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Abstract. The principles of superposition and separation of variables are used here in order to investigate
the analytical solutions of a certain transient heat conduction equation. The structure of the transient-
temperature appropriations and the heat-transfer distributions are summed up for a straight mix of the
results by means of the Fourier-Bessel arrangement of the exponential type for the investigated partial
differential equation.

1. Introduction and Formulation of the Problem

A number of restrictive assumptions are introduced before studying the transient analysis, some of
which are due to Chiang et al. [3]. One can apply Fourier’s law and Newton’s energy-conservation law to
form the two-dimensional heat equation, together with the initial condition and the boundary conditions
as follows:
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∂u(r, z, t)
∂t

=
∂2u(r, z, t)
∂z2 +

∂2u(r, z, t)
∂r2 +

1
r
∂u(r, z, t)
∂r

+ u(r, z, t). (1)

A heat-flow problem with lateral heat loss into an insulated problem, where the term +u(r, z, t) on the
right-hand side represents the heat flow across the lateral boundary. Diffusion of heat within the fin is due
to the following terms:

∂2u(r, z, t)
∂z2 +

∂2u(r, z, t)
∂r2 +

1
r
∂u(r, z, t)
∂r

.

If there were no diffusion within the fin, then the temperature at each point z would damp exponentially to
zero. Initially, the cylindrical fin is in equilibrium with the surrounding fluid, that is,

t = 0 : u(r, z, 0) = 0. (2)

The boundary conditions are given by

t > 0 and r = 0 : u(0, z, t) = finite, (3)

r = 1 : ur(1, z, t) = 0, (4)

z = 0 : − uz(r, 0, t) + Bi · u(r, 0, t) = Bi + q (5)

and

z = ` : uz(r, `, t) + Bi` · u(r, `, t) = 0, (6)

where Bi and Bi` are the Biot numbers on the root surface and the lateral surface, respectively, and q is the
constant heat flux at the root of the fin.

2. The Main Set of Analytical Transient Solutions

A very classical method to solve a given initial- and boundary-value problem for partial differential
equations is to use the principle of superposition and separation of variables (see [1] and [2]). However,
the partial differential equation (1), when directly transformed into ordinary differential equations by the
method of separation of variables, does not seem to have been considered in the existing literature on this
subject.

While separating variables in the r-direction, one can choose a Bessel function Jν(z) of the first kind of
order ν = 0 as the characteristic function for the corresponding Bessel equation and it fits the boundary
conditions in the equations (3) and (5) automatically. In this situation, αm denotes the mth positive zero of
the following transcendental equation for all of the cases:

J1(αm) = 0 (m = 1, 2, 3, · · · ). (7)

where, as noted above, Jν(z) denotes the familiar Bessel function of the first kind defined by (see, for details,
[16])

Jν(z) =

∞∑
n=0

(−1)n( z
2 )ν+2n

n!Γ(ν + n + 1)
.

Thus, clearly, a Fourier series can be derived to fit the resulting ordinary differential equation in the
z-direction and the revised boundary conditions in the equations (5) and (6). The first-order ordinary
differential equation in the time-domain can be solved through integrating factor and satisfying the initial
condition, and the results in the solution with different Cmn have the following form:



K. Y. Kung et al. / Filomat 35:8 (2021), 2617–2628 2619

umn(t) =
Cmn

β2
n + α2

m
[β2

ne−(β2
n+α2

m)t + α2
m]. (8)

Then the solution formed by the product of these chosen functions would satisfy the heat conduction
partial differential equation (1) and fit the initial condition and boundary conditions automatically. By
definition, the Biot number Bi represents the convection condition between solid and fluid interfaces. For
a larger value of the Biot number Bi, more heat convection on the lateral surface and more thermal energy
are efficiently transferred into the surrounding environment through the interface. As the Biot number
Bi becomes infinitesimal, a constant heat-flux condition is shown. When it approaches infinity, a constant
temperature condition is presented.

