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Starlikeness, Convexity and Landau Type Theorem of the Real Kernel
a—Harmonic Mappings

Bo-Yong Long?, Qi-Han Wang?

?School of Mathematical Sciences, Anhui University, Hefei 230601, China

Abstract. In [26], Olofsson introduced a kind of second order homogeneous partial differential equation.
We call the solution of this equation real kernel a—harmonic mappings. In this paper, we study some
geometric properties of this real kernel a—harmonic mappings. We give univalence criteria and sufficient

coefficient conditions for real kernel a—harmonic mappings that are fully starlike or fully convex of order
v, v €[0,1). Furthermore, we establish a Landau type theorem for real kernel a—harmonic mappings.

1. Introduction

Let C be the complex plane and D, = {z : |z| < p}. In particular, ID denotes the open unit disk ID;.
Fora e Rand z € D, let

Ta

=Ry 4 G- Ry (a5 42 - s
be the second order elliptic partial differential operator, where A is the usual complex Laplacian operator
> »? P .
= EZE-FW' zZ=x+yi.
The corresponding partial differential equation is

T,(u)=0 inD

(1.1)
and its associated the Dirichlet boundary value problem are as follows

T,(u)=0 inD,
{ u=u' ondD. 12)
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Here, the boundary data u* € ©’(dD) is a distribution on the boundary dD of D, and the boundary condition
in (1.2) is interpreted in the distributional sense that u, — u* in ©’(JD) as r — 17, where

u, (%) = u(re?), € e oD,

for r € [0,1). In [26], Olofsson proved that, for parameter a > —1, if a function u € C*(ID) satisfies (1.1) with
lim,1- u, = u* € D'(dD), then it has the form of Poisson type integral

27T
u(z):if Ka(zeT™)u'(e™)dr, for ze D, (1.3)
21t J
where
_ |»2ya+1
Ko(@) = ¢, &) (14)

Ca 1 _z|a+2 ’

ca = I'?(a/2 + 1)/T(1 + a) and T(s) = fooo #~le'dt for s > 0 is the standard Gamma function. In fact, by
Proposition 3.2 of [26], temperate growth of the solution is equivalent to distributional boundary value for
a solution of (1.1) when a > —1.

If we take a = 2(p — 1), then u is polyharmonic (or p—harmonic), where p € {1, 2, ...}. For related study
of polyharmonic mappings, see [1, 3, 7, 8, 11, 25, 30]). In particular, if a = 0, then u is harmonic. Thus, u
is a kind of generalization of classical harmonic mappings. Actually, by [27], we know that it is related to
standard weighted harmonic mappings. Furthermore, since the kernel K, in (1.4) is a real-valued function,
we can call u of (1.3) real kernel @—harmonic mappings. For the related discussion on standard weighted
harmonic mappings, see [9, 12, 16, 17, 19, 24].

The Gauss hypergeometric function is defined by the series

(@) (D), X"

€ n!

F(a,b;c;x) =
n=0

for |x| < 1, and by continuation elsewhere, where (a)g =1 and (2), =a(@+1)---(a+n—-1)forn=1,2,... are
the Pochhammer symbols. Obviously, forn =0, 1,2, ..., (a), = I'(a + n)/I'(a). It is easily verified that

d ab
%F(a, b;c;x) = ?F(a +1,b+1;c+1;x). (1.5)

Furthermore, for Re(c —a — b) > 0, we have (cf.[4],Theorem 2.2.2)

I'c)I'(c—a-0b)

F@ b;c;1) = lim F(a, b;¢;x) = T(c—alc=b)

(1.6)

The following Lemma involves the determination of monotonicity of Gauss hypergeometric functions.

Lemma 1.1. [26]Letc > 0,a <c,b < candab < 0 (ab > 0). Then the function F(a, b; c; x) is decreasing (increasing)
onx € (0,1).

Gauss hypergeometric function as an analytic function in the complex domain itself is widely and deeply
studied [28, 29, 31-33]. Recently, the research on harmonic mapping constructed by Gauss hypergeometric
function has also aroused people’s interest [5].

