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Abstract. In this paper, we give a generalized Cline’s formula for the generalized Drazin inverse. Let R
be a ring, and let a, b, c, d ∈ R satisfying

(ac)2 = (db)(ac), (db)2 = (ac)(db);
b(ac)a = b(db)a, c(ac)d = c(db)d.

Then ac ∈ Rd if and only if bd ∈ Rd. In this case, (bd)d = b((ac)d)2d. We also present generalized Cline’s
formulas for Drazin and group inverses. Some weaker conditions in a Banach algebra are also investigated.
These extend the main results of Cline’s formula on g-Drazin inverse of Liao, Chen and Cui (Bull. Malays.
Math. Soc., 37(2014), 37-42), Lian and Zeng (Turk. J. Math., 40(2016), 161-165) and Miller and Zguitti
(Rend. Circ. Mat. Palermo, II. Ser., 67(2018), 105-114). As an application, new common spectral property
of bounded linear operators over Banach spaces is obtained.

1. Introduction

Let R be an associative ring with an identity. The commutant of a ∈ R is defined by comm(a) = {x ∈
R | xa = ax}. The double commutant of a ∈ R is defined by comm2(a) = {x ∈ R | xy = yx for all y ∈ comm(a)}.
An element a ∈ R has g-Drazin inverse (i.e., generalized Drazin inverse) in the case that there exists b ∈ R
such that

b = bab, b ∈ comm2(a), a − a2b ∈ Rqnil.

The preceding b is unique if it exists and denoted by ad. Here, Rqnil = {a ∈ R | 1 + ax ∈ R−1 for every x ∈
comm(a)}. For a Banach algebraA it is well known that

a ∈ Aqnil
⇔ lim

n→∞
‖ an
‖

1
n= 0⇔ 1 − λa ∈ A−1 for any scarlar λ.

Let a, b ∈ R. The Cline’s formula for g-Drazin inverse stated that ab ∈ Rd if and only if ba ∈ Rd. In this
case, (ba)d = b[(ab)d]2a (see [6, Theorem 2.1]). Here, Rd = {x ∈ R | x has g-Drazin inverse }. Cline’s formula
plays an important role in the generalized inverse of matrix and operator theory ( [2, 4, 7, 11, 13–15]). In
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[5, Theorem 2.3], Lian and Zeng proved the generalized Cline’s formula to the case when aba = aca. In
[7, Theorem 3.2], Miller and Zguitti generalized the Cline’s formula under the condition acd = dbd and
dba = aca. In [10, Theorem 3.2], Mosić investigated the generalized Cline’s formula under the condition
bac = bdb and cdb = cac. The motivation of this paper is to extend the Cline’s formula for g-Drazin inverse
to a wider case.

In Section 2, we present a new generalized Cline’s formular for g-Draziin inverse. We also prove
generalized Cline’s formulas for Drazin and group inverses. Let R be a ring, and let a, b, c, d ∈ R satisfying

(ac)2 = (db)(ac), (db)2 = (ac)(db);
b(ac)a = b(db)a, c(ac)d = c(db)d.

Then ac ∈ Rd if and only if bd ∈ Rd. In this case, (bd)d = b((ac)d)2d. This improves the main results of
Cline’s formula on g-Drazin inverse of Liao, Chen and Cui ( [6, Theorem 2.1]), Lian and Zeng ( [5, Theorem
2.3]) and Miller and Zguitti ( [7, Theorem 3.2]). In Section 3, we investigate some weaker conditions in a
Banach algebra under which the generalized Cline’s formula holds. We prove that the preceding condition
”b(ac)a = b(db)a, c(ac)d = c(db)d” can be dropped in a Banach algebra. Finally, in Section 4, we apply the
generalized Cline’s formula to common spectral property of bounded linear operators in a Banach space.

Throughout the paper, all rings are associative with an identity and all Banach algebras are complex.
We useArad to denote the Jacobson radical ofA. The notationsAd,AD,A# andA‡ stand for the sets of all
g-Drazin, Drazin, group and p-Drazin invertible elements, respectively.

