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Abstract. There are presented two methods for approximation of generalized Urysohn type operators. The
first of them is the natural generalization of the method considered first by Demkiv in [1]. The convergence
results are given in quantitative form, using certain moduli of continuity. In the final part there are given a
few exemplifications for discrete and integral type operators and, in particular, for Bernstein and Durrmeyer
operators.

Key words: Urysohn operator, approximation by linear and positive operators, Durrmeyer-Bernstein
operators, Kantorovici-Bernstein operators.

1. Introduction

We use the following notations. If [a, b] and I are real intervals, we denote by C([a, b], I), the set of
continuous functions f : [a, b] → I. In the case I = R we denote simply, C[a, b]. On C[a, b] we consider the
sup-norm, denoted by ‖ • ‖.

If we apply an operator L to a partial function say u → 1(u, v1, . . . , vm), where v1, . . . , vm are parameters
we usually denote L(1(•, v1, . . . , vm)). The symbol • denotes always a real variable. In the proof of Theorem
4.1 bellow, where a superposition of operators appears and the above notation is not possible we use also
the alternative notation of the type Lu(1(u, v1, . . . , vm)), instead of L(1(•, v1, . . . , vm)).

Denote monomials functions by e j(t) = t j, j = 0, 1, 2, . . ..
The classical Urysohn operators are non-linear operators F : C([a, b], [a, b])→ C([a, b], [a, b]) defined as

F(x)(t) =

∫ b

a
f (t, s, x(s))ds, t ∈ [a, b], x ∈ C([a, b], [a, b]) (1)

where f : [a, b]3
→ R is a continuous function.

In [1], in the case [a, b] = [0, 1], Demkiv used Bernstein type operators to approximate the Urysohn
operator. The approximation operators were constructed as follows:

(BnF)(x)(t) =

∫ 1

0

 n∑
k=0

f
(
t, s,

k
n

)
pn,k(x(s))

 ds, (2)
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with pn,k(x(s)) =
(n

k
)
x(s)k(1 − x(s))n−k, x ∈ C([0, 1], [0, 1]), t ∈ [0, 1].

Moreover, Stancu type operators have been used in 2012 by Makarov and Demkiv, in [5], to approximate
Urysohn operator (1):

(PαnF)(x)(t) =

∫ 1

0

 n∑
k=0

f
(
t, s,

k
n

)
pαn,k(x(s))

 ds, (3)

where pαn,k is the Polya distribution and again x ∈ C([0, 1], [0, 1]), t ∈ [0, 1].
Also, recently, in [3], Meyer-König-Zeller type operators were used to approximate the operator (1) in

the form:

(MnF)(x)(t) =

∫ 1

0

 ∞∑
k=0

f
(
t, s,

k
k + n

)
mn,k(x(s))

 ds. (4)

with mn,k(x(s)) =
(n+k−1

k
)
x(s)k(1 − x(s))n, x ∈ C([0, 1], [0, 1]), t ∈ [0, 1].

In these papers, the approximation operators given in (2), (3) and (4) received interpretations in dis-
tribution theory which show that they can be regarded as extensions of the classical linear operators for
approximation, when we replace functions by generalized functions, i.e. by distributions and functionals.
We refer the reader to these papers for details, because it is not our intention to follow this way. The
nonlinear form of the Urysohn type Bernstein operators (2) and its properties can be found in [4].

We are motivated by these papers, but we intend to apply direct methods in two types of approximation
of generalized Urysohn operators. The results are given in quantitative form, using generalized moduli of
continuity.

2. Preliminaries

Let {µt}t∈[a,b] be a family of Borel positive measures such that it is possible to define the operator
Θ : C[a, b]→ C[a, b] of the form

Θ(1)(t) =

∫ b

a
1(s)dµt(s), 1 ∈ C[a, b], t ∈ [a, b]. (5)

This operator is linear and positive.
Let f ∈ C([a, b] × [a, b] × I). If t ∈ [a, b] and x ∈ C([a, b], I) then we can define the continuous function

s→ f (t, s, x(s)), s ∈ [a, b]. Then, define a generalized Urysohn operator F : C([a, b], I)→ C[a, b], by