The following result of [26] is the homogeneous expansion of solutions of (1.1).
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Theorem 1.2. [26] Let & € Rand u € C*(D). Then u satisfies (1.1) if and only if it has a series expansion of the form

[

_ RSP PP NTI o B PR St
u(z)—chF( 5 k= 5k + L 12P)z +Zc_kF( S k= ikt LEPZ, zeD, (1.7)
k=0 k=1
for some sequence {cx},, of complex number satisfying
|%lim sup Icklﬁ <1l (1.8)

In particular, the expansion (1.7), subject to (1.8), converges in C*(ID), and every solution u of (1.1) is C*—smooth
in D.

In [26], the author pointed out that if @ < —1, u € C*(D) satisfies (1.1), and the boundary limit u* =
lim,_,1- u, exists in ©’(dD), then u(z) = 0 for all z € ID. So, in this paper, we always assume that a > —1.

Definition 1.3. Suppose a > —1, u(z) have the expansion of (1.7). We call u(z) real kernel a—harmonic mapping.

Definition 1.4. A univalent and sense-preserving real kernel a—harmonic mapping u, with u(0) = 0, is said to be
fully starlike of order y, y € [0,1), in D if

dargu(reé®)) (Du
=R () > (19)
forall z # 0and r € (0,1), where D is a linear operator defined by
Jd _d
D= ZZ - Zg.

In particular, when y = 0in (1.9), u is said to be fully starlike.

Definition 1.5. A univalent and sense-preserving real kernel a—harmonic mapping u with u(0) = 0 is said to be
fully convex of order y, y € [0,1), in ID if

amg%wm%):%(@h)>y

20 Dl (1.10)

forallz # 0andr € (0,1), where D* = D(D) is the composition of D and itself. In particular, when y = 0in (1.10),
u is said to be fully convex.

The starlikeness and convexity with order y of functions are widely and deeply studied in analytic
functions, harmonic functions and polyharmonic functions, see [13-15, 21-23].

The classical Landau’s theorem states that if f is an analytic function on the unit disk ID with f(0) =
f'(0) =1 =0and |f(z)| < M for z € D, then f is univalent in the ID,, = {z||z| < ro} with

1
M+ VME—1

and f(ID,,) contains a disk |w| < Rp with Ry = Mrg. This result is sharp, with the extremal function
foz) = MzYY2. For other types of functions, Landau-type theorem were also studied. See [20] for
harmonic mappings, [1, 6, 10, 11] for polyharmonic mappings, [2] for logharmonic mappings, [18] for
log-p-harmonic mappings, [9] for weighted harmonic mappings.

The main purpose of this paper is to study the properties of the real kernel a—harmonic mappings. In
section 2, for the real kernel a—harmonic mappings, we give a necessary and sufficient condition for the
relationship between full starlikeness and full convexity. Furthermore, We give univalence criteria and
sufficient coefficient conditions for real kernel a—harmonic mappings that are starlike or convex of order y,
y €[0,1). In section 3, we get a Landau type theorem for real kernel a—harmonic mappings.

o
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2. Starlikeness and convexity

In the rest of this paper, we use the following denotations.
Letz =re'?,

t=lzf? =1,

F=F = P(—%,k— %;k+1;t),

and

dF, _ dF

[44 o
Ft:Pk,t(—E,k—E,'k'i‘l,'t): E = E

Proposition 2.1. The operator D is a real kernel a-harmonic mapping preserving operator.