Remark. Some obviously trivial and inconsequential parametric and argument variations of the above-
defined Bessel function Jν(z) have regrettably misled many mainly amateurish-type researchers to believe
that such variations can actually produce a “generalization” of the celebrated Bessel function Jν(z) (see,
for details, [10, Section 6, pp. 1512–1514]). As a matter of fact, a truly non-trivial generalization of the
widely-investigated Bessel function Jν(z) is the Bessel-Wright function Jµν (z), which is defined as follows
(see, for example, [12, p. 2, Eq. (4)]):

Jµν (z) =

∞∑
n=0

(−z)n

n! Γ
(
µn + ν + 1

) (z, ν ∈ C; µ > 0).

This function Jµν (z) was introduced by Sir Edward Maitland Wright (1906–2005), with whom the third-
named author (H. M. Srivastava) had the privilege to meet and discuss researches emerging from his
publications on hypergeometric and related functions during the third-named author’s visit to the Univer-
sity of Aberdeen in the year 1976 (see [17]). In fact, there exists a significantly more general function than the
Bessel function Jν(z) and the Bessel-Wright function Jµν (z), that is, the widely- and extensively-investigated
Fox-Wright function (see, for details, [7] and [11]).

In this section, we present 12 different solutions relating to various convection conditions.
Case 1. Let Bi` = constant and Bi = constant.

The corresponding analytical solution is given by

u(r, z, t) =

∞∑
m=1

zAm + (` − z)Bm +

∞∑
n=1

umn(t) · [cos(βnz) +
Bi
βn

sin(βnz)]

 · e−t J0(αmr). (9)

Moreover, the heat-transfer rate in the z-direction is given by

Q(r, z, t) = −

∫ r

2πr
∂u(r, z, t)
∂z

dr. (10)

By performing the necessary calculations, we obtain

Q(r, z, t) = −2π
∞∑

m=1

Am − Bm +

∞∑
n=1

umn(t)[−βn sin(βnz) + Bi cos(βnz)]

 re−t

αm
J1(αmr), (11)

where

Am =
Dm

(Bi + Bi` + ` Bi · Bi`)`
(m = 1, 2, 3, · · · ), (12)
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Bm =
(` Bi` + 1)Dm

(Bi + Bi` + ` Bi · Bi`)`
(m = 1, 2, 3, · · · ), (13)

Cmn = −
2
(
βn cos(βn`) + [Amβ2

n` + (Am − Bm)Bi] sin(βn`) − [Am − Bm(1 + Bi`)]βn

)
(β2

n − Bi2) cos(βn`) sin(βn`) − 2Biβn cos2(βn`) + [(β2
n + Bi2)` + 2Bi]βn

, (14)

Dm =


(Bi + q)et (m = 1)

2(Bi + q)et J1(αm)
αm J2

0(αm)
(m = 2, 3, 4, · · · )

(15)

and βn denotes the nth positive root of the following transcendental equation:

tan(βn`) =
βn(Bi + Bi`)

β2
n − Bi · Bi`

(n = 1, 2, 3, · · · ). (16)

In Equations (9) and (11), the summation is taken over all eigenvalues. The final linear-series sums of
the solution satisfy the heat conduction partial differential equation (1), together with the initial condition
(2) and the boundary conditions (3) to (6).

Case 2. Let Bi = constant and Bi` = 0.

The corresponding analytical solution is given by

u(r, z, t) =

∞∑
m=1

zAm + (` − z)Bm +

∞∑
n=1

umn(t)
cos[βn(` − z)]

cos(βn`)

 · e−t J0(αmr) (17)

Moreover, the heat-transfer rate is given by

Q(r, z, t) = −2π
∞∑

m=1

Am − Bm +

∞∑
n=1

umn(t)
βn sin[βn(` − z)]

cos(βn`)

 re−t

αm
J1(αmr), (18)

where

Am =
Dm

` Bi
(m = 1, 2, 3, · · · ), (19)

Bm =
Dm

` Bi
(m = 1, 2, 3, · · · ), (20)

Cmn =
2[(Am − Bm)[cos(βn`) − 1] − Bmβn` sin(βn`)] cos(βn`)

βn[sin(βn`) cos(βn`) + βn`]
(21)

(m,n = 1, 2, 3, · · · ),
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Dm =


(Bi + q)et (m = 1)

2(Bi + q)J1(αm)et

αm J2
0(αm)

(m = 2, 3, 4, · · · )
(22)

and βn denotes the nth positive root of the following transcendental equation:

tan(βn`) =
Bi
βn

(n = 1, 2, 3, · · · ). (23)

Case 3. Let Bi = constant and Bi` →∞.

