for all i ∈ ∆. Since Q is compact such that
⋂

i∈J ↑(xi, a) ∩ Q , ∅ for all
J ∈ ∆(<ω), we have that

⋂
i∈∆ ↑(xi, a) ∩Q , ∅, so let (y, b) ∈

⋂
i∈∆ ↑(xi, a) ∩Q. Note that Q ∩Max(P̂) = ∅, hence

y , b. By the definition of the order on P̂, it holds that b = a, so (y, b) = (y, a) ∈
⋂

i∈∆ ↑(xi, a) ∩ Qa , ∅. By
Alexander Subbase Lemma, Qa is compact.

(2) ⇒ (3) By remark 2.1, Qa is a lower set. Now let D be a directed subset of Qa. We need to prove∨
D ∈ Qa. It is trivial when

∨
D ∈ D. Otherwise, by Remark 5.2, D = {(xi, a) : i ∈ ∆}, where {xi : i ∈ ∆}

is a directed subset of P and a ∈ Max(P). Then for each J ∈ ∆(<ω), there exists iJ ∈ ∆ such that xiJ is an
upper bound of {xi : i ∈ J}, implying that (xiJ , a) ∈

⋂
i∈J ↑(xi, a) ∩ Qa , ∅. Since Qa is compact, we have that
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i∈∆ ↑(xi, a) ∩ Qa , ∅. Note that ↑

∨
D =

⋂
i∈∆ ↑(xi, a), implying that (↑

∨
D) ∩ Qa , ∅, so

∨
D ∈ ↓Qa = Qa.

Therefore, Qa is Scott closed.
(3)⇒ (1) Since Qa is Scott closed, Qa is a lower set. Thus by Remark 2.1, Qa is saturated in Ω(P̂), so is

Q =
⋃

a∈Max(P) Qa. Now suppose {↑(xi, a) : i ∈ ∆} satisfies that for each J ∈ ∆(<ω),
⋂

i∈J ↑(xi, a) ∩ Q , ∅. Let
(y, b) ∈

⋂
i∈J ↑(xi, a) ∩ Q. Then y , b because Q ∩Max(P̂) = ∅. Since (xi, a) ≤ (y, b) for each i ∈ J, it follows

that a = b.
Thus for each J ∈ ∆(<ω), there exists (yJ , a) ∈ Q (yJ , a) such that (xi, a) ≤ (yJ , a) for all i ∈ J, so yJ is

an upper bound of {xi : i ∈ J}, and this implies that
∨

i∈J xi exists because P is bounded complete. Since
D =

{
(
∨

i∈J xi, a) : J ∈ ∆(<ω)
}

is a directed subset of the Scott closed set Qa, we have that
∨
D ∈ Qa, thus∨

D ∈
⋂

i∈∆ ↑(xi, a) ∩Q. Therefore, Q is compact.

Corollary 5.13. Let X be a T1 space. The following statements are equivalent:

(1) X is finite.

(2) ΩD(X) is sober.

(3) ΩD(X) is well-filtered.

Proof. (1)⇒ (2) Assume X is finite. Then D(X) = ̂(C∗(X),⊇) is also finite. Note that every finite T0 space is
sober, thus ΩD(X) is a sober space.

(2)⇒ (3) is trivial (see [6, Theorem II-1.21] for detail).
(3)⇒ (1) Assume X is infinite. Then there exists a countable subset {xn : n < ω} of X. For each n < ω,

define Qn := {(X, {xk}) : k ≥ n}. Since for each n < ω, (X, {xn}) is a minimal element of D(X), the singleton set
{(X, xn)} is Scott closed. Then by Lemma 5.12, {Qn : n < ω} is a filtered family of compact saturated subsets
of ΩD(X), which satisfies that

⋂
n<ω Qn = ∅. Therefore, ΩD(X) is not well-filtered.

Remark 5.14. The order intrinsic topology on a poset dual to the lower topology is the upper topology.
The reader may wonder why we did not consider the upper topology poset model. An easy check will
show that the set Maxυ(P) of maximal points of a poset P with the relative upper topology is precisely the
co-finite topology, thus it does not provide models for general spaces.