F(x)(t) = Θ( f (t, •, x(•)))(t) =

∫ b

a
f (t, s, x(s))dµt(s), x ∈ C([a, b], I), t ∈ [a, b]. (6)

Denote by F ⊂ Hom(C([a, b], I),C[a, b]) the set of operators F defined in (6).
Particular cases of generalized Urysohn operators are the Urysohn operator given in (1) and the Volterra

operator defined as

F(x)(t) =

∫ t

a
K(t, s)x(s)ds, t ∈ [a, b], x ∈ C[a, b], (7)

where K ∈ C([a, b]2). In this case µt is the restriction of the Lebesgue measure on the interval [a, t], and
f (t, s, y) = K(t, s)y.

In order to approximate the operators given in (6), choose an arbitrary sequence of positive linear
operators (Ln)n, Ln : C[a, b]→ C[a, b], with the properties:

O-i) Ln(e0) = e0, where e0(u) = 1, u ∈ [a, b];
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O-ii) lim
n→∞
‖Ln(x) − x‖ = 0, for all x ∈ C[a, b].

In the next two sections, with the aid of a sequence of operators (Ln)n, we construct two types of
approximation operators for the operator defined in (6). In order to obtain quantitative estimates of
approximation we use the moduli of continuity defined bellow. For their definition it is necessary to
suppose that f ∈ C([a, b] × [a, b] × I) is uniformly continuous in the second and in the third argument. For
such a function f and for a number h > 0 define:

ω(( f )2, h) = sup{| f (t, s1,u) − f (t, s2,u)|, t ∈ [a, b], u ∈ I, s1, s2 ∈ [a, b], |s1 − s2| ≤ h}; (8)
ω(( f )3, h) = sup{| f (t, s,u) − f (t, s, v)|, t, s,∈ [a, b], u, v ∈ I, |u − v| ≤ h}. (9)

From the assumptions made for the function f one has:

lim
h→0

ω(( f ) j, h) = 0, j = 2, 3. (10)

Notice thatω(( f )2, h) = sup{ω( f (t, •,u), h), t ∈ [a, b], u ∈ I} andω(( f )3, h) = sup{ω( f (t, s, •), h), t, s ∈ [a, b]},
where ω is the usual modulus of continuity. By taking into account this fact, from the properties of the
usual modulus ω we deduce, in an obvious mode:

ω(( f ) j, h) ≤

1 +

(
h
δ

)2ω(( f ) j, δ), for h, δ > 0, j = 2, 3. (11)

3. A first type of approximation

In this section we take I = [a, b]. Then, the function f , which is used in definition of the operator F in
(6), is automatically uniformly continuous in the second argument.

With the aid of the sequence (Ln)n, define the sequence of operatorsLn : F → Hom(C([a, b], [a, b]),C[a, b])
given as follows. If F ∈ F is associated to a continuous function f : [a, b]3

→ R, see (6), then define

(LnF)(x)(t) =

∫ b

a
Ln( f (t, s, •))(x(s))dµt(s), x ∈ C([a, b], [a, b]), t ∈ [a, b]. (12)

Here Ln( f (t, s, •)) means the image of the function u 7→ f (t, s,u), u ∈ [a, b] by operator Ln, when t and s are
fixed and Ln( f (t, s, •))(x(s)) is the value of this resulting function at the argument x(s).

Note that the sequences of operators defined in (12) generalize the sequences of operators defined in
Introduction in relations (2), (3) and (4). Indeed, if we make, for instance, the choices: [a, b] = [0, 1], Ln = Bn,
(Bernstein operators), and µt is the Lebesgue measure for any t ∈ [0, 1], then:∫ b

a
Ln( f (t, s, •))(x(s))dµt(s) =

∫ 1

0

n∑
k=0

f
(
t, s,

k
n

)
pn,k(x(s))ds.

