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Abstract. Our motivation is to derive the Drazin inverse matrix modification formulae utilizing the Drazin
inverses of adequate Peirce corners under some special cases, and the Drazin inverse of a special matrix with
an additive perturbation. As applications, several new results for the expressions of the Drazin inverses of
modified matrices A−CB and A−CDdB are obtained, and some well known results in the literature, as the
Sherman-Morrison-Woodbury formula and Jacobson’s Lemma, are generalized.

1. introduction

A square matrix A−CD−1B is called, especially in the case where D is the identity matrix, a modification
of A, where D is invertible matrix. It is useful that the matrix can be expressed as the sum of a matrix
with a convenient structure and an additive perturbation such as a modified matrix, in various fields such
as statistics, numerical analysis, optimization, etc[13]. The inverse representation of the modified matrix
started from the classical Sherman-Morrison-Woodbury formula[19, 22]

(A − CD−1B)−1 = A−1 + A−1C(D − BA−1C)−1BA−1,

where A and D are invertible matrices, but not necessarily with the same size, and B and C are matrices
with appropriate sizes such that D − BA−1C (and so A − CD−1B) is invertible. Inverse matrix modification
formulae of such type have been developed extensively in generalized inverses, such as the Moore-Penrose
inverse [1, 15], the weighted Moore-Penrose inverse [20], the group inverse [4], the weighted Drazin inverse
[6], the generalized Drazin inverse [7], and especially the Drazin inverse [17, 18, 21, 23].

In 2013, Dopazo and Martı́nez-Serrano [11] studied some representations of the Drazin inverse of a
modified matrix, utilizing an auxiliary idempotent matrix under some special cases. In 2019, Zhang, Mosić
and Tam [25] combined some equivalent statements that are about the existence of group inverses of Peirce
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The first author is supported by the National Natural Science Foundation of China (NSFC) (No. 11901079; No. 61672149), the

Scientific and Technological Research Program Foundation of Jilin Province, China (No. JJKH20190690KJ; No. 20190201095JC; No.
20200401085GX), and the China Postdoctoral Science Foundation (No. 2021M700751).

The second author is supported by the Ministry of Education, Science and Technological Development, Republic of Serbia (No.
174007/451-03-69/2021-14/200124) and the bilateral project between Serbia and Slovenia (Generalized inverses, operator equations and
applications No. 337-00-21/2020-09/32.).

Email addresses: daochangzhang@126.com (Daochang Zhang), dijana@pmf.ni.ac.rs (Dijana Mosić), neduhjp307@163.com
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corner matrices of modified matrices to obtain several new results for the Drazin inverses of modified
matrices.

Some related and significant definitions of the ring theory are shown. Let R,S be both rings, and S ⊆ R
(with the same multiplication as R, but not assumed to have an identity initially). S is called a corner ring
(or simply a corner) of R and denoted S ≺ R, if there exists an additive subgroup C ⊆ R such that

R = S ⊕ C, S · C ⊆ C, and C · S ⊆ C,

where any subgroup C is to be said a complement of the corner ring S in R and not unique. S is called a rigid
corner of R, and denoted S ≺r R, if a corner S of a ring R just exists a unique complement. Specially, Lam
[14] proved that a corner ring of any ring R must exist an identity, although it may not be the identity of R.

Remark 1.1. [14, Proposition 2.2] Let S ≺ R, with a complement C. Recall that e ∈ S is an identity of the ring S, if
1 = e+ f for some f ∈ C. Particularly, the decomposition 1 = e+ f is independent of the choice of the complement C,
where e, f are complementary idempotents in R.

Re is defined as the Peirce corner of R (arising from the idempotent e) and Ce is called the Peirce complement
of Re such that

1. Re := eRe ≺ R, which is the largest subring (resp. corner) of R having e as identity element.

2. Re ≺r R (i.e., Re is rigid in R), with a unique complement

Ce := f Re ⊕ eR f ⊕ f R f = {r ∈ R : ere = 0},

where e, f are complementary idempotents in R.
Jacobson’s Lemma states that if 1 − ab is invertible, then so is 1 − ba and

(1 − ba)−1 = 1 + b(1 − ab)−1a,

where a, b belongs any ring R (with identity).
For a square complex matrix A, there exists the unique matrix Ad, called the Drazin inverse of A, such

that

AAd = AdA, AdAAd = Ad, Ak = Ak+1Ad,

where k is the index of A (i.e. the smallest non-negative integer such that rank(Ak) = rank(Ak+1)) and
denoted by ind(A). We also use notations Ae = AAd and Aπ = I − Ae. In a special case when ind(A) = 1, Ad

is called group inverse of a complex square matrix A, and denoted by A#. For interesting properties of the
Drazin inverse see [2, 3, 8–10].