The corresponding analytical solution is given by

u(r, z, t) =

∞∑
m=1

(` − z)Bm +

∞∑
n=1

umn(t)
sin[βn(` − z)]

sin(βn`)

 · e−t J0(αmr). (24)

Moreover, the heat-transfer rate is given by

Q(r, z, t) = 2π
∞∑

m=1

Bm +

∞∑
n=1

umn(t)
βn cos[βn(` − z)]

sin(βn`)

 re−t

αm
J1(αmr), (25)

where

Bm =
Dm

` Bi + 1
(m = 1, 2, 3, · · · ), (26)

Cmn = −
2Bm[βn` sin(βn`) cos(βn`) + cos2(βn`) − 1]

βn[sin(βn`) cos(βn`) − βn`]
, (27)

(m,n = 1, 2, 3, · · · ),

Dm =


(Bi + q)et (m = 1)

2(Bi + q)J1(αm)et

αm J2
0(αm)

(m = 2, 3, 4, · · · )
(28)

and βn denotes the nth positive root of the following transcendental equation:

cot(βn`) = −
Bi
βn

(n = 1, 2, 3, · · · ). (29)

Case 4. Let Bi = 0 and Bi` = 0.

The corresponding the analytical solution is given by

u(r, z, t) =

∞∑
m=1

(` z −
z2

2
)Bm + Cm0 +

∞∑
n=1

umn(t) cos βnz

 · e−t J0(αmr) (30)
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Moreover, the heat-transfer rate is given by

Q(r, z, t) = 2π
∞∑

m=1

(z − `)Bm +

∞∑
n=1

umn(t)βn sin βnz

 re−t

αm
J1(αmr), (31)

where

Bm = −
Dm

`
(m = 1, 2, 3, · · · ), (32)

Cmn =


Cm0 = −

Bm`2

3

Cmn = −
2Bm`2

(nπ)2 (n = 1, 2, 3, · · · ),

(33)

Dm =


q (m = 1)

2qJ1(αm)et

αm J2
0(αm)

(m = 2, 3, 4, · · · )
(34)

and βn is given by

βn =
nπ
`

(n = 1, 2, 3, · · · ). (35)

Case 5. Let Bi = 0 and Bi` →∞.

The corresponding analytical solution is given by

u(r, z, t) =

∞∑
m=1

(` − z)Bm +

∞∑
n=1

umn(t) cos βnz

 · e−t J0(αmr). (36)

The heat-transfer rate is given by

Q(r, z, t) = 2π
∞∑

m=1

Bm +

∞∑
n=1

umn(t)βn sin βnz

 re−t

αm
J1(αmr), (37)

where

Bm = Dm (m = 1, 2, 3, · · · ), (38)

Cmn = −
8Bm`

[(2n − 1)π]2 (m,n = 1, 2, 3, · · · ), (39)

Dm =


qet (m = 1)

2qet J1(αm)
αm J2

0(αm)
(m = 2, 3, 4, · · · )

(40)
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and βn is given by

βn =
(2n − 1)π

2`
(n = 1, 2, 3, · · · ). (41)

Case 6. Let Bi→∞ and Bi` →∞.

The corresponding analytical solution is given by

u(r, z, t) =

∞∑
m=1

(` − z)Bm +

∞∑
n=1

umn(t) sin βnz

 · e−t J0(αmr). (42)

The heat-transfer rate is given by

Q(r, z, t) = 2π
∞∑

m=1

Bm −

∞∑
n=1

umn(t)βn cos βnz

 re−t

αm
J1(αmr), (43)

where

Bm =
Dm

`
, (44)

Cmn = −
2Bm`
nπ

, (45)

Dm =


et (m = 1)

2J1(αm)et

αm J2
0(αm)

(m = 2, 3, 4, · · · ),
(46)

and

βn =
nπ
`

(n = 1, 2, 3, · · · ). (47)

3. Solutions with a Different Set of Boundary Conditions

In this section, we first set

r = 1 : u(1, z, t) = 0 (48)

and suppose that the associated αm denotes the mth positive zero of the following transcendental equation
for all of the cases:

J0(αm) = 0 (m = 1, 2, 3, · · · ). (49)

In this case, by applying the same procedure as described in the preceding sections, the following solutions
would easily emerge for the modified problem.
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Case 7. Bi` = constant and Bi = constant.