Theorem 3.1. Let operator F given in (6), where I = [a, b] and f ∈ C([a, b]3). Let the sequence of operators (LnF)n
defined in (12). Define η2

n(t) = Ln((• − t)2)(t), t ∈ [a, b].
Then

|(LnF)(x)(t) − F(x)(t)| ≤
(
Θ(e0)(t) + h−2Θ(η2

n(x(•)))(t)
)
ω(( f )3, h), (13)

for any h > 0, n ∈N, x ∈ C([a, b], [a, b]), and t ∈ [a, b]. In norm, there holds

‖(LnF)(x) − F(x)‖ ≤ 2‖Θ(e0)‖ω
(
( f )3,

√
‖Θ(η2

n(x(•)))‖/‖Θ(e0)‖
)
, (14)

for any n ∈N and x ∈ C([a, b], [a, b]).
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Proof. Let x ∈ C([a, b], [a, b]), t ∈ [a, b]. Take into account that Ln(e0) = e0. One obtains

|(LnF)(x)(t) − F(x)(t)|

=

∣∣∣∣∣∣
∫ b

a

[
Ln( f (t, s, •))(x(s)) − f (t, s, x(s))

]
dµt(s)

∣∣∣∣∣∣
≤

∫ b

a

∣∣∣∣Ln( f (t, s, •))(x(s)) − f (t, s, x(s))
∣∣∣∣dµt(s)

=

∫ b

a

∣∣∣∣Ln( f (t, s, •))(x(s)) − f (t, s, x(s))Ln(e0)(x(s))
∣∣∣∣dµt(s)

≤

∫ b

a
Ln(| f (t, s, •) − f (t, s, x(s))(e0)|)(x(s))dµt(s).

From relation (11) it results, for u ∈ [a, b] and h > 0

| f (t, s,u) − f (t, s, x(s))| ≤ ω(( f )3, |u − x(s)|) ≤ (1 + h−2(u − x(s))2)ω(( f )3, h).

Hence, we have

|(LnF)(x)(t) − F(x)(t)| ≤
∫ b

a
Ln

(
e0(•) + h−2(• − x(s))2

)
(x(s))dµt(s) · ω(( f )3, h)

=

∫ b

a

(
1 + h−2η2

n(x(s))
)
dµt(s) · ω(( f )3, h)

=
(
Θ(e0)(t) + h−2Θ(η2

n(x(•)))(t)
)
· ω(( f )3, h).

Then relation (13) follows. From (13) one obtains

‖(LnF)(x) − F(x)‖ ≤
(
‖Θ(e0)‖ + h−2

‖Θ(η2
n(x(•)))‖

)
· ω(( f )3, h).

If we take h =

√
‖Θ(η2

n(x(•)))‖
‖Θ(e0)‖ , we obtain relation (14).

Corollary 3.2. In conditions of Theorem 3.1 we have

lim
n→∞

(LnF)(x) = F(x), uniformly for x ∈ C([a, b], [a, b]). (15)

Proof. Since the operators (Ln)n, which are used for construction of the operators, satisfy condition O-ii) one
has limn→∞ η2

n(t) = 0, uniformly with regard to t ∈ [a, b]. The limn→∞ ‖Θ(η2
n(x(•)))‖ = 0.

4. A second type of approximation

Let (Ln)n be a sequence of linear positive operators L : C[a, b] → C[a, b] which satisfies conditions O-i)
and O-ii). In what follows we consider the problem of approximation of operators F ∈ F , given in (6) by
operators LnF ∈ Hom(C([a, b], I),C[a, b]), defined by

(LnF)(x)(t) =

∫ b

a
Ln( f (t, •, x(•)))(s)dµt(s), x ∈ C([a, b], I), t ∈ [a, b], (16)

where I ⊂ R is an interval and f : [a, b]2
× I→ R is the continuous function asociated to F. Here the notation

Ln( f (t, •, x(•)))(s) means that operator L is applied to function u→ f (t,u, x(u)) when number t and function
x are fixed. Then the image of this function by operator L is calculated at point s. In other words, if we vary
the operator F ∈ F , then we obtain the application Ln : F → Hom(C([a, b], I),C[a, b]), defined by (16).
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From some point of view, this problem of approximation is more natural, because the result of such
approximation depends on the properties of function f , but also on the properties of function x. Also, in
this problem we have an arbitrary interval I which is independent on interval [a, b]. By our knowledge this
kind of approximation was not considered in previous papers.