Our aim is to derive several new results about the Drazin inverse matrix modification formulae in terms
of the Drazin inverses of appropriate Peirce corners. Precisely, combing the Peirce corner theory and some
auxiliary idempotent matrix P, we establish new expressions for the Drazin inverse of arbitrary matrix
under some special cases in Section 2. Utilizing some Peirce corners with auxiliary idempotent matrices
P,Q, we obtain some new result for the Drazin inverse of a special matrix with an additive perturbation
in Section 4. As their applications in Sections 3 and 5, we give separately the expressions of the Drazin
inverses of modified matrices A−CB and A−CDdB, and generalize several results in the literature including
the Sherman-Morrison-Woodbury formula and Jacobson’s Lemma.

In this paper, Cm×n is the set of m × n complex matrices and I is the identity matrix of proper size. Also,
we set

S = A − CDdB, s = AeSAe, s = AπSAπ,

Z = D − BAdC, z = DeZDe,

where A ∈ Cn×n, B ∈ Cm×n, C ∈ Cn×m, and D ∈ Cm×m. We suppose that
∑n

i=m ∗ = 0 whenever n < m.
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2. Drazin inverse matrix modification formulae with its Peirce corners

In this section, we consider new representations of Drazin inverses of matrices based on Peirce corner
matrices with a general idempotent P.

We firstly stand one useful representation for the Drazin inverse of a 2 × 2 partitioned matrix.

Lemma 2.1. [26, Corollary 3.2] Let M =
(
A B
C D

)
, where A,C are complex block matrices. If CA = 0 and CB = 0,

then

Md =

(
Ad + X2C X1

D2dC Dd

)
,

where ind(A) = r, ind(D) = t and, for i = 1, 2,

Xi =

t−1∑
j=0

Ad(i+ j+1)BD jDπ + Aπ
r−1∑
j=0

A jBDd(i+ j+1)
−

i−1∑
j=0

Ad( j+1)BDd(i− j). (1)

Let A denote a complex unital algebra, and let M2(A) be the 2 × 2 matrix algebra over A. Given an
idempotent e inA, we consider a mapping σ fromA to M2(A, e) and the set

M2(A, e) =
(

eAe eA(1 − e)
(1 − e)Ae (1 − e)A(1 − e)

)
⊂M2(A).

Lemma 2.2. [24, Lemma 3.3] Let e be an idempotent ofA. For any a ∈ A let

σ(a) =
(

eae ea(1 − e)
(1 − e)ae (1 − e)a(1 − e)

)
∈M2(A, e).

Then the mapping σ is an algebra isomorphism fromA to M2(A, e) such that

1. (σ(a))d = σ(ad);

2. if (σ(a))d =

(
α β
γ δ

)
, then ad = α + β + γ + δ.

We establish a expression for the Drazin inverse of an arbitrary matrix S by terms of an idempotent P
and using a corresponding Peirce corner matrix. For an idempotent P ∈ Cn×n, we denote by P = I − P.

Theorem 2.3. Let S,P ∈ Cn×n and let P be idempotent. If PSPS = 0, then

Sd = (PSP)d + X2SP + X1 + (PSP)2dSP + (PSP)d,

where ind(PSP) = t, ind(PSP) = r and, for i = 1, 2,

Xi =

r−1∑
j=0

(PSP)d(i+ j+1)(SP) j+1(PSP)π + (PSP)π
t−1∑
j=0

(PS) j+1(PSP)d(i+ j+1) (2)

−

i−1∑
j=0

(PSP)d( j+1)S(PSP)d(i− j).

Proof. Since P is idempotent, set

N =
(

PSP PSP
PSP PSP

)
.
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Combining PSPS = 0, Lemma 2.1 and Lemma 2.2, we get

Sd = (PSP)d + X2PSP + X1 + (PSP)2dPSP + (PSP)d

= (PSP)d + X2SP + X1 + (PSP)2dSP + (PSP)d,

where, for i = 1, 2,

Xi =

r−1∑
j=0

(PSP)d(i+ j+1)(PSP)(PSP) j(PSP)π + (PSP)π
t−1∑
j=0

(PSP) jPSP(PSP)d(i+ j+1)

−

i−1∑
j=0

(PSP)d( j+1)PSP(PSP)d(i− j)

=

r−1∑
j=0

(PSP)d(i+ j+1)(SP) j+1(PSP)π + (PSP)π
t−1∑
j=0

(PS) j+1(PSP)d(i+ j+1)

−

i−1∑
j=0

(PSP)d( j+1)S(PSP)d(i− j)

as desired.