2. Generalized Cline’s Formula

For any elements a, b in a ring R, it is well known that ab ∈ Rqnil if and only if ba ∈ Rqnil (see [5, Lemma
2.2]). We start with the following generalization.

Lemma 2.1. Let R be a ring, and let a, b, c, d ∈ R satisfying

(ac)2 = (db)(ac), (db)2 = (ac)(db);
b(ac)a = b(db)a, c(ac)d = c(db)d.

Then ac ∈ Rqnil if and only if bd ∈ Rqnil.

Proof. =⇒ Let x ∈ comm(bd). Then we check that

(dbdx5bdbac)ac = dbdx5bd(baca)c
= dbdx5bd(bdba)c
= dbdx5b(dbdba)c
= (dbdbd)x5bdbac
= (dbdb)dx5bdbac
= (acdb)dx5bdbac
= (acdbd)x5bdbac
= ac(dbdx5bdbac)

Hence, dbdx5bdbac ∈ comm(ac), and so 1 − dbd(x5bdbacac) = 1 − (dbdx5bdbac)ac ∈ R−1. By using Jacobson’s
Lemma (see [5, Lemma 2.1]), we see that

1 − x5bdbdbdbdbd = 1 − (x5bdbdb(dbdb)d
= 1 − (x5bdbdb(acdb)d
= 1 − (x5bdbdbac)dbd
= 1 − (x5bdbacac)dbd
∈ R−1.
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Then
(1 − xbd)(1 + xbd + x2bdbd + x3bdbdbd + x4bdbdbdbd)

= (1 + xbd + x2bdbd + x3bdbdbd + x4bdbdbdbd)(1 − xbd)
= 1 − x5bdbdbdbdbd
∈ R−1,

and so bd ∈ Rqnil.
⇐= Since bd ∈ Rqnil, by [5, Lemma 2.2], db ∈ Rqnil. Applying the preceding discussion, we see that

ca ∈ Rqnil. By using [5, Lemma 2.2] again, we have ac ∈ Rqnil, as desired.

We are now ready to prove:

Theorem 2.2. Let R be a ring, and let a, b, c, d ∈ R satisfying

(ac)2 = (db)(ac), (db)2 = (ac)(db);
b(ac)a = b(db)a, c(ac)d = c(db)d.

Then ac ∈ Rd if and only if bd ∈ Rd. In this case,

(bd)d = b((ac)d)2d.

Proof. =⇒ Let (ac)d = h and e = bh2d. We shall prove that e is the g-Drazin inverse of bd.
Step 1. Let t ∈ comm(bd). Then we check that

ac(dtbdbdbac) = (acdbdbd)(tbac)
= (dbdbdbd)(tbac)
= dtbdb(dbdba)c
= (dtbdbdbac)ac.

Thus dtbdbdbac ∈ comm(ac), and so (dtbdbdbac)h = h(dtbdbdbac). It is easy to verify that acdbd = a(cdbd) =
a(cacd) = (ac)2d = (dbac)d = dbacd, and so (bacd)(bd) = (bd)(bacd). Then we compute that

et = (bh6(ac)4d)t = bh6(db)3acdt = bh6dbdbd(bacd)t
= bh6d(bacd)bdbdt = bh6db(acdb)dbdt = bh6(dbdbdbdbd)t
= bh6dtbdb(dbdb)d = bh6dtbdba(cdbd) = bh6dtbdb(acac)d
= bh6(dtbdbdbac)d = b(dtbdbdbac)h6d = tbdbdbdbach6d
= tb(ac)4h6d = tbh2d = te,

and then e ∈ comm2(bd).
Step 2. We directly verify that

e(bd)e = bh2dbdbh2d = bh2acdbh2d
= bh2acdb(ac)h3d = bh2(ac)3h3d = b(ac)3h5d = e.