2632

2.1)
2.2)

2.3)

Proof. Let u be a real kernel a-harmonic mapping with the series expansion of (1.7). Then by direct

computation, we have

Du = zu, — zuz
[ee]

=z Z ce(FizZ" + FkzF1) + Z c_«FZ!

k=1 k=1
= Z ke FZF — Z ke_iFz*.
k=1

Furthermore, for sequence {c;}%,, if (1.8) holds, then

-z Z o Fi2 1 + Z c_i(FizZ* + FKEY

k=1 k=1

%1_)12 sup IkaII%\ <1
and
lim sup| —kegW < 1.
Therefore, by Theorem 1.2, we get that Du is a real kernel a-harmonic mapping. O

Theorem 2.2. Suppose real kernel a-harmonic mappings

u(z) = i ckFz" + i c_yFz*

k=1 k=1

and

(e8]

v(z):i% 2k —Z—c WFZ*
k=1

k=1

are univalent in ID. Then u(z) is fully starlike of order y if and only if v(z) is fully convex of order .

Proof. Direct computation leads to

Du Yl kaFz* = Y72 ke Fz*
uo Y aFzk 4 YRty o F2k
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and
D DO aFZ + Y ckFZ5) Y2 keeFZk — Y02, ke FZF
Dv Yooq ckFZk + Y00 o (Fzk - Yoo okFzk + Y e Fzk
It follows that
u Do’

u

Therefore, R (D”) > v is equivalent to R (%2:) > y. The proof is completed. [

Lemma 2.3. [29, 34] Let r, and s, (n =0,1,2,...) be real numbers, and let the power series

R(x)= ) ryx" and S(x)= Z S

n=0

1=

I
o

n

be convergent for x| < r, (r > 0) with s, > 0 for all n. If the non-constant sequence {r,[s,} is increasing (decreasing)
for all n, then the function x — R(x)/S(x) is strictly increasing (resp. decreasing) on (0, 1).

Lemma 2.4. Let § € (0,1]. Then it holds that

F
1) F_k <1fork=2,3,..and t €[0,1);
1

IF|  (k=9Tk+1DIQ2+9) 3
) o < AGrI+D) fork=1,2,.and t € (0,1).

Proof. (1) We divide it into two subcases to discuss.

If § =1, then we can get F; = 1 and Fy is decreasing for t € [0,1) and k = 2,3, ... by Lemma 1.1. Thus, %
is decreasing for t € [0, 1).
IfO0< g <1,let

(=n(k =5 B, (=L = 5)n

A= =T ST

(2.4)

Then it follows that B,, > 0 forn =1, 2, ... and

Iﬁ _ (_%)n(k - %)n (2),11’1! _ (k - %)n(z)n

By (k + 1)nn! (_%)n(l - %)n (k + 1)11(1 - %)n
It can be verified that

P (k-2+mQ+n)

;L: k+1+n)(1 -5 +n)

fork=2,3,.... Thus ‘g—;’ is strictly increasing for alln = 1,2, .... By Lemma 2.3, we get that

> A"
fiy = T2t
Zn:l BVlt
is strictly increasing for ¢ € (0, 1). Furthermore, we have
Aq 2(k -5

f(0)=1tij)%f(t)=3—1=m>
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fork =2,3,.... It follows that

fH>1 (2.5)
for t € [0,1). Observe that

=] (_g)n(k_ﬂ)n " 0 0
&j1+&ﬂ%mﬁ71;—gﬂmw_ij&ﬂmw

F 1+Ziqt%§ék% 1-Y ", Bytt 1= Y, Bytt

Noting that F; is positive and considering the monotonicity of f and (2.5), we can get

g(ﬂ)_—QELBMﬂﬁﬁﬁl—UU%4XZ$4&WY<0
Fi) :

dt F2
Thus, % is strictly decreasing for ¢ € (0, 1).
Therefore, for 5 € (0,1] we have
k. Fk
— <lim—=1.
Fl - tl—I}g F1
(2) If 0 < § <1, then F; is negative for t € (0,1). By (1.5), we have
o o
gk e
|Fi| = —F; = i1 F(1 2,k+1 2,k+2,t).