Using Theorem 2.3, we can get the following result.

Corollary 2.4. Let S,P ∈ Cn×n and let P be idempotent. If PSP = 0, then

Sd = (PSP)d + Y + (PS)d,

where ind(PSP) = t, ind(PS) = r and

Y =

r−1∑
i=0

(PSP)d(i+2)(SP)i+1(PS)π + (PSP)π
t−1∑
i=0

(PS)i+1(PS)d(i+2)
− (PSP)dS(PS)d.

Applying transpose to Theorem 2.3, we show that the next formula for Sd holds in the case that SPSP = 0.

Theorem 2.5. Let S,P ∈ Cn×n and let P be idempotent. If SPSP = 0, then

Sd = (PSP)d + PSX′2 + X′1 + PS(PSP)2d + (PSP)d,

where ind(PSP) = t, ind(PSP) = r and, for i = 1, 2,

X′i = (PSP)π
r−1∑
j=0

(PS) j+1(PSP)d(i+ j+1) +

t−1∑
j=0

(PSP)d(i+ j+1)(SP) j+1(PSP)π (3)

−

i−1∑
j=0

(PSP)d(i− j)S(PSP)d( j+1).

By Theorem 2.5 (or Corollary 2.4), we have a simpler expression for Sd under condition PSP = 0.

Corollary 2.6. Let S,P ∈ Cn×n and let P be idempotent. If PSP = 0, then

Sd = (PSP)d + Y′ + (SP)d,

where ind(PSP) = t, ind(SP) = r and

Y′ =
r−1∑
i=0

(SP)π(PS)i+1(PSP)d(i+2) +

t−1∑
i=0

(SP)d(i+2)(SP)i+1(PSP)π − (SP)dS(PSP)d.
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In a similar way, we present more representations of the Drazin inverse of S based on the following
auxiliary result.

Theorem 2.7 follows by Theorem 2.5 interchanging P and P.

Theorem 2.7. Let S,P ∈ Cn×n and let P be idempotent. If SPSP = 0, then

Sd = (PSP)d + X′′1 + PS(PSP)2d + (PSP)d + PSX′′2 ,

where ind(PSP) = r, ind(PSP) = t and, for i = 1, 2,

X′′i = (PSP)π
r−1∑
j=0

(PS) j+1(PSP)d(i+ j+1) +

t−1∑
j=0

(PSP)d(i+ j+1)(SP) j+1(PSP)π

−

i−1∑
j=0

(PSP)d(i− j)S(PSP)d( j+1).

3. Applications to Drazin inverses of a modified matrix A − CB

Applying results of Section 2, we obtain some well-known representations for the Drazin inverse of a
modified matrix A − CB.

Firstly, we observe that Theorem 2.3 implies that [11, Theorem 3.4] holds.

Corollary 3.1. [11, Theorem 3.4] Let A ∈ Cn×n, B ∈ Cm×n, C ∈ Cn×m, S = A−CB and let P ∈ Cn×n be idempotent.
If AP = PA, CBPA = 0 and CBPC = 0, then

Sd = (PSP)d + X2SP + X1 + (PSP)2dSP + (PSP)d,

where ind(PSP) = t, ind(PSP) = r and, for i = 1, 2,

Xi =

r−1∑
j=0

(PSP)d(i+ j+1)(SP) j+1(PSP)π + (PSP)π
t−1∑
j=0

(PS) j+1(PSP)d(i+ j+1) (4)

−

i−1∑
j=0

(PSP)d( j+1)S(PSP)d(i− j).

Proof. Since AP = PA, CBPA = 0 and CBPC = 0, we have

PSPS = (AP − PAP)A − (AP − PAP)CB − PCBPA + PCBPCB = 0.

By Theorem 2.3, we complete this proof.

Corollary 2.4 recovers [11, Theorem 3.8] in the following way.