The notion of co-sober spaces is introduced by Escardó, Lawson and Simpson in order to study of the
dual Hofmann-Mislove Theorem (see [4, 21] for more results).

For a T1 space X, it is easy to check that X is co-sober whenever D(X) is co-sober. While we still don’t
know whether the converse conclusion is true. Thus we leave it as an open problem.

Problem 5.15. Is it true that for any co-sober T1 space X, the set D(X) equipped with the lower topology is co-sober?

6. A Functor from the Category of T1 Spaces to a Category of Bounded Complete Posets

In section 4, we constructed a bounded complete poset from each T1 space. In this section, we show
that this construction can be extended to a functor from the category TOP1 of T1 spaces to a category of
bounded complete posets. This result shows some advantages of considering lower topology models, as
there is still no analog result established for poset models (using the Scott topology).

For monotone maps f : P −→ Q and 1 : Q −→ P between posets, f is a left adjoint of 1 and 1 is a right
adjoint of f if

f (p) ≤ q⇔ p ≤ 1(q)

for all p ∈ P, q ∈ Q.

Proposition 6.1. ([6]) Let P and Q be two bounded complete posets, 1 : Q −→ P a monotone mapping. Then the
following are equivalent:
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(1) 1 has a left adjoint.

(2) For each p ∈ P, 1−1(↑p) = ↑q for some q ∈ Q.

(3) For each B ⊆ Q, if
∧

B exists, then 1(
∧

B) =
∧
1(B).

We call a monotone mapping 1 : P −→ Q lower continuous if it has a left adjoint such that 1(Max(P)) ⊆
Max(Q).

Denote by BCPOSET the category of bounded complete posets and lower continuous mappings.

Theorem 6.2. The assignmentC∗ defines a functor from TOP1 to BCPOSET. On morphisms 1 : X −→ Y in TOP1,
C
∗(1) : (C∗(X),⊇) −→ (C∗(Y),⊇) is defined by C∗(1)(A) = clY(1(A)) for each A ∈ C∗(X), as shown below:

X

1

��

// (C∗(X),⊇)

C
∗(1)
��

Y // (C∗(Y),⊇)

Proof. We first show that C∗(1) is a lower continuous mapping. On one hand, we have

C
∗(1)(Max(C∗(X),⊇) = {clY(1({x})) : x ∈ X}

= {{1(x)} : x ∈ X}
⊆ Max(C∗(Y),⊇).

On the other hand, for any B ∈ C∗(Y), it follows that

C
∗(1)−1(↑C∗(Y)B) = {A ∈ C∗(X) : 1(A) ⊆ B}

= {A ∈ C∗(X) : 1(A) ⊆ B}
= {A ∈ C∗(X) : A ⊆ 1−1(B)}
= ↑C∗(X)1

−1(B).

By Proposition 6.1, C∗(1) has a left adjoint. Thus C∗(1) is a morphism in BCPOSET. It is straightforward to
check that C∗ preserves identities and composition. Therefore, C∗ is a functor.

Lemma 6.3. The assignment Maxω defines a functor from BCPOSET to TOP1. On morphisms 1 : Q −→ P in
BCPOSET, Maxω(1) : Maxω(Q) −→ Maxω(P) is defined by Maxω(1)(q) = 1(q) for each q ∈ Max(Q), as shown
below:

Q

1

��

// Maxω(Q)

Maxω(1)
��

P // Maxω(P)

Proof. It is trivial by the definition of the lower continuity.

Proposition 6.4. There is a natural isomorphism φ : ITOP1 −→Maxω ◦ C∗ defined as follows: for each T1 space X,

φX : X −→Maxω(C∗(X),⊇), φX(x) = {x}, ∀x ∈ X.

Proof. First, by Lemma 4.3, each φX is an order-isomorphism. In addition, since for each x ∈ X, Maxω ◦
C
∗( f )(φX(x)) = Maxω( f )({x}) = { f (x)} = φY( f (x)). Thus the following diagram commutes.