Theorem 4.1. Let operator F given in (6), where f ∈ C([a, b] × [a, b] × I) is uniformly continuous in the second and
the third arguments. Let the sequence of operators (LnF)n defined in (16) and let η2

n(y) = Ln((• − y)2, y), y ∈ [a, b].
Then

|(LnF)(x)(t) − F(x)(t)| ≤
(
Θ(e0)(t) + h−2Θ(η2

n)(t)
)
ω(( f )2, h) (17)

+Θ

e0(•) +
1
δ2

(
e0(•) +

1
h

√
η2

n(•)
)2

(ω(x, h))2

 (t)ω(( f )3, δ).

for any h > 0, δ > 0, n ∈N, x ∈ C([a, b], I), t ∈ [a, b]. Consequently,

‖(LnF)(x) − F(x)‖ ≤ 2‖Θ(e0)‖ω

( f )2,

√
‖Θ(η2

n)‖
‖Θ(e0)‖

 + 5‖Θ(e0)‖ω

( f )3, ω

x,

√
‖Θ(η2

n)‖
‖Θ(e0)‖


 . (18)

for any n ∈N and x ∈ C([a, b], I).

Proof. Let x ∈ C([a, b], I), t ∈ [a, b], n ∈N and h > 0, δ > 0.
In what follows it is necessary to use a different notation because a superposition of two operators

appears. In order to avoid confusions, we give here certain explanations. So, to denote
∫ b

a 1(s)dµt(s), for
1 ∈ C[a, b] we have also the possibility to use the notation Θs(1(s))(t) instead of the normal notation Θ(1)(t).
So, the notation Θs

(
Ln( f (t, •, x(•)))(s)

)
(t) means that, firstly Ln is applied to function u→ f (t,u, x(u)) and the

image is computed for the value s. As a result it is obtained a function in arguments t and s, say G(t, s).
Here x is considered fixed. Then Θ is applied to the partial function s → G(t, s). But the normal notation
Θ(G(t, •))(t) cannot be applied because the symbol ” • ” was used in construction of G to denote argument
u. Then we use the notation Θs(G(t, s))(t). With this preparations we obtain:

∣∣∣∣(LnF)(x)(t) − F(x)(t)| =
∣∣∣∣Θs

(
Ln( f (t, •, x(•)))(s)

)
(t) −Θs

(
f (t, s, x(s))

)
(t)

∣∣∣∣
=

∣∣∣∣Θs

(
Ln( f (t, •, x(•)))(s) − f (t, s, x(s))e0

)
(t)

∣∣∣∣
=

∣∣∣∣Θs

(
Ln[ f (t, •, x(•)) − f (t, s, x(s))e0](s)

)
(t)

∣∣∣∣
≤ Θs

(
|Ln[ f (t, •, x(•)) − f (t, s, x(s))e0](s)|

)
(t)

≤ Θs

(
Ln(| f (t, •, x(•)) − f (t, s, x(s))e0|)(s)

)
(t).

For any u, s ∈ [a, b] it results

| f (t,u, x(u)) − f (t, s, x(s))|
≤ | f (t,u, x(u)) − f (t, s, x(u))| + | f (t, s, x(u)) − f (t, s, x(s))|
≤ ω(( f )2, |u − s|) + ω(( f )3, |x(u) − x(s)|)

≤

(
1 + h−2(u − s)2

)
ω(( f )2, h) +

(
1 + δ−2(x(u) − x(s))2

)
ω(( f )3, δ).

We have(
1 + δ−2(x(u) − x(s))2

)
ω(( f )3, δ) ≤

(
1 + δ−2(ω(x, |u − s|))2

)
ω(( f )3, δ)

≤

(
1 + δ−2

[(
1 +
|u − s|

h

)
ω(x, h)

]2)
ω(( f )3, δ).
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Then

|(LnF)(x)(t) − F(x)(t)|

≤ Θs

(
Ln(e0 + h−2(e1 − se0)2)(s)

)
(t)ω(( f )2, h)

+Θs

(
Ln

(
e0 + δ−2

(
e0 + h−1

|e1 − se0|
)2

(ω(x, h))2
)

(s)
)

(t)ω(( f )3, δ)

=: T1 + T2 (19)

Since Ln(e0) = e0 and η2
n(s) = Ln((e1 − se0)2, s), first we have:

T1 =
(
Θ(e0)(t) + h−2Θ(η2

n)(t)
)
ω(( f )2, h). (20)

Then, applying Schwarz inequality we get

Ln

((
e0 +
|e1 − se0|

h

)2)
(s) = e0(s) +

2
h

Ln(|e1 − se0|)(s) +
1
h2 η

2
n(s)

≤ e0(s) +
2
h

√
η2

n(s) +
1
h2 η

2
n(s)

=

e0(s) +

√
η2

n(s)

h


2

.

