Generalized Cline's Formula for g-Drazin Inverse in a Ring

Huanyin Chen ${ }^{\text {a }}$, Marjan Sheibani Abdolyousefi ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Hangzhou Normal University, Hangzhou, China
${ }^{b}$ Farzanegan Campus, Semnan University, Semnan, Iran

Abstract

In this paper, we give a generalized Cline's formula for the generalized Drazin inverse. Let R be a ring, and let $a, b, c, d \in R$ satisfying $$
\begin{gathered} (a c)^{2}=(d b)(a c),(d b)^{2}=(a c)(d b) ; \\ b(a c) a=b(d b) a, c(a c) d=c(d b) d . \end{gathered}
$$

Then $a c \in R^{d}$ if and only if $b d \in R^{d}$. In this case, $(b d)^{d}=b\left((a c)^{d}\right)^{2} d$. We also present generalized Cline's formulas for Drazin and group inverses. Some weaker conditions in a Banach algebra are also investigated. These extend the main results of Cline's formula on g-Drazin inverse of Liao, Chen and Cui (Bull. Malays. Math. Soc., 37(2014), 37-42), Lian and Zeng (Turk. J. Math., 40(2016), 161-165) and Miller and Zguitti (Rend. Circ. Mat. Palermo, II. Ser., $67(2018), 105-114)$. As an application, new common spectral property of bounded linear operators over Banach spaces is obtained.

1. Introduction

Let R be an associative ring with an identity. The commutant of $a \in R$ is defined by $\operatorname{comm}(a)=\{x \in$ $R \mid x a=a x\}$. The double commutant of $a \in R$ is defined by $\operatorname{comm}^{2}(a)=\{x \in R \mid x y=y x$ for all $y \in \operatorname{comm}(a)\}$. An element $a \in R$ has g-Drazin inverse (i.e., generalized Drazin inverse) in the case that there exists $b \in R$ such that

$$
b=b a b, b \in \operatorname{comm}^{2}(a), a-a^{2} b \in R^{\text {qnil }} .
$$

The preceding b is unique if it exists and denoted by a^{d}. Here, $R^{\text {qnil }}=\left\{a \in R \mid 1+a x \in R^{-1}\right.$ for every $x \in$ $\operatorname{comm}(a)\}$. For a Banach algebra \mathcal{A} it is well known that

$$
a \in \mathcal{A}^{q n i l} \Leftrightarrow \lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{\frac{1}{n}}=0 \Leftrightarrow 1-\lambda a \in \mathcal{A}^{-1} \text { for any scarlar } \lambda .
$$

Let $a, b \in R$. The Cline's formula for g-Drazin inverse stated that $a b \in R^{d}$ if and only if $b a \in R^{d}$. In this case, $(b a)^{d}=b\left[(a b)^{d}\right]^{2} a$ (see [6, Theorem 2.1]). Here, $R^{d}=\{x \in R \mid x$ has g-Drazin inverse $\}$. Cline's formula plays an important role in the generalized inverse of matrix and operator theory ($[2,4,7,11,13-15]$). In

[^0][5, Theorem 2.3], Lian and Zeng proved the generalized Cline's formula to the case when $a b a=a c a$. In [7, Theorem 3.2], Miller and Zguitti generalized the Cline's formula under the condition $a c d=d b d$ and $d b a=a c a$. In [10, Theorem 3.2], Mosić investigated the generalized Cline's formula under the condition $b a c=b d b$ and $c d b=c a c$. The motivation of this paper is to extend the Cline's formula for g-Drazin inverse to a wider case.