Observe that both F(1 - 5,k +1 - 9;k + 2;t) and F; are positive. Furthermore, F(1 - 5,k +1 - 9;k +2;t) is
increasing with respect to ¢ € [0, 1) as well as F; is decreasing with respect to t € [0,1). Therefore, we have

ﬂ(k,ﬁ) o o
|F¢| . T FA -5, k+1 -9k +2;t)
— < lim
Fl r—1- Fl

_5(k-%5)  T(k+2)l(@) TC+HT1+9)
© k+1 Tk+1+9I1+%) TQIQ+a)
(k=T + 12 +9)

2L(k+1+ %)

2.6)

The above first equality holds because of (1.6).

If$=1thenF; =land Fy =1- ’ﬁt. Then it is easy to see that the equality of Lemma 2.4 (2) holds. O
Theorem 2.5. Suppose y € [0,1), 5 € (0, 1] and u(z) be a real kernel a-harmonic mapping that has series expansion

of (1.7) withc; =1, ¢o = 0 and |c_4| < min{ﬂ 41, Let

11y’ 4—a
Y (Alerl + Belei) < C, 2.7)
k=2
where
(k= T(k+DI2+9) 1 k—y
TR+ 1+ ) T-leal A=y -+ leal’
p o kLG DIC+) 1 k+y
Thk+1+9)  1—leal  A-p) =0+l
and
a 1+|c|
c=1—a—§M_qu

Then u(z) is fully starlike of order y in ID. Furthermore, the coefficient bound given by (2.7) is sharp.
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1~y

l+y’ 4— a} 1sto

ensure that the denominators in the expression of the above Ay and By are positive and C itself is positive.
Observe that inequality (2.7) is equivalent to

Proof. Before proving this theorem, we first point out that the constraint condition |c_;| < min{;

i (k= 9T (k+ D2+ 5) |oi] + o] N i (k= Pleel + G+ y)lerl _

2.8
S S ) T -9 -+l 28)
So, in the following proof process, we often replace (2.7) with (2.8).
First we prove u(z) is sense-preserving in ID. By (1.7), direct computation leads to
Uy = Z cr(FizZF + kEZF) + Z c_ F,Z51
k=1 k=1
and
Us = Z o F 2 + Z c_k(Fizz" + kEZF ).
k=1 k=1
It follows that
luaz] — |uez]
= Z cr(FizZ5 + kEZ1) + Z c_ F 2| - Z kB + Z c_x(Fizz" + kEZF )
k=1 k=1 k=1 k=1
> Fy = ) IllEdA = Y Pt = ) el = ) fedIFlt?
k=1 k=2 k=1 k=1
= Y e B + kEAT)
k=1
= (1= leaDFr =2 ) (e + e Fl* = ) K(leel + e DFr*?
k=1 k=2
> (1= leaDFi =2 ) (e + le)lFil = ) k(i + le_kDF. 29)
k=1 k=2
If
lci| + le—xl [F¢l lc| + le—| F
2 + Y k————<1, 2.10
le—|01| Fr ; —le_q| Fy (2.10)

then inequality (2.9) implies |u| > |uz|, that is to say u is sense-preserving. By Lemma 2.4, it is enough for
us to prove

o (k= 5)ITk+1)r2+ 4%
y (k= 9Tk + DI + 5) e + o) ZkICkI el _ (2.11)
- T(k+1+9) 1—lJe T leal =
It can be directly verified that
k- + (k+y)lc-
(k= el + (k + el 1kl + le—id (2.12)

1-y-0+ V)|C—1| I S Y
.. Thus if inequality (2.8) holds, then (2.11) follows from (2.12).
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To show that u(z) is univalent in ID we need to show that u(z1) # u(z;) when z; # z,. Suppose z1,z, € D

so that z; # z,. Since D is simply connected and convex, we have z(s) = (1 —5)z; + sz, € ID, where s € [0,1].
Then we can write

1
uter) =uGen) = [ [ = 26 + T =zt s

Dividing the above equation by z; — z; # 0 and taking the real parts we obtain

1
pue) i) x[uz<z<s>>+ZZ_?“Z(Z(S”]”“
0 — 41

Zy — 21 23

1
> f (Rutz(=(6)) — u(=(6))]) d. 2.13)
0

On the other hand
R (2) — |uz(2)]