X

f
��

φX // Maxω(C∗(X),⊇)

Maxω◦C∗( f )
��

Y
φY

// Maxω(C∗(Y),⊇)

Therefore, φ is a natural isomorphism.
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Theorem 6.5. The functor C∗ is a left adjoint of Maxω.

Proof. Let X be a T1 space. Define φX : X −→ Maxω(C∗(X),⊇) by φX(x) = {x} for each x ∈ X. Let P be a
bounded complete poset and f : X −→Maxω(P) a continuous mapping.

Define 1 : (C∗(X),⊇) −→ P by 1(A) =
∧

f (A) for each A ∈ C∗(X). Since A , ∅, it follows that f (A) , ∅,
and since P is bounded complete,

∧
f (A) exists, so 1 is well-defined (refer to the following diagram).

X

f
&&

φX // Maxω(C∗(X),⊇)

Maxω(1)
��

(C∗(X),⊇)

1

��
Maxω(P) P

We now prove this result in three steps.
Step 1. 1 is a lower continuous mapping.
First, we have that

1(Max(C∗(X),⊇)) = {1({x}) : x ∈ X} = { f (x) : x ∈ X} ⊆Max(P).

Additionally, for each p ∈ P, it follows that

1−1(↑p) = {A ∈ C∗(X) : 1(A) =
∧

f (A) ∈ ↑p}
= {A ∈ C∗(X) : f (A) ⊆ ↑p ∩Max(P)}
{A ∈ C∗(X) : A ⊆ f−1(↑p ∩Max(P))}

= ↑C∗ f−1(↑p ∩Max(P)).

Since ↑p∩Max(P) is closed in Maxω(P) and f is continuous, we obtain that f−1(↑p∩Max(P)) ∈ C∗(X). Thus
by Proposition 6.1, 1 has a left adjoint. Therefore, 1 is lower continuous.

Step 2. Maxω(1) ◦ φX = f .
This is easy since for each x ∈ X, we have

Maxω(1) ◦ φX(x) = Maxω(1)({x}) = 1({x}) =
∧
{ f (x)} = f (x).

Step 3. 1 is the unique lower continuous mapping such that Maxω(1) ◦ φX = f .
Suppose h : (C∗(X),⊇) −→ P is a lower continuous mapping such that Maxω(h) ◦ φX = f . Let A ∈ C∗(X).

Since h is monotone, it follows that h(A) ≤ h({x}) = f (x) for all x ∈ A, so h(A) ≤
∧

f (A) = 1(A). Additionally,
since h has a left adjoint, by Proposition 6.1, there exists B ∈ C∗(X) such that h−1(↑1(A)) = ↑C∗(X)B. Then for
each x ∈ A, we have that h({x}) = f (x) ≥

∧
f (A) = 1(A), showing that h({x}) ∈ ↑1(A), so

{x} ∈ h−1(↑1({A})) = ↑C∗(X)B,

implying that {x} ∈ ↑C∗(X)B, i.e., {x} ⊆ B. It follows that A ⊆ B, and thus A ∈ ↑C∗(X)B = h−1(↑1({A})). This
shows that h(A) ∈ ↑1(A), that is, 1(A) ≤ h(A). Therefore, 1(A) = h(A).

All these show that C∗ is a left adjoint of Maxω.

Lemma 6.6. Let P be a bounded complete poset and B ⊆Max(P). Then
∧

B =
∧

clMaxω(P)(B).

Proof. Since B ⊆ clMaxω(P)(B), it follows that
∧

clMaxω(P)(B) ≤
∧

B. Additionally, since B ⊆ ↑
∧

B and ↑
∧

B is
closed in ΩP, it follows that clΩP(B) ⊆ ↑

∧
B, hence clMaxω(P)(B) = clΩP(B) ∩Max(P) ⊆ ↑

∧
B, implying that∧

B ≤
∧

clMaxω(P)(B). Therefore,
∧

B =
∧

clMaxω(P)(B).

Proposition 6.7. There is a natural transformation ψ : C∗ ◦Maxω −→ IBCPOSET defined as follows:

ψP : (C∗(Maxω(P)),⊇) −→ P, ψP(A) =
∧

A, ∀A ∈ C∗(Maxω(P)).
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Proof. First, note that for each A ∈ C∗(Maxω(P)), A , ∅, and since P is bounded complete,
∧

A exists, so ψP
is well-defined. We prove the result in two steps.