Step 3. Let p = 1 − (ac)h. Then (pa)c = ac − (ac)2h ∈ Rqnil. One easily checks that

bd − (bd)2e = bd − bdbdbh2d
= bd − b(dbdb)ach3d
= bd − b(acdb)ach3d
= bd − bac(dbac)h3d
= bd − b(ac)3h3d
= b(1 − ach)d
= b(pd).
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We directly compute that

(pac)2 = p(ac)2p = p(dbac)p = (pdb)(pac),
(pdb)2 = pdbpdb = pdb[1 − (1 − p)]db

= p(db)2
− pdbac(ac)ddb

= p(db)2
− p(ac)2(ac)ddb

= p(db)2 = pacdb = (pac)(pdb);
b(pac)pa = bacpa − b(ac)d(ac)2pa

= bacpa − b(ac)dd(bacpa) = bdbpa − b(ac)dd(bdbpa)
= bdbpa − b(ac)d(acdb)pa = b(pdb)pa,

c(pac)pd = cacd − c(ac)d(ac)2d = cdbd − c(ac)d(ac)2d
− [c(ac)da(cdbd) − c(ac)da(cacd)] = cdbd − cac(ac)dacd
− [c(ac)dacdbd − c(ac)dacdbac(ac)dd]
= cdbd − cac(ac)dacd − c(ac)dacdb[1 − ac(ac)d]d
= cdbd − cdb(ac)dacd − c(ac)dacdbpd
= [cdb − c(ac)dacdb]pd = c(pdb)pd.

Since (pa)c = ac − (ac)2(ac)d
∈ Rqnil. In view of Lemma 2.1, b(pd) ∈ Rqnil. Therefore bd has g-Drazin inverse e

and e = bh2a = (bd)d.
⇐= In view of [6, Theorem 2.2], db ∈ Rd. Applying the preceding discussion, we have ca ∈ Rd. By

using [6, Theorem 2.2] again, ac ∈ Rd. This completes the proof.

In the case that c = b and d = a, we recover the Cline’s formula for g-Drazin inverse . In [5, Theorem
2.3], Lian and Zeng concerned Cline’s formula under the condition aba = aca. We now derive

Corollary 2.3. Let R be a ring, and let a, b, c ∈ R satisfying

(aba)b = (aca)b, b(aba) = b(aca),
(aba)c = (aca)c, c(aba) = c(aca).

Then ac ∈ Rd if and only if ba ∈ Rd. In this case, (ba)d = b((ac)d)2a.

Proof. Choosing d = a in Theorem 3.2, we obtain the result.

Corollary 2.4. ( [7, Theorem 3.2]) Let R be a ring, and let a, b, c ∈ R satisfying

acd = dbd, dba = aca.

Then ac ∈ Rd if and only if bd ∈ Rd. In this case, (bd)d = b((ac)d)2d.

Proof. By hypothesis, we easily check that

(ac)2 = (db)(ac), (db)2 = (ac)(db);
b(ac)a = b(db)a, c(ac)d = c(db)d.

This completes the proof by Theorem 2.2.

An element a ∈ R has Drazin inverse in the case that there exists b ∈ R such that

b = bab, ab = ba, ak = ak+1b

for some k ∈ N The preceding b is unique if it exists. It is denoted by aD. The smallest k satisfying the
preceding condition is called the Drazin index of a. It is denoted by i(a).
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Theorem 2.5. Let R be a ring, and let a, b, c, d ∈ R satisfying

(ac)2 = (db)(ac), (db)2 = (ac)(db);
b(ac)a = b(db)a, c(ac)d = c(db)d.

Then ac ∈ RD if and only if bd ∈ RD. In this case,

(bd)D = b((ac)D)2d,
i(bd) ≤ i(ac) + 2.