> Fy= Y ledlFil = ) ledFle= Y leellFl = Y leellFel = ) le-d(Fil + kF)
k=1 k=2 k=1 k=1 k=1

= (1=lcaDF1 =2 Y (el + le-d)IFil = Y k(leel + le_)F
k=1 k=1

k= y)lekl + (k + )l
1=p)lerl = A +p)le-l

> (1= lea)Fr =2 ) (e + leal)lFil = ) | (( (1= leaF
k=1 k=1

>0

by inequality (2.12), Lemma 2.4 and inequality (2.8) in order. This in conjunction with the inequality (2.13)
leads to the univalence of u.
Now we show that the inequality (1.9) holds. Direct computation yields

)Z)u +(1- y)u( - |Z)u -1+ y)u|

i cxkFz* — i c_ykFz* + 1-v) {i o FZ5 + i c_kFZk]

k=1 k=1 k=1 k=1
- Z cxkFz* — Z c_ykFz" — (1 + Y) [Z o FZ5 + Z c_kFZk]
k=1 k=1 k=1 k=1
= Z(k +1- )/)cszk + Z(l b k)c_iFzk| - Z(k -1- y)cszk - Z(k +1+ y)c_kFZk
k=1 k=1 k=1 k=1
> @=))Fir =Y (k+1=p)llFF = ylealFir = Y (k= 1+ p)lc4FF*
k=2 k=2
—yFir =Y (k= 1= PIedFr* = @ +p)lealFir = Y (k+ 1+ )le_ylFr*
k=2 k=2

=2[(1 =) = A+ PleallFir =2 Y [k = Pledd + (k +p)le_d]Fr > 0
k=2
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for r € (0,1) by Lemma 2.4 and inequality (2.8). Furthermore, we observe that for u # 0, it holds that

|Du + (1 = y)u| - |Du - (1 +y)u| > 0.

Du
@ _—

<'@— +1
u 7
@%(&—y)>0

“5(2)

That is to say that if (2.8) holds then (1.9) holds.
The real kernel a-harmonic mapping

u(z) = Fiz + Z Zxkaz +c1F1z+ Z kukz

where

Y (bl + lyel) = C
k=2

(2.14)

(2.15)

show that coefficient bound given by (2.8) is sharp. That is to say, the mapping represented by (2.14) is the

corresponding extremal function of Theorem 2.5. [

Now we have a look about a special case of Theorem 2.5.

Example 2.6. If 4 = 1, then F(-%,k — %;k + 1;t) = 1 — &2312 and the corresponding extremal function (2.14)

deduce to

= 1 k-1 = 1
= e 1—— 2y k 17z —_
u(z) =z + kEZZ Akxk( k+1|z| )Z5 +c1Z + ,;:2 Bkyk

where
2k-1) 1 k—y
Ay = + ,
Tk -l =)= A+ )]
2-1) 1 k+y
Bi = + ,
T TR 1—leal A=y = A+ p)lel
and

3 (bl + lyel) = 1.
k=2

Actually, the above u(z) is biharmonic and can be rewritten as
u(z) = l2PH(2) + G(z),

where
=1 > 1 k-1
H — - N sk
(@)= Z;‘Ak kZ:;ABkykk+1Z’

and

=1 > 1
Giz)=z+ Z Xxkzk +c1Z+ Z B—ykzk.
k=2 <k k= K
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Theorem 2.7. Suppose y € [0,1), § € (0, 1] and u(z) be a real kernel a-harmonic mapping that has series expansion

of (1.7) withc; =1, ¢o = 0 and |c_4| < min{%, 11 Let

Y (Midedd + Nide ) < C, (2.16)
k=2
where
(k=T +DI2+95) 1 .\ k(k —y)
k T(k+1+%) T—leal - A=) = +P)leal
(- 9Tk+DIR+S) 1 . k(k + )
TR+ 1+9) -l A=) - A+ p)leal’
and
_1_ _g 1+|C_1|
C=1-(1 2)1_|C_1|

Then u(z) is fully convex of order v in ID. Furthermore, the coefficient bound given by (2.16) is sharp.