In Section 2, we present a new generalized Cline's formular for g-Draziin inverse. We also prove generalized Cline's formulas for Drazin and group inverses. Let R be a ring, and let $a, b, c, d \in R$ satisfying

$$
\begin{aligned}
& (a c)^{2}=(d b)(a c),(d b)^{2}=(a c)(d b) ; \\
& b(a c) a=b(d b) a, c(a c) d=c(d b) d .
\end{aligned}
$$

Then $a c \in R^{d}$ if and only if $b d \in R^{d}$. In this case, $(b d)^{d}=b\left((a c)^{d}\right)^{2} d$. This improves the main results of Cline's formula on g-Drazin inverse of Liao, Chen and Cui ([6, Theorem 2.1]), Lian and Zeng ([5, Theorem 2.3]) and Miller and Zguitti ([7, Theorem 3.2]). In Section 3, we investigate some weaker conditions in a Banach algebra under which the generalized Cline's formula holds. We prove that the preceding condition $" b(a c) a=b(d b) a, c(a c) d=c(d b) d^{\prime \prime}$ can be dropped in a Banach algebra. Finally, in Section 4, we apply the generalized Cline's formula to common spectral property of bounded linear operators in a Banach space.

Throughout the paper, all rings are associative with an identity and all Banach algebras are complex. We use $\mathcal{A}^{\text {rad }}$ to denote the Jacobson radical of \mathcal{A}. The notations $\mathcal{A}^{d}, \mathcal{A}^{D}, \mathcal{A}^{\#}$ and \mathcal{A}^{\ddagger} stand for the sets of all g-Drazin, Drazin, group and p-Drazin invertible elements, respectively.

2. Generalized Cline's Formula

For any elements a, b in a ring R, it is well known that $a b \in R^{\text {qnil }}$ if and only if $b a \in R^{\text {qnil }}$ (see [5, Lemma 2.2]). We start with the following generalization.

Lemma 2.1. Let R be a ring, and let $a, b, c, d \in R$ satisfying

$$
\begin{gathered}
(a c)^{2}=(d b)(a c),(d b)^{2}=(a c)(d b) ; \\
b(a c) a=b(d b) a, c(a c) d=c(d b) d .
\end{gathered}
$$

Then $a c \in R^{\text {qnil }}$ if and only if $b d \in R^{\text {qnil }}$.
Proof. \Longrightarrow Let $x \in \operatorname{comm}(b d)$. Then we check that

$$
\begin{aligned}
\left(d b d x^{5} b d b a c\right) a c & =d b d x^{5} b d(b a c a) c \\
& =d b d x^{5} b d(b d b a) c \\
& =d b d x^{5} b(d b d b a) c \\
& =(d b d b d) x^{5} b d b a c \\
& =(d b d b) d x^{5} b d b a c \\
& =(a c d b) d x^{5} b d b a c \\
& =(a c d b d) x^{5} b d b a c \\
& =a c\left(d b d x^{5} b d b a c\right)
\end{aligned}
$$

Hence, $d b d x^{5} b d b a c \in \operatorname{comm}(a c)$, and so $1-d b d\left(x^{5} b d b a c a c\right)=1-\left(d b d x^{5} b d b a c\right) a c \in R^{-1}$. By using Jacobson's Lemma (see [5, Lemma 2.1]), we see that

$$
\begin{aligned}
1-x^{5} b d b d b d b d b d & =1-\left(x^{5} b d b d b(d b d b) d\right. \\
& =1-\left(x^{5} b d b d b(a c d b) d\right. \\
& =1-\left(x^{5} b d b d b a c\right) d b d \\
& =1-\left(x^{5} b d b a c a c\right) d b d \\
& \in R^{-1} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& (1-x b d)\left(1+x b d+x^{2} b d b d+x^{3} b d b d b d+x^{4} b d b d b d b d\right) \\
= & \left(1+x b d+x^{2} b d b d+x^{3} b d b d b d+x^{4} b d b d b d b d\right)(1-x b d) \\
= & 1-x^{5} b d b d b d b d b d \\
\in & R^{-1}
\end{aligned}
$$

and so $b d \in R^{\text {qnil }}$.
\Longleftarrow Since $b d \in R^{\text {quil }}$, by [5, Lemma 2.2], $d b \in R^{\text {qnil }}$. Applying the preceding discussion, we see that $c a \in R^{\text {qnil }}$. By using [5, Lemma 2.2] again, we have $a c \in R^{\text {qnil }}$, as desired.