Proof. =⇒ Since ac ∈ RD, we see that ac ∈ Rd. It follows by Theorem 2.2 that bd ∈ Rd and (bd)d = b((ac)d)2d.
Then bd(bd)d = (bd)dbd and (bd)d = (bd)d(bd)(bd)d. Clearly, we have

1 − (db)2((ac)d)2 = 1 − acdb(ac)((ac)d)3

= 1 − ac(dbac)((ac)d)3

= 1 − ac(ac)d.

Hence,
bd − (bd)2(bd)d = bd − (bd)2b((ac)d)2d

= b[1 − (db)2((ac)d)2]d
= b[1 − ac(ac)d]d.

Further, we have
[1 − (bd)(bd)d](bd)3 = b[1 − ac(ac)d](dbdb)d

= b[1 − ac(ac)d](acdb)d
= b[1 − (ac)(ac)d](ac)dbd.

Write m = i(ac). By induction, we have

[1 − (bd)(bd)d](bd)m+2 = b[1 − (ac)(ac)d](ac)mdbd
= 0.

Therefore [bd− (bd)2(bd)d]m+2 = 0, and so bd has Drazin inverse. Moreover, we have i(bd) ≤ m+ 2 = i(ac)+ 2,
as required.
⇐= This is proved as in Theorem 2.2.

Corollary 2.6. Let R be a ring, and let a, b, c ∈ R satisfying

(aba)b = (aca)b, b(aba) = b(aca),
(aba)c = (aca)c, c(aba) = c(aca).

Then ac ∈ RD if and only if ba ∈ RD. In this case,

(ba)D = b((ac)D)2a,
i(ba) ≤ i(ac) + 1.

Proof. We prove that ac ∈ RD if and only if ba ∈ RD by choosing d = a in Theorem 2.5. Moreover, we check
that ba − (ba)2(ba)D = b[1 − ac(ac)D]a, and so

[1 − (ba)(ba)D](ba)2 = b[1 − ac(ac)D]aba
= baba − bac(ac)Daba
= baca − bac((ac)D)2a(caba)
= baca − bac((ac)D)2a(caca)
= b[ac − (ac)2(ac)D]a
= b[1 − (ac)(ac)D](ac)a.

By induction, we have [1 − (ba)(ba)D](ba)m+1 = b[1 − (ac)(ac)D](ac)ma = 0, where m = i(ac). This shows that

(ba)m+1
− (ba)m+2(ba)D = [1 − (ba)(ba)d](ba)m+1 = 0.

Therefore i(ba) ≤ m + 1 = i(ac) + 1, as asserted.
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The group inverse of a ∈ R is the unique element a#
∈ R which satisfies aa# = a#a, a = aa#a, a# = a#aa#. We

denote the set of all group invertible elements of R by R#. As is well known, a ∈ R# if and only if a ∈ RD and
i(a) = 1.

Theorem 2.7. Let R be a ring, and let a, b, c ∈ R satisfying

(aba)b = (aca)b, b(aba) = b(aca),
(aba)c = (aca)c, c(aba) = c(aca).

If ac ∈ R#, then (ba)2
∈ R#. In this case, (ac)# = a[(ba)2]#c.

Proof. Since ac ∈ A#, it follows by Corollary 2.6 that ba ∈ AD and (ba)D = b[(ac)2]Da. Moreover, we have
i(ba) ≤ i(ac) + 1 = 2. Set x = (ba)D. Then (ba)2 = (ba)3x = (ba)2x2(ba)2, x2 = x2(ba)2x2. Hence [(ba)2]# = x2. We
observe that

a[(ba)2]Dc = a[(ba)D]2c
= ab[(ac)2]Dab[(ac)2]Dac
= ab[(ac)2]D(abac)(ac)D]2

= ab[(ac)2]D(ac)2[(ac)D]2

= (abac)[(ac)D]3

= (ac)2[(ac)D]3

= (ac)D,

therefore (ac)# = a[(ba)2]#c, as desired.

Corollary 2.8. LetA be a Banach algebra, and let a, b, c ∈ A satisfying aba = aca. If ac ∈ A#, then (ba)2
∈ A

#. In
this case, (ac)# = a[(ba)2]#c.