Proof. Before proving this theorem, we first point out that the constraint condition |c_;| < min{ :iﬁ, =is

to ensure that the denominators in the expression of M and N are positive and the above C is positive.

Observe that inequality (2.16) is equivalent to

i (k= Tk + D2+ 3) |ex| + lekl N i k(k = Vlerl + (k+)lel (2.17)
k=2

LT Tk+1+3)  d-leal =)= @+ )]

Because inequality (2.17) implies inequality (2.8), by Theorem 2.5, we can know that 1(z) is sense-preserving
and univalent.

Now we just need to prove (1.10) holds. Firstly, we observe that for Du # 0. Actually, if Du = 0, then
zu, = Zuz. It follows that |u;| = |uz|. This is in contradiction with the fact that u is sense-preserving. Thus
Du # 0. We have

& |D%u+ (1 - 9)Du| - |D*u - (1 + y)Du| > 0.
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Secondly, direct computation leads to

|D%u + (1 - 9)Du| - |D*u - (1 + ) Dy

ckPFZ5 + c_ kPFZ* + 1-y ke Fz* — ke_ FzZ~
Y
k=1 k=1 k=1

k=1
- Z cklkPFZF + Z c_ikPFzk — 1+y) (Z keyFZF — Z kc_kFZkJ
k=1 k=1 k=1 k=1
= Z(k2 + k(1 — ))ceFZ* + Z(k2 — k(1 - y))c_FZt
k=1 k=1

Z(k2 — k(1 +p))ceFZ + Z(k2 + k(1 + )2t
k=1 k=1

0o

> (2= )Fir = ) (€ + k(1 = P)ledlFr* = ylealFir = Y (& = k(1L = ))lelFF*
k=2 k=2

0o

—yFir = Y (2 =k + YDl = @+ p)lealFir = ) (K + k(L +)le-ilFr*
k=2 k=2

=2[(1 =) = (1 + PleallFir =2 Y Kk = p)leel + (k + )lel]Fr > 0
k=2

for r € (0,1) by Lemma 2.4 and inequality (2.17). Thus (1.10) holds.
The real kernel a—harmonic mapping

u(z) = Frz + 2 kakazk +eqFiz + Z ﬁkyklsz’k, (2.18)
k=2 k=2
where
Y (il + Iy = C 2.19)
k=2

show that coefficient bound given by (2.16) is sharp. That is to say, the function represented by (2.18) is the
corresponding extremal function of Theorem 2.7. The proof is completed. [
Example 2.8. If § =1, by (2.18), we have that the corresponding extremal function of Theorem 2.7 deduces to

0o

1 k-1 = 1 k-1
u(z) =z + Exk(l - mlzlz)zk +c1Z + kZ:;‘ ﬁkyk(l - —|z|2)2k,

k+1
k=2
where
2k-1) 1 k(k—y)
M = + ,
TR+ Tl @ —p) = @+l
2-1) 1 k(k +y)
Ny = + ,
TR Tl =) = A+ p)leal
and

3 (bl + lyel) = 1.
k=2
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Actually, the above u(z) is biharmonic and can be rewritten as
u(z) = |2 A(z) + B(2),

where

1 k=1, 1
AR = 2:h1”k+1 21%1”k+1

and
BZ zZ+ E _xZ +c1Z+ E Z
() k 1 Z\[yk

3. The Landau type theorem

In [9], Chen and Vuorinen obtained the Landau type theorem for real kernel a—harmoinc mappings
when a € (-1, 0). In this section, we explore the Landau type theorem for real kernel a—harmoinc mappings
for a € (0,2). We need the following Lemma 3.1 at first.