Corollary 3.2. [11, Theorem 3.8] Let A ∈ Cn×n, B ∈ Cm×n, C ∈ Cn×m, S = A−CB and let P ∈ Cn×n be idempotent.
If PAP = AP and CBP = 0, then

Sd = (AP)d + Y + (PS)d,

where ind(PSP) = t, ind(PSP) = r and

Y =

r−1∑
i=0

(AP)d(i+2)(S − AP)i+1(PS)π + (AP)π
t−1∑
i=0

(PS)i+1(PS)d(i+2)
− (AP)dS(PS)d.
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Proof. Because PAP = AP and CBP = 0, then

PSP = AP − PAP − CBP + PCBP = 0,

PSP = SP = AP, PSP = PS and SP = S − AP. Applying Corollary 2.4, we finish the proof.

We also note that Theorem 2.7 implies that [11, Theorem 3.2] holds.

Corollary 3.3. [11, Theorem 3.2] Let A ∈ Cn×n, B ∈ Cm×n, C ∈ Cn×m, S = A−CB and let P ∈ Cn×n be idempotent.
If AP = AP, APCB = 0 and BPCB = 0, then

Sd = (PSP)d + X1 + PS(PSP)2d + (PSP)d + PSX2,

where ind(PSP) = t, ind(PSP) = r and X1,X2 are represented as in (4).

Proof. The assumptions AP = AP, APCB = 0 and BPCB = 0 give AP = PA and

SPSP = A(AP − PAP) − APCBP − CB(AP − PAP) + CBPCBP = 0.

By Theorem 2.7, we can complete the proof.

We utilize Corollary 2.6 to obtain [11, Theorem 3.6] as follows.

Corollary 3.4. [11, Theorem 3.6] Let A ∈ Cn×n, B ∈ Cm×n, C ∈ Cn×m, S = A−CB and let P ∈ Cn×n be idempotent.
If PAP = PA and PCB = 0, then

Sd = (PSP)d + Y + (PSP)d,

where ind(PSP) = t, ind(PSP) = r and

Y =
t−1∑
i=0

(SP)d(i+2)(SP)i+1(PA)π + (SP)π
r−1∑
i=0

(S − PA)i+1(PA)d(i+2)
− (SP)dS(PA)d.

Proof. Since PAP = PA and PCB = 0, we have

PSP = PA − PAP − PCB + PCBP = 0,

PSP = PS = PA, PSP = SP and PS = S − PA. By Corollary 2.6, we complete the proof.

4. Drazin inverses of some special matrices with an additive perturbation

In this section, we consider the representation of the Drazin inverse of some special matrice with general
idempotents P,Q. Similarly, we give the representation of the Drazin inverse of a Peirce corner matrix with
a general idempotent P.

Lemma 4.1. [12, 16] Let M =
[

A C
0 D

]
and N =

[
D 0
C A

]
∈ Cn×n, where A and D are square matrices. Then

Md =

[
Ad X
0 Dd

]
and Nd =

[
Dd 0
X Ad

]
,

where

X =
t−1∑
i=0

(Ad)i+2CDiDπ + Aπ
r−1∑
i=0

AiC(Dd)i+2
− AdCDd,

r = ind(A) and t = ind(D).
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Now we present one of the main results of the section.

Theorem 4.2. Let A ∈ Cn×n, B ∈ Cm×n, C ∈ Cn×m and D ∈ Cm×m. If P ∈ Cn×n and Q ∈ Cm×m are idempotents such
that X = (QDQ)dQBP(PAP)e = (QDQ)eQBP(PAP)d and (QDQ)eQBP(PAP)e = QBP, then

(PAP − PCQX)d = (PAP)d
−W,

where ind(QDQ − XPCQ) = t, ind(PAP) = r and

W = (
t−1∑
i=0

((PAP)d)i+2CQ(QDQ − XPCQ)i(QDQ − XPCQ)π − (PAP)dC(QDQ − XPCQ)d

+ (PAP)π
r−2∑
i=0

(PAP)i+1C(QDQ − XPCQ)d(i+3)

− PAP(PAP)dC(QDQ − XPCQ)2d + PC(QDQ − XPCQ)2d)X.

Proof. Note that(
PAP PCQ
QBP QDQ

) (
I 0
−X I

)
=

(
PAP − PCQX PCQ
QBP −QDQX QDQ

)
.

For short let us introduce the temporary notation

M =
(

PAP PCQ
QBP QDQ

)
and N =

(
I 0
−X I

)
.

By QBP = (QDQ)eQBP(PAP)e = QDQX and Cline’s formula, we have(
PAP − PCQX PCQ

0 QDQ

)d

=M(NM)2dN.

A calculation yields

NM =
(

PAP PCQ
QBP − XPAP QDQ − XPCQ

)
.