Consequently,

T2 ≤ Θ

e0 +
1
δ2

(
e0 +

1
h

√
η2

n

)2

(ω(x, h))2

 (t)ω(( f )3, δ). (21)

From relations (19), (20) and (21) it follows (17).
Then, from relation (17) it results

‖(LnF)(x) − F(x)‖ ≤
(
‖Θ(e0)‖ + h−2

‖Θ(η2
n)‖

)
ω(( f )2, h)

+

[
‖Θ(e0)‖ +

1
δ2

(
‖Θ(e0)‖ +

2
h

∥∥∥∥∥∥Θ
(√

η2
n

)∥∥∥∥∥∥ +
1
h2 ‖Θ(η2

n)‖
)

(ω(x, h))2

]
ω(( f )3, δ).

From Schwarz inequality we have∥∥∥∥∥∥Θ
(√

η2
n

)∥∥∥∥∥∥ ≤ √
‖Θ(η2

n)‖ · ‖Θ(e0)‖.

Consequently

‖(LnF)(x) − F(x)‖ ≤
(
‖Θ(e0)‖ + h−2

‖Θ(η2
n)‖

)
ω(( f )2, h)

+

‖Θ(e0)‖ +
1
δ2

(√
‖Θ(e0)‖ +

1
h

√
‖Θ(η2

n)‖
)2

(ω(x, h))2

ω(( f )3, δ)



C. M. Păcurar, R. Păltănea / Filomat 35:8 (2021), 2595–2604 2601

If we choose h =

√
‖Θ(η2

n)‖
‖Θ(e0)‖ in this we obtain

‖(LnF)(x) − F(x)‖ ≤ 2‖Θ(e0)‖ω

( f )2,

√
‖Θ(η2

n)‖
‖Θ(e0)‖

 + ‖Θ(e0)‖

1 +

2
δ
ω

x,

√
‖Θ(η2

n)‖
‖Θ(e0)‖




2ω(( f )3, δ).

Finally, if we choose δ = ω

(
x,

√
‖Θ(η2

n)‖
‖Θ(e0)‖

)
, we get

‖(LnF)(x) − F(x)‖ ≤ 2‖Θ(e0)‖ω

( f )2,

√
‖Θ(η2

n)‖
‖Θ(e0)‖

 + 5‖Θ(e0)‖ω

( f )3, ω

x,

√
‖Θ(η2

n)‖
‖Θ(e0)‖


 .

Corollary 4.2. In conditions of Theorem 4.1 we have

lim
n→∞
‖(LnF)(x) − F(x)‖ = 0, for x ∈ C([a, b], I). (22)

Remark 4.3. There exists two main cases in the choice of interval I:
i) I is compact. Then, conditions (10) are satisfied automatically, but it is necessary to have the condition

x ∈ C([a, b], I) which can be reduced by a linear transformation to condition x ∈ C([a, b], [a, b]), and then the
same conditions as in Theorem 3.1 are necessary.

ii) I = R. Then x ∈ C[a, b] is not subject to any restrictions, but conditions (10) are now necessary.

5. Applications

5.1. Approximation with discrete operators. The case of Bernstein operators
Let (On)n≥1 be a sequence of linear and positive operators, defined as

On(x)(t) =

n∑
i=0

x(k(i,n))oi,n(t), x ∈ C[a, b], t ∈ [a, b], (23)

with k(i,n) ∈ [a, b], oi,n ∈ C[a, b], oi,n ≥ 0, such that

n∑
i=0

oi,n(t) = 1, and lim
n→∞
‖On(x) − x‖ = 0, ∀x ∈ C[a, b]. (24)

The two types of approximation operators for the generalized Urysohn operator are of the form:

(OnF)(x)(t) =

∫ b

a

 n∑
i=0

f (t, s, k(i,n))oi,n(x(s))

 dµt(s), x ∈ C([a, b], [a, b]), t ∈ [a, b],

where f ∈ C([a, b]3), and

(OnF)(x)(t) =

∫ b

a

 n∑
i=0

f (t, k(i,n), x(k(i,n)))oi,n(s)

 dµt(s), x ∈ C([a, b], I), t ∈ [a, b],

where f ∈ C([a, b]2
× I), respectively.