Lemma 3.1. Forr € [0,1), let

B 8M a a-1Dr*+ar 2a-1 r?
(p(r)zM——— 4 7 —at 3 2t 2 |’
Q+a) 7w [A-1*1+7) 1=-rP1+7r) 2 1-r

where a € (0,2), B > 0 and M > 0 are constants, a = g((lli oy Then @ is strictly decreasing and there is an unique
po € (0,1) such that p(po) = 0

Proof. We observe that ?g; %, lim, o+ r((11:;)) =1land

T(1+4)
dlog iy 1
(1+a) 1 g _
o _2¢(1+2) P(1+a)<0

for & € (0,2). Then we have 1 <a < 1for a € (0,2). Here, 1 is the digamma function. It is defined by
P(x) =I"(x)/T'(x) and it is well-known (cf.[4]) that () is strictly increasing on (0, +o0). Let

a
- +m2 "
(2a — 1)r* +ar

ha(r) =

ho(r) = ——————
)= T
and
20—-1 12
ha(r) 12
Then
B B 8M
P = Fia s~ 0+ alr) + (),
It is easy to verify that 1] (r) > 0, hy(r) > 0 and h}(r) > 0 for any r € (0,1) and a € (0,2). It follows that
@'(r) < 0 for r € (0,1). Furthermore, we can observe that lim,_,o ¢(r) = M(sz) > 0 and lim,,1- @(r) = —oo.

Therefore, the proof is completed. O
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Theorem 3.2. For a € (0,2), leta = ?&:Z;, u € C*(ID) be a solution to (1.1) satisfying u(0) = |J,(0)| = p = 0 and
sup, . [u(z)| < M, where M and B are positive constants and ], is the Jacobian of u. Then u is univalent in D,

where py satisfies the following equation

2a—1)p2 +a - 2
g M 4a . ( )390 p02+2a 1 Poz 0. (3.1)
M2 +a) (1= po)*(1 + po) (1= po)*(1 + po) 2 1-p;
Moreover, u(IDy,) contains an univalent disk IDg, with
20 -1 20— 1)p?
Rz B (o (@-Dnsom G D)
M2+a) 7w | (1-po)*(1+ po) 2(1 = po)*(1 + po) 6(1 - pg

Proof. We still adopt the notations (2.1)-(2.3). For a € (0,2) and k € {1,2, ...}, we observe that

<0.

CDE 3§ (1o Pulke Lo

04 (04
Fe=FRgk=gik+ )= —3 *+2)n P

2/
That is to say that F(—5,k — 5;k + 1;t) is decreasing on € [0, 1). So,

04 a a o a 04
F(—E,k— E,k+1,1) < F(—E,k— E,k‘i‘l,t) < F(—E,k— §’k+1’0) =1. (32)

It follows from equations (1.6) and (3.2) that

I'(k+ 1)1+ a) o (=9l = 9)u
<1+ Z —_—

T(k+1+ 21 +9) L (k+1), n!’

Z( k=) 1" - T'(k+ DI+ a)
(k+1), n! Fk+1+5ra+4%)

Thus,

_i CDnlk=9m 1 _ LT+ 1T +a)

L (k+1), nl T TE+1+9I(A+9)

Notice that the left side of the above inequality is an infinite sum of terms, where each term is a positive for
a € (0,2). Therefore, for a € (0,2) and k € {1,2, ...}, we have

_%)n(k - %)n l
k+1), n!

F'k+1DIrA+a
<i- T(k+1+ 301 +2) (33)

Corollary 1.1 of [9] shows that for k € {1,2, ...}, it holds that
AMT(k+1+ 51+ %)

(el +lekl) < — T DI+ ) (34)
Therefore, inequalities (3.3) and (3.4) imply that
(=$mk—=5)0m 1| amM Tk+1+ 51 +3%) AM T +2)
(e +led| =0, w) = 7 e orare 7 Vg Y 39

fora€(0,2),ke{l,2,..},andnef(l,2,..}.
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Since ¢y = u(0) = 0, considering (1.7), we compute that

a a
U,(z) — u,(0) = Z keyFZ51 + Z o FizZ + kz; e FiZ5 1 + o (F(_E' 1- 5;2; |z|2) — 1), (3.6)
_ _ a o
uz(z) — uz(0) = é ke_ FZ51 + ; ckFiZ + kZ; c_kFizbz + ¢4 (F(_E' 1- 5;2; |z|?) — 1). (3.7)