Proof. This is clear from Theorem 2.7.

3. Extensions in Banach algebras

In this section, we investigate the generalized Cline’s formula in a Banach algebra. We observe that the
condition ”b(ac)a = b(db)a, c(ac)d = c(db)d” in Theorem 2.2 can be dropped in Banach algebra.

Theorem 3.1. LetA be a Banach algebra, and let a, b, c, d ∈ A satisfying

(ac)2 = (db)(ac),
(db)2 = (ac)(db).

Then ac ∈ Ad if and only if bd ∈ Ad. In this case, (bd)d = b[(ac)d]3dbd.

Proof. =⇒ Let aca = a′ , b = b′ , c = c′ and dbd = d′ . Then we have

(a′c′)2 = (ac)4 = (db)3ac = dbdbacac = (d′b′)(a′c′),
(d′b′)2 = (db)4 = (ac)(db)2(db) = (ac)2(db)2 = (a′c′)(d′b′),
b′(a′c′)a′ = b(ac)3a = bdbdbaca = b′(d′b′)a′,
c′(a′c′)d′ = c(acac)dbd = c(db)3d = c′(d′b′)d′.

Since ac ∈ Ad, it follows by [3, Theorem 2.7] that a′c′ = (ac)2
∈ A

d, In light of Theorem 2.2, b′d′ = (bd)2
∈ A

d.
Therefore bd ∈ Ad by [3, Theorem 2.7]. Moreover, we have

(bd)d = [(bd)2]dbd
= (b′d′)dbd = b′[(a′c′)d]2d′bd
= b[(ac)d]4(db)2d
= b[(ac)d]4(acdb)d
= b[(ac)d]3dbd,
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as required.
⇐= Since db ∈ Ad, applying the preceding discussion, we have ca ∈ Ad. Therefore ac ∈ Ad, by using the

Cline’s formula.

As easy consequences, we now derive

Corollary 3.2. Let A be a Banach algebra, and let a, b, c ∈ A. If (aba)b = (aca)b, (aba)c = (aca)c, then ac ∈ Ad if
and only if ba ∈ Ad. In this case, (ba)d = b[(ac)d]3aba.

Proof. This is obvious by choosing d = a in Theorem 3.1.

Corollary 3.3. LetA be a Banach algebra, and let a, b, c, d ∈ A satisfying

(ac)2 = (db)(ac),
(db)2 = (ac)(db).

Then ac ∈ AD if and only if bd ∈ AD. In this case, (bd)D = b[(ac)D]3dbd.

Proof. =⇒ Since ac ∈ AD, we see that ac ∈ Ad. By virtue of Theorem 3.1, bd ∈ Ad and (bd)d = b[(ac)d]3dbd.
Let m = i(ac). Then [ac − (ac)2(ac)D]m = 0. One easily checks that

1 − (bd)(bd)d = 1 − bdb[(ac)D]3dbd
= 1 − bdbac[(ac)D]4dbd
= 1 − b(ac)2[(ac)D]4dbd
= 1 − b[(ac)D]2dbd.

Then
[1 − (bd)(bd)d](bd)3 = [1 − b[(ac)D]2dbd](bd)3

= (bd)3
− b[(ac)D]2d(bd)4

= bacdbd − b[(ac)D]2(ac)3dbd
= b[1 − ac(ac)D]ac(dbd).

By induction, we have
[bd − (bd)2(bd)d]m+2 = [1 − (bd)(bd)d](bd)m+2

= b[1 − ac(ac)D](ac)m(dbd)
= b[ac − ac2(ac)D]m(dbd)
= 0.

Therefore
(bd)D = (bd)d = b[(ac)D]3dbd,

as required.
⇐= This is proved as in Theorem 3.1.