The corresponding analytical solution is given by

u(r, z, t) =

∞∑
m=1

zAm + (` − z)Bm +

∞∑
n=1

umn(t)
(
cos βnz +

Bi
βn

sin βnz
) · e−t J0(αmr). (50)

Moreover, the heat-transfer rate is given by

Q(r, z, t) = −2π
∞∑

m=1

Am − Bm +

∞∑
n=1

umn(t)
(
− βn sin βnz + Bi cos βnz

) re−t

αm
J1(αmr), (51)

where

Am =
Dm

(Bi + Bi` + ` Bi · Bi`)`
(m = 1, 2, 3, · · · ), (52)

Bm =
(` Bi` + 1)Dm

(Bi + Bi` + ` Bi · Bi`)`
(m = 1, 2, 3, · · · ), (53)

Cmn = −
2
(
[Am(1 − Bi`) − Bm]βn cos βn` + Ξ

(
βn,Bi`,Am,Bm

))
(
β2

n − Bi2
)

cos βn` sin βn` − 2Biβn cos2 βn` +
[(
β2

n + Bi2
)
` + 2Bi

]
βn

, (54)

Dm =
2(Bi + q)et

αm J1(αm)
(m = 1, 2, 3, · · · ) (55)

and, for convenience,

Ξ
(
βn,Bi`,Am,Bm

)
:= [Amβ

2
n` + (Am − Bm)Bi] sin βn` − [Am − Bm(1 + Bi`)]βn.

Furthermore, βn denotes the nth positive root of the following transcendental equation:

tan(βn`) =
βn(Bi + Bi`)

β2
n − Bi · Bi`

(n = 1, 2, 3, · · · ). (56)

Case 8. Bi = constant and Bi` = 0.

The corresponding analytical solution is given by

u(r, z, t) =

∞∑
m=1

zAm + (` − z)Bm +

∞∑
n=1

umn(t)
cos[βn(` − z)]

cos(βn`)

 · e−t J0(αmr). (57)

Moreover, the heat-transfer rate is given by

Q(r, z, t) = −2π
∞∑

m=1

Am − Bm +

∞∑
n=1

umn(t)
βn sin βn(` − z)

cos(βn`)

 re−t

αm
J1(αmr), (58)
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where

Am =
Dm

` Bi
(m = 1, 2, 3, · · · ), (59)

Bm =
Dm

` Bi
(m = 1, 2, 3, · · · ), (60)

Cmn =
2[(Am − Bm)[cos(βn`) − 1] − Bm(βn`) sin(βn`)] cos(βn`)

βn[sin(βn`) cos(βn`) + βn`]
, (61)

Dm =
2(Bi + q)et

αm J1(αm)
(m = 1, 2, 3, · · · ) (62)

and βn denotes the nth positive root of the following transcendental equation:

tanβn` =
Bi
βn

(n = 1, 2, 3, · · · ). (63)

Case 9. Let Bi = constant and Bi` →∞.

The corresponding analytical solution is given by

u(r, z, t) =

∞∑
m=1

(` − z)Bm +

∞∑
n=1

umn(t)
sin βn(` − z)

sin βn`

 · e−t J0(αmr) (64)

Moreover, the heat-transfer rate is given by

Q(r, z, t) = 2π
∞∑

m=1

Bm +

∞∑
n=1

umn(t)
βn cos βn(` − z)

sin βn`

 re−t

αm
J1(αmr), (65)

where

Bm =
Dm

` Bi + 1
, (66)

Cmn = −
2Bm[βn` sin(βn`) cos(βn`) − sin2(βn`)]

βn[sin(βn`) cos(βn`) − βn`]
, (67)

Dm =
2(Bi + q)et

αm J1(αm)
(m = 1, 2, 3, · · · ) (68)

and βn denotes the nth positive root of the following transcendental equation:
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cot(βn`) = −
Bi
βn

(n = 1, 2, 3, · · · ). (69)

Case 10. Let Bi = 0 and Bi` = 0.