Since QBP = (QDQ)eQBP(PAP)e = XPAP, by Lemma 4.1, we have(
PAP PCQ

0 QDQ − XPCQ

)2d

=

(
(PAP)d Y

0 (QDQ − XPCQ)d

)2

=

(
(PAP)2d (PAP)dY + Y(QDQ − XPCQ)d

0 (QDQ − XPCQ)2d

)
,

where ind(QDQ − XPCQ) = t, ind(PAP) = r and

Y =

t−1∑
i=0

((PAP)d)i+2PCQ(QDQ − XPCQ)i(QDQ − XPCQ)π

+ (PAP)π
r−1∑
i=0

(PAP)iPCQ(QDQ − XPCQ)d(i+2)
− (PAP)dPCQ(QDQ − XPCQ)d.
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Note that

(PAP)dY + Y(QDQ − XPCQ)d =

t−1∑
i=0

((PAP)d)i+3PCQ(QDQ − XPCQ)i(QDQ − XPCQ)π

− (PAP)2dPCQ(QDQ − XPCQ)d

+ (PAP)π
r−1∑
i=0

(PAP)iPCQ(QDQ − XPCQ)d(i+3)

− (PAP)dPCQ(QDQ − XPCQ)2d.

Then

(
PAP − PCQX PCQ

0 QDQ

)d

=

(
PAP PCQ
QBP QDQ

) (
(PAP)2d (PAP)dY + Y(QDQ − XPCQ)d

0 (QDQ − XPCQ)2d

) (
I 0
−X I

)
=

(
(PAP)d

−UX U
QBP(PAP)2d

− VX V

)
,

where

U = PAP((PAP)dY + Y(QDQ − XPCQ)d) + PCQ(QDQ − XPCQ)2d

= PAP(
t−1∑
i=0

((PAP)d)i+3PCQ(QDQ − XPCQ)i(QDQ − XPCQ)π

− (PAP)2dPCQ(QDQ − XPCQ)d

+ (PAP)π
r−1∑
i=0

(PAP)iPCQ(QDQ − XPCQ)d(i+3)

− (PAP)dPCQ(QDQ − XPCQ)2d) + PCQ(QDQ − XPCQ)2d,

=

t−1∑
i=0

((PAP)d)i+2CQ(QDQ − XPCQ)i(QDQ − XPCQ)π

− (PAP)dC(QDQ − XPCQ)d

+ (PAP)π
r−2∑
i=0

(PAP)i+1C(QDQ − XPCQ)d(i+3)

− PAP(PAP)dC(QDQ − XPCQ)2d + PC(QDQ − XPCQ)2d
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and

V = QBP((PAP)dY + Y(QDQ − XPCQ)d) +QDQ(QDQ − XPCQ)2d

= QBP(
t−1∑
i=0

((PAP)d)i+3PCQ(QDQ − XPCQ)i(QDQ − XPCQ)π

− (PAP)2dPCQ(QDQ − XPCQ)d

+ (PAP)π
r−1∑
i=0

(PAP)iPCQ(QDQ − XPCQ)d(i+3)

− (PAP)dPCQ(QDQ − XPCQ)2d) +QDQ(QDQ − XPCQ)2d

= QBP(
t−1∑
i=0

((PAP)d)i+3CQ(QDQ − XPCQ)i(QDQ − XPCQ)π

− (PAP)2dC(QDQ − XPCQ)d

+ (PAP)π
r−1∑
i=0

(PAP)iPC(QDQ − XPCQ)d(i+3)

− (PAP)dC(QDQ − XPCQ)2d) +QD(QDQ − XPCQ)2d.

Therefore,

(PAP − PCQX)d = (PAP)d
−UX = (PAP)d

−W,

where

W = UX

= (
t−1∑
i=0

((PAP)d)i+2CQ(QDQ − XPCQ)i(QDQ − XPCQ)π

− (PAP)dC(QDQ − XPCQ)d

+ (PAP)π
r−2∑
i=0

(PAP)i+1C(QDQ − XPCQ)d(i+3)

− PAP(PAP)dC(QDQ − XPCQ)2d + PC(QDQ − XPCQ)2d)X.

as desired

In a similar way as Theorem 4.2, we can verify the following result.