An element a in a Banach algebra A has p-Drazin inverse provided that there exists b ∈ comm(a) such
that b = b2a, ak

− ak+1b ∈ Arad for some k ∈ N. The preceding b is unique if it exists. It is denoted by a‡

(see [12]). We now derive

Theorem 3.4. LetA be a Banach algebra, and let a, b, c, d ∈ A satisfying

(ac)2 = (db)(ac),
(db)2 = (ac)(db).

Then ac ∈ A‡ if and only if bd ∈ A‡. In this case, (bd)‡ = b[(ac)‡]3dbd.
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Proof. =⇒ Since ac ∈ A‡, we have ac ∈ Ad. In light of Theorem 3.1, bd ∈ Ad and (bd)d = b[(ac)‡]3dbd. Assume
that [ac − (ac)2(ac)‡]m

∈ A
rad for some m ∈N. As in the proof of Corollary 3.3, we have

[bd − (bd)2(bd)d]m+2 = b[ac − ac2(ac)d]m(dbd)
∈ A

rad.

Therefore
(bd)‡ = b[(ac)‡]3dbd,

as asserted.
⇐= By virtue of [12, Theorem 3.6], db ∈ A‡. Then we have ca ∈ A‡ by the discussion above. So the

theorem is true by [12, Theorem 3.6].

Corollary 3.5. Let A be a Banach algebra, and let a, b, c ∈ A. If (aba)b = (aca)b, (aba)c = (aca)c, then ac ∈ A‡ if
and only if ba ∈ A‡. In this case, (ba)‡ = b[(ac)‡]3aba:

Proof. This is obvious by choosing d = a in Theorem 3.4.

The following example illustrates that Theorem 3.4 is not a trivial generalization of [7, Theorem 4.1].

Example 3.6.

LetA =M4(C). Choose

a = b = c =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , d =


0 2 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ∈M4(C).

Then
(ac)2 = (db)(ac) = 0,
(db)2 = (ac)(db) = 0.

We see that ac and bd are nilpotent matrices and so have p-Drazin inverses. In this case,

acd =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 2
0 0 0 0
0 0 0 0
0 0 0 0

 = dbd.

4. Applications

Let X be a Banach space, and let L(X) denote the set of all bounded linear operators from the Banach
space X to itself, and let A ∈ L(X). The Drazin spectrum σD(A) and g-Drazin spectrum σd(A) are defined by

σD(A) = {λ ∈ C | λI − A < L(X)D
};

σd(A) = {λ ∈ C | λI − A < L(X)d
}.

For the further use, we now record the following generalized Jacobson’s lemma (see [9]).

Lemma 4.1. Let R be a ring, and let a, b, c, d ∈ R satisfying

(ac)2 = (db)(ac), (db)2 = (ac)(db);
b(ac)a = b(db)a, c(ac)d = c(db)d.

Then 1 − ac ∈ R−1 if and only if 1 − bd ∈ R−1. In this case,

(1 − bd)−1 = [1 − b(1 − ac)−1(acd − dbd)][1 + b(1 − ac)−1d].
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Proof. =⇒ Let s = (1 − ac)−1. Then s(1 − ac) = 1 = (1 − ac)s, and so 1 − s = −sac = −acs. We check that

(1 + bsd)(1 − bd) = 1 − b(1 − s)d − bsdbd
= 1 + bsacd − bsdbd
= 1 + bs(acd − dbd).

Hence,
[1 − bs(acd − dbd)](1 + bsd)(1 − bd)

= 1 − bs(acd − dbd)bs(acd − dbd)
= 1.

Also we check that

(1 − bd)(1 + bd + bacsd) = 1 − bdbd + b(1 − db)acsd
= 1 − b[db(1 − ac) − (1 − db)ac]sd
= 1 − b(db − ac)sd;

hence, we have
(1 − bd)(1 + bd + bacsd)[1 + b(db − ac)sd]

= 1 − b(db − ac)sdb(db − ac)sd
= 1 − b(db − ac)sdb(db − ac)(1 + acs)d
= 1 − b(db − ac)sdb(db − ac)d
= 1.