We exemplify only with the case of Bernstein operators, when [a, b] = [0, 1]:

Bn(x)(t) =

n∑
k=0

x
(

k
n

) (
n
k

)
tk(1 − t)n−k, x ∈ C[0, 1], t ∈ [0, 1].
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The first type of approximation operators is

(BnF)(x)(t) =

∫ 1

0

 n∑
k=0

f
(
t, s,

k
n

)
pn,k(x(s))

 dµt(s), x ∈ C([0, 1], [0, 1]), t ∈ [0, 1],

where f ∈ C([0, 1]3).
From Theorem 3.1 we get:

Corollary 5.1. Let operator F given in (6), with [a, b] = [0, 1], I = [0, 1] and f ∈ C([0, 1]3). Then

‖(BnF)(x) − F(x)‖ ≤ 2‖Θ(e0)‖ω
(
( f )3,

1
2
√

n

)
, (25)

for any n ∈N and x ∈ C([0, 1], [0, 1]).

Proof. It is well know that Bn(e0) = e0 and Bn((• − t)2)(t) =
t(1−t)

n , t ∈ [0, 1]. Theorem 3.1 can be applied and

notice that Θ(η2
n(x(•)))(t) =

∫ 1

0
1
n x(s)(1−x(s)dµt(s) ≤ 1

4n Θ(e0)(t) ≤ 1
4n‖Θ(e0)‖. Then

√
‖Θ(η2

n(x))‖/‖Θ(e0)‖ ≤ 1
2
√

n
.

Consequently, relation (25) holds.

In the particular case of Urysohn operators, when Θ(1)(t) =
∫ 1

0 1(s)ds, 1 ∈ C[0, 1], t ∈ [0, 1], one obtains a
quantitative form of the convergence result given in [2]:

Corollary 5.2. Let operator F given in (1), with [a, b] = [0, 1], where f ∈ C([0, 1]3). Then

‖(BnF)(x) − F(x)‖ ≤ 2ω
(
( f )3,

1
2
√

n

)
, (26)

for any n ∈N and x ∈ C([0, 1], [0, 1]).

In the particular case of Volterra operators one obtains

Corollary 5.3. For operator F given (7), with [a, b] = [0, 1], we have

‖(BnF)(x) − F(x)‖ ≤
1
√

n
‖K‖. (27)

for any n ∈N and x ∈ C([0, 1], [0, 1]).

Proof. In this case Θ(1)(t) =
∫ t

0 1(s)ds, for any 1 ∈ C[0, 1]. Then Θ(e0)(t) = t and hence ‖Θ(e0)‖ = 1. Also,
f (t, s,u) = K(t, s)u, for (t, s,u) ∈ [0, 1]3 and hence ω(( f )3, h) = ‖K‖ · h, for h > 0. Then, from (14) it follows

‖(BnF)(x) − F(x)‖ ≤ 2‖Θ(e0)‖ · ‖K‖ ·

√
‖Θ(η2

n)‖
‖Θ(e0)‖

≤ 2
1

2
√

n
‖K‖.

For the choice [a, b] = [0, 1] and I = R, the second type of approximation operators is:

(BnF)(x)(t) =

∫ 1

0

 n∑
k=0

f
(
t,

k
n
, x

(
k
n

))
pn,k(s)

 dµt(s), x ∈ C[0, 1], t ∈ [0, 1],

where f ∈ C([0, 1]2
×R).

Applying Theorem 4.1, it follows:
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Corollary 5.4. Let operator F given in (6), with [a, b] = [0, 1] and I = R. If the function f ∈ C([0, 1]2
× R) is

uniformly continuous in the last two arguments, then

‖(BnF)(x) − F(x)‖ ≤ 2‖Θ(e0)‖ω
(
( f )2,

1
2
√

n

)
+ 5‖Θ(e0)‖ω

(
( f )3, ω

(
x,

1
2
√

n

))
. (28)

for any n ∈N and x ∈ C[0, 1].