Theorem 4.3. Let S,P ∈ Cn×n and let P be idempotent. If X = (PSP)dPSP(PSP)e = (PSP)ePSP(PSP)d and
(PSP)ePSP(PSP)e = PSP, then

(PSP)d = USP + VSP,

where ind(PSP) = t, ind(PSP − PSPX) = r,

U = (PSP − PSPX)2d
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and

V =

t−1∑
i=0

(PSP − PSPX)d(i+3)(SP)i+1(PSP)π − (PSP − PSPX)2dS(PSP)d

+ (PSP − PSPX)π
r−1∑
i=0

(PSP − PSPX)iPS(PSP)d(i+3)

− (PSP − PSPX)dS(PSP)2d.

5. Applications to Drazin inverses of a modified matrix A − CDdB

Applying results of Section 4, we obtain new representations of the Drazin inverse of A−CDdB and also
recover some well-known results. Recall that S = A − CDdB, s = AeSAe, s = AπSAπ and z = DeZDe.

Corollary 5.1. [23, Lemma 3.2] If DdBAe = DeBAd, then

sd = Ad + AdCzdDdBAe
−

r−1∑
i=0

(Ad)i+2CDezizπDdBAe,

where ind(z) = r.

Proof. Since (AeA)# = Ad and (DeD)# = Ad, we show this formula setting P = Ae and Q = De in Theorem
4.2.

Using Theorem 2.3 and Corollary 5.1, we can obtain the following expression for the Drazin inverse of
S.

Theorem 5.2. If AπCDdBAeS = 0 and DdBAe = DeBAd, then

Sd = sd + X2SAe + X1 + s2dSAe + sd,

where sd is represented as in Corollary 5.1, ind(s) = t, ind(s) = r and, for i = 1, 2,

Xi =

r−1∑
j=0

sd(i+ j+1)(SAπ) j+1sπ + sπ
t−1∑
j=0

(AeS) j+1sd(i+ j+1)
−

i−1∑
j=0

sd( j+1)Ssd(i− j).

Proof. Firstly, we observe that

AπSAeS = Aπ(A − CDdB)AeS = AπCDdBAeS = 0.

Applying Theorem 2.3 and Corollary 5.1, we complete the proof.

Since AπCDdB = 0 implies AπCDdBAeS = 0, by Theorem 5.2, we can show that [23, Lemma 3.3] holds.

Corollary 5.3. [23, Lemma 3.3] If AπCDdB = 0 and DdBAe = DeBAd, then

Sd = sd +

r−1∑
j=0

sd( j+2)SAπA j,

where sd is represented as in Corollary 5.1 and ind(A) = r.
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We consider to establish a formula for the Drazin inverse of S in terms of the Drazin inverse of the
original matrices A,D and Z, and generalize the classical Sherman-Morrison-Woodbury formula for the
Drazin inverse. So we add the assume that DπBAdC = 0, and utilize an analogous strategy as Corollary 5.3
to get

Zd = zd +

t−1∑
i=0

(zd)i+2ZDiDπ,

where t = ind(D). Note that ZdDe = zd, DeZd = Zd and z = ZDe. Then zi = ZiDe and zπDd = (I − zZd)Dd =
ZπDd, implying

zizπDd = ZiDe(I − Ze)Dd = ZiZπDd.

Now the following corollary follows from Corollary 5.3.

Corollary 5.4. [23, Theorem 3.4] If AπCDdB = 0, DπBAdC = 0 and DdBAAd = DdDBAd, then

Sd = sd +

k−1∑
i=0

(sd)i+2SAiAπ,

where k = ind(A), s = AAdSAAd,

sd = Ad + AdCZdDdBAAd
−

r−1∑
i=0

(Ad)i+2CDDdZiZπDdBAAd,

and ind(Z) = r.

If we assume that P = I and Q = I in Theorem 4.2, we prove the next result which recovers a generalization
of Jacobson’s Lemma (see [5, Theorem 3.6]) for the case of matrices.

Corollary 5.5. If DdBAe = DeBAd and DeBAe = B, then

(A − CDdBAe)d = Ad
−W,

where ind(D −DeBAdC) = t, ind(A) = r and

W = (
t−1∑
i=0

(Ad)i+2C(D −DeBAdC)i(D −DeBAdC)π

− AdC(D −DeBAdC)d + Aπ
r−1∑
i=0

AiC(D −DeBAdC)d(i+3))DdBAe.

As a consequence of Corollary 5.5, we get a generalization of Jacobson’s Lemma proved in [5] for the
Drazin inverse.

Corollary 5.6. [5, Theorem 3.6] Let ind(I − BC) = r. Then

(I − CB)d = I − (
r−1∑
i=0

C(I − BC)i(I − BC)π − C(I − BC)d)B.
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