Applying (3.6), (3.7), (3.2), (3.4) and (3.5) in turn, we obtain
l2(2) — u=(0)] + |u2(2) — uz(0)]

) i - ) )
< kZ;‘ k(lckl + le_)Fr + 2;(|Ck| + ek DIEA™Y + (lea| + le-al) ‘F(—E, 1- E;z; ) - 1'

00

AMT(k+1+ 51+ %) 1 2| 4M r(1+ 0 o | o
<;k7 T+ Dr+a) ”; 7((" Ta+a) )Z”T r

4M (T(1+9) =
+7(21"(1+a)_1);r2

) 0 +1 2
< %az Kk + 1)1 + % Y (k+1)a- 1)rk— + %w(za B
k=2 k=1

n=1

(1-r2)? 1-1r2
_ 8M[ar(3=3r+7r) ar2-rn r? N 20—-1 12
om 1-rp3 A=-n*A+r? 1A-r3Q1+r)? 2 1-1r2
_8M a a-1)r+ar 2a-1 r?
on [(1 e T a—mAenE 2 1-7 68
where a = ?&:3; .
The inequality (3.6) of [9] shows that
(Dw(0)) := [luz(0)] = [u=(0)Il = I 3.9)
T MQ2+a)

In order to prove the univalence of u in D,,, we choose two distinct points z1,z, € ID,, and let [z1, z,]
denote the segment from z; to z, with the endpoints z; and z, where py satisfies equation (3.1). By
inequalities (3.8), (3.9) and Lemma 3.1, we have

lu(z2) — u(z1)| =

f u,(z)dz + uz(z)dz
[z1,22]

>

f u,(0)dz + uz(0)dz
[z1,22]

f (1:(2) — 12Oz + (1(2) — ()2
[z1,22]

> (Du)(O)lz2 — 21| -

f[ (12) 00 + ) = Ol

2a — 1)p5 + _ 2
>|zz—zl|[L_%[ a (2a )Po apo  2a-1 Py ]]

M@+ a) A—pi+p) " U=poP+p? 2 1-p

=0.

Thus, u(z1) # u(z2). The univalence of u follows from the arbitrariness of z; and z,. This implies that u is
univalent in D,.
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Now, for any C = pge’ € dD,,, we obtain that

[u(C) — u(0)| = 'j[:)C] u,(z)dz + uz(z)dz

> —

f u,(0)dz + uz(0)dz f (uy(z) — u;(0))dz + (uz(z) — uz(0))dz
[0,C] [0,C]

2 [(Du)(0)po - f[;c](WZ(Z) — uz(0)] + [uz(2) — uz(0))dlz|

Bpo 8M a a-1)r’+ar 2a-1 r?
2~ —_— 0 —a+ + dr
M2+a) n Jy, \A-74*1+7)? 1 -rB31+7r)? 2 1-12
Bpo 8M apo (2a—1)po +a fp" 20-1 1 fpo )
> —apg + rdr + redr
@+a) T \T=por@rpol 7T A= poP+ poP Jo 2 1-p2 o
B B _8M a Cas (2a-1)po +a)py (22 —1)p}
POIM@+a) 7 (1= po)*(1 + po)? 21— poP(L+pof ~ 6(1-p2) |’
Hence U(ID,,) contains an univalent disk Dg, with
20 -1 20 - 1)p3
Ro = po _P M 4a 2_a+((ﬂ )50+ﬂ)P02+(“ )zpo :
M2+a) 7 | (1= po)*(1+ po) 2(1 = po)’(X + po)*  6(1 - pp)

The proof is complete. [
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