The corresponding the analytical solution is given by

u(r, z, t) =

∞∑
m=1

(` z −
z2

2
)Bm + Cm0 +

∞∑
n=1

umn(t) cos(βnz)

 · e−t J0(αmr) (70)

Moreover, the heat-transfer rate is given by

Q(r, z, t) = 2π
∞∑

m=1

(z − `)Bm +

∞∑
n=1

umn(t)βn sin(βnz)

 re−t

αm
J1(αmr), (71)

where

Bm = −
Dm

`
(m = 1, 2, 3, · · · ), (72)

Cmn =


Cm0 = −Bm`2

3 (n = 0)

Cmn = − 2Bm`2

(nπ)2 (n = 1, 2, 3, · · · ),
(73)

Dm =
2qet

αm J1(αm)
(m = 1, 2, 3, · · · ) (74)

and βn is given by

βn =
nπ
`

(n = 1, 2, 3, · · · ). (75)

Case 11. Let Bi = 0 and Bi` →∞.

The corresponding analytical solution is given by

u(r, z, t) =

∞∑
m=1

(` − z)Bm +

∞∑
n=1

umn(t) cos(βnz)

 · e−t J0(αmr). (76)

Moreover, the heat-transfer rate is given by

Q(r, z, t) = 2π
∞∑

m=1

Bm +

∞∑
n=1

umn(t)βn sin(βnz)

 re−t

αm
J1(αmr), (77)

where
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Bm = Dm (m = 1, 2, 3, · · · ), (78)

Cmn = −
8Bm`

[(2n − 1)π]2 (m,n = 1, 2, 3, · · · ), (79)

Dm =
2qet

αm J1(αm)
(m = 1, 2, 3, · · · ) (80)

and βn is given by

βn =
(2n − 1)π

2`
(n = 1, 2, 3, · · · ). (81)

Case 12. Let Bi→∞ and Bi` →∞.

The corresponding analytical solution is given by

u(r, z, t) =

∞∑
m=1

(` − z)Bm +

∞∑
n=1

umn(t) sin(βnz)

 · e−t J0(αmr). (82)

Moreover, the heat-transfer rate is given by

Q(r, z, t) = 2π
∞∑

m=1

Bm −

∞∑
n=1

umn(t)βn cos(βnz)

 re−t

αm
J1(αmr), (83)

where

Bm =
Dm

`
(m = 1, 2, 3, · · · ), (84)

Cmn = −
2Bm`
nπ

(m,n = 1, 2, 3, · · · ), (85)

Dm =
2et

αm J1(αm)
(m = 1, 2, 3, · · · ) (86)

and βn is given by

βn =
nπ
`

(n = 1, 2, 3, · · · ). (87)
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4. Concluding Remarks and Observations

Here, in our present investigation, the method of separation of variables is applied to the transient
heat-conduction equation, which is subjected to different lateral surface conditions, in order to provide
a simplified formulation that can be used to identify the temperature distributions and the heat-transfer
rates. The analytical solutions are expressed in terms of the Fourier-Bessel series of the exponential type.
Furthermore, the solutions presented in this paper can be used to verify the two- or three-dimensional
numerical conduction codes.

For motivating further researches on this subject, we choose to refer the reader to the related earlier works
(see, for example, [6], [15] and [18]). In particular, the recent investigation by Zhukovsky and Srivastava
[18] presented a detailed description of a broad range of physical problems including the heat-conduction
problem by applying operational methods with recourse to inverse derivative operators, integral transfor-
mations and operational exponent (see also [5] and [13] for several related developments on differential,
integral and integro-differential equations, as well as on fractional differential equations). Several recent
developments on the fractional-order modeling and analysis of applied and real-world problems can be
found in (for example) [4], [8], [9] and [11]. It should be remarked here that Zhukovsky and Srivastava
[18] also considered the evolutional type problems for heat transfer in various heat-conduction models and
derived the exact analytical solutions for the Guyer–Krumhansl hyperbolic heat equation and compared
these exact analytic solutions with those of the Fourier and Cattaneo equations.
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