Step 1. ψP is lower continuous.
(c1) Let A,B ∈ C∗(Maxω(P)). If A ⊇ B, then ψP(A) =

∧
A ≤

∧
B = ψP(B), hence ψP is monotone.

(c2) Since Maxω(P) is a T1 space, it follows that Max(C∗(Maxω(P),⊇)) = {{p} : p ∈ Max(P)}. For each
p ∈Max(P), ψP({p}) =

∧
{p} = p ∈Max(P). Thus ψP(Max(C∗(Maxω(P),⊇))) ⊆Max(P).

(c3) For each p ∈ P, we have that

ψ−1
P (↑p) = {A ∈ C∗(Maxω(P),⊇) :

∧
A ∈ ↑p}

= {A ∈ C∗(Maxω(P),⊇) : A ⊆ ↑p}
= ↑(C∗(Maxω(P)),⊇)↑p ∩Max(P).

Therefore, ψP is a lower continuous mapping.
Step 2. Suppose 1 : Q −→ P is a morphism in BCPOSET. We need to verify that the following diagram

commutes.

(C∗(Maxω(Q)),⊇)

C
∗
◦Maxω(1)

��

ψQ // Q

1

��
C
∗(Maxω(P)),⊇)

ψP

// P

Let A ∈ C∗(Maxω(Q)). Since 1 has left adjoint, it follows that
∧
1(A) = 1(

∧
A). Then by Lemma 6.6, we have∧

clMaxω(P)(1(A)) =
∧
1(A), thus

ψP(C∗(Maxω(1)(A))) = ψP(C∗(1)(A)) = ψP(clMaxω(P)(1(A)))
=

∧
clMaxω(P)(1(A)) =

∧
1(A)

= 1(
∧

A) = 1(ψQ(A)).

Hence, the above diagram commutes.
All these show that ψ is a natural transformation.

We call a poset P lower topology determined (LT-determined) if (i) for each x ∈ P, x =
∧
↑x ∩Max(P); (ii) for

each A ∈ C∗(Maxω(P)), A = ↑(
∧

A) ∩Max(P).

Remark 6.8. For a T1 space X, it is trivial to check that (C∗(X),⊇) is an LT-determined bounded complete
poset. Therefore, C∗ is also a functor from TOP1 to LTD − BCPOSET.

Proposition 6.9. Let P be a bounded complete poset. Then the following statements are equivalent:

(1) ψP is an order-isomorphism.

(2) P is LT-determined.

Proof. Let f be the left adjoint of ψP. By Proposition 6.7, for each x ∈ P, 1−1(↑x) = ↑(C∗(Maxω(P)),⊇)↑x ∩Max(P),
hence f (x) =

∧
1−1(↑x) = ↑x ∩Max(P).

(1) ⇒ (2) Since ψP is order-isomorphic, it follows that f is the inverse of ψP. Then for each x ∈ P,
x = 1( f (x)) =

∧
↑x ∩Max(P), and for each A ∈ C∗(Maxω(P)), A = f (1(A)) = ↑(

∧
A) ∩Max(P). Hence P is

LT-determined.
(2)⇒ (1) By assumption, for x ∈ P, we have 1( f (x)) =

∧
↑x∩Max(P) = x, and for each A ∈ C∗(Maxω(P)),

f (1(A)) = ↑(
∧

A) ∩Max(P) = A. Thus f is the inverse of ψP, so ψP is an order-isomorphism.

Let LTD − BCPOSET be the category of LT-determined bounded complete posets and lower continuous
mappings.

By Proposition 6.7, the natural transformationψ : C∗ ◦Maxω −→ ILTD−BCPOSET is a natural isomorphism.
By Proposition 6.4, φ : ITOP1 −→Maxω ◦C∗ is also a natural isomorphism. As a consequence, we obtain the
following result.

Corollary 6.10. The categories LTD − BCPOSET and TOP1 are equivalent.
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