That is, 1 − bd is right and left invertible. Obviously, the left and right inverses of 1 − bd coincide with each
other. Therefore

(1 − bd)−1 = [1 − bs(acd − dbd)](1 + bsd),

as desired.
⇐= In light of [9, Lemma 1.4], 1− db ∈ R−1. Applying the discussion above, we see that 1− ca ∈ R−1. By

using [7, Theorem 2.1] again, 1 − ac ∈ R−1, as asserted.

We have at our disposal all the information necessary to prove the following.

Theorem 4.2. Let A,B,C,D ∈ L(X) such that

(AC)2 = (DB)(AC), (DB)2 = (AC)(DB);
B(AC)A = B(DB)A,C(AC)D = C(DB)D.

then
σd(BD) = σd(AC).

Proof. Case 1. 0 ∈ σd(BD). Then BD < L(X)d. In view of Theorem 2.2, AC < L(X)d. Thus 0 ∈ σd(AC).
Case 2. 0 < λ ∈ σd(BD). Then λ ∈ accσ(BD); hence,

λ = lim
n→∞
{λn | λnI − BD < L(X)−1

}.

Let λn , 0. Then I − B( 1
λn

D) ∈ L(X)−1. By hypothesis, we have

( 1
λn

AC)2 = ( 1
λn

DB)( 1
λn

AC), ( 1
λn

DB)2 = ( 1
λn

AC)( 1
λn

DB);
B( 1

λn
AC) 1

λn
A = B( 1

λn
DB) 1

λn
A,C( 1

λn
AC) 1

λn
D = C( 1

λn
DB) 1

λn
D.

In light of Lemma 4.1, we have I − ( 1
λn

A)C < L(X)−1. Then we check that

λ = lim
n→∞
{λn | λnI − AC < L(X)−1

} ∈ accσ(AC) = σd(AC).

Therefore σd(BD) ⊆ σd(AC). Analogously, we have σd(AC) ⊆ σd(BD), the result follows.
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Corollary 4.3. Let A,B,C ∈ L(X). If (ABA)B = (ACA)B, (AB A)C = (ACA)C, then

σd(AC) = σd(BA).

Proof. By choosing D = A in Theorem 4.2, we complete the proof.

For the Drazin spectrum σD(a), we now derive

Theorem 4.4. Let A,B,C,D ∈ L(X) such that

(AC)2 = (DB)(AC), (DB)2 = (AC)(DB);
B(AC)A = B(DB)A,C(AC)D = C(DB)D.

then
σD(BD) = σD(AC).

Proof. By virtue of Theorem 2.5, AC ∈ L(X)D implies that BD ∈ L(X)D. This completes the proof by [13,
Theorem 3.1].

A bounded linear operator T ∈ L(X) is Fredholm operator if dimN(T) and codimR(T) are finite, where
N(T) and R(T) are the null space and the range of T respectively. For each nonnegative integer n define T|n|
to be the restriction of T to R(Tn). If for some n, R(Tn) is closed and T|n| is a Fredholm operator then T is
called a B-Fredholm operator. The B-Fredholm spectrum of T are defined by

σBF(T) = {λ ∈ C | T − λI is not a B-Fredholm operator}.

Corollary 4.5. Let A,B,C ∈ L(X) such that

(ABA)B = (ACA)B, (ABA)C = (ACA)C,

then
σBF(AC) = σBF(BA).

Proof. Let π : L(X) → L(X)/F(X) be the canonical map and F(X) be the ideal of finite rank operators in
L(X). As is well known, T ∈ L(X) is B-Fredholm if and only if π(T) has Drazin inverse. By assumption, we
have

π(A)π(B)π(A)π(B) = π(A)π(C)π(A)π(B),
π(A)π(B)π(A)π(C) = π(A)π(C)π(A)π(C).

The corollary is therefore established by Theorem 4.4.
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[8] D. Mosić, A note on Cline’s formula for the generalized Drazin inverse, Linear Multilinear Algebra, 63(2014), 1106–1110.
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