Proof. We have √
‖Θ(η2

n)‖
‖Θ(e0)‖

≤

√
‖η2

n‖ ≤
1

2
√

n
.

5.2. Approximation with integral operators. The case of Durrmeyer operators
Consider a sequence of integral operators (Un)n which can be defined as follows

Un(x)(t) =

∫ b

a
Λn(u, t)x(u)du, x ∈ C[a, b], t ∈ [a, b], (29)

where Λn(•, t) are positive and integrable functions for each t ∈ [a, b] and are such that Un(e0) = e0 and
lim
n→∞

Un(x) = x, uniformly for each x ∈ C[a, b].
Corresponding to the sequence (Un)n, we can build the following two types of approximation operators

for generalized Urysohn operators F given in (6).
i) In the case f ∈ C([a, b]3):

(UnF)(x)(t) =

∫ b

a

∫ b

a
Λn(u, x(s)) f (t, s,u)dudµt(s), x ∈ C([a, b], [a, b]), t ∈ [a, b]

ii) In the case f ∈ C([a, b]2
× I):

(UnF)(x)(t) =

∫ b

a

∫ b

a
Λn(u, s) f (t,u, x(u))dudµt(s), x ∈ C([a, b], I), t ∈ [a, b]

respectively.
We exemplify only with the Bernstein-Durrmeyer operators, defined as

Dn(x)(t) = (n + 1)

 n∑
k=0

pn,k(t)
∫ 1

0
x(u)pn,k(u)du

 , x ∈ C[0, 1], t ∈ [0, 1]. (30)

We have Dn(e0) = e0 and η2
n(t) = Dn((• − t)2)(t) =

(2n−6)t(1−t)+2
(n+2)(n+3) ≤

n+1
2(n+2)(n+3) , for t ∈ [0, 1], n ≥ 3. In this case we

have:

(DnF)(x)(t) =

∫ 1

0

∫ 1

0
(n + 1)

n∑
k=0

pn,k(u)pn,k(x(s)) f (t, s,u)dudµt(s),

for f ∈ C([0, 1]3), x ∈ C([0, 1], [0, 1]), t ∈ [0, 1];

(DnF)(x)(t) =

∫ 1

0

∫ 1

0
(n + 1)

n∑
k=0

pn,k(u)pn,k(s) f (t,u, x(u))dudµt(s),
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for f ∈ C([0, 1]2
×R), x ∈ C([0, 1]), t ∈ [0, 1].

Since

Θ(η2
n)(t) =

∫ 1

0
η2

n(s)dµt(s) ≤
n + 1

2(n + 2)(n + 3)

∫ 1

0
dµt(s) ≤

n + 1
2(n + 2)(n + 3)

‖Θ(e0)‖.

it follows ‖Θ(η2
n)‖/‖Θ(e0)‖ ≤ (n + 1)/(2(n + 2)(n + 3)). From Theorem 3.1 and Theorem 4.1, one can deduce:

Corollary 5.5. Let operator F given in (6), with [a, b] = [0, 1], I = [0, 1] and f ∈ C([0, 1]3). Then

‖(DnF)(x) − F(x)‖ ≤ 2‖Θ(e0)‖ω

( f )3,

√
n + 1

2(n + 2)(n + 3)

 , (31)

for any n ∈N, n ≥ 3 and x ∈ C([0, 1], [0, 1]).

Corollary 5.6. Let operator F given in (6), with [a, b] = [0, 1] and I = R. If function f ∈ C([0, 1]2
×R) is uniformly

continuous in the last two arguments, then

‖(DnF)(x) − F(x)‖ ≤ 2‖Θ(e0)‖ω

( f )2,

√
n + 1

2(n + 2)(n + 3)

 + 5‖Θ(e0)‖ω

( f )3, ω

x,

√
n + 1

2(n + 2)(n + 3)

 , (32)

for any n ∈N, n ≥ 3 and x ∈ C[0, 1].
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