We are now ready to prove:
Theorem 2.2. Let R be a ring, and let $a, b, c, d \in R$ satisfying

$$
\begin{gathered}
(a c)^{2}=(d b)(a c),(d b)^{2}=(a c)(d b) ; \\
b(a c) a=b(d b) a, c(a c) d=c(d b) d .
\end{gathered}
$$

Then ac $\in R^{d}$ if and only if $b d \in R^{d}$. In this case,

$$
(b d)^{d}=b\left((a c)^{d}\right)^{2} d
$$

Proof. \Longrightarrow Let $(a c)^{d}=h$ and $e=b h^{2} d$. We shall prove that e is the g-Drazin inverse of $b d$.
Step 1. Let $t \in \operatorname{comm}(b d)$. Then we check that

$$
\begin{aligned}
a c(d t b d b d b a c) & =(a c d b d b d)(t b a c) \\
& =(d b d b d b d)(t b a c) \\
& =d t b d b(d b d b a) c \\
& =(d t b d b d b a c) a c .
\end{aligned}
$$

Thus $d t b d b d b a c \in \operatorname{comm}(a c)$, and so $(d t b d b d b a c) h=h(d t b d b d b a c)$. It is easy to verify that $a c d b d=a(c d b d)=$ $a(c a c d)=(a c)^{2} d=(d b a c) d=d b a c d$, and so $(b a c d)(b d)=(b d)(b a c d)$. Then we compute that

$$
\begin{aligned}
e t & =\left(b h^{6}(a c)^{4} d\right) t=b h^{6}(d b)^{3} a c d t=b h^{6} d b d b d(b a c d) t \\
& =b h^{6} d(b a c d) b d b d t=b h^{6} d b(a c d b) d b d t=b h^{6}(d b d b d b d b d) t \\
& =b h^{6} d t b d b(d b d b) d=b h^{6} d t b d b a(c d b d)=b h^{6} d t b d b(a c a c) d \\
& =b h^{6}(d t b d b d b a c) d=b(d t b d b d b a c) h^{6} d=t b d b d b d b a c h^{6} d \\
& =t b(a c)^{4} h^{6} d=t b h^{2} d=t e,
\end{aligned}
$$

and then $e \in \operatorname{comm}^{2}(b d)$.
Step 2. We directly verify that

$$
\begin{aligned}
e(b d) e & =b h^{2} d b d b h^{2} d=b h^{2} a c d b h^{2} d \\
& =b h^{2} a c d b(a c) h^{3} d=b h^{2}(a c)^{3} h^{3} d=b(a c)^{3} h^{5} d=e .
\end{aligned}
$$

Step 3. Let $p=1-(a c) h$. Then $(p a) c=a c-(a c)^{2} h \in R^{q n i l}$. One easily checks that

$$
\begin{aligned}
b d-(b d)^{2} e & =b d-b d b d b h^{2} d \\
& =b d-b(d b d b) a c h^{3} d \\
& =b d-b(a c d b) a c h^{3} d \\
& =b d-b a c(d b a c) h^{3} d \\
& =b d-b(a c)^{3} h^{3} d \\
& =b(1-a c h) d \\
& =b(p d) .
\end{aligned}
$$

We directly compute that

$$
\begin{aligned}
(p a c)^{2} & =p(a c)^{2} p=p(d b a c) p=(p d b)(p a c), \\
(p d b)^{2} & =p d b p d b=p d b[1-(1-p)] d b \\
& =p(d b)^{2}-p d b a c(a c)^{d} d b \\
& =p(d b)^{2}-p(a c)^{2}(a c)^{d} d b \\
& =p(d b)^{2}=p a c d b=(p a c)(p d b) ; \\
b(p a c) p a & =b a c p a-b(a c)^{d}(a c)^{2} p a \\
& =b a c p a-b(a c)^{d} d(b a c p a)=b d b p a-b(a c)^{d} d(b d b p a) \\
& =b d b p a-b(a c)^{d}(a c d b) p a=b(p d b) p a, \\
c(p a c) p d & =c a c d-c(a c)^{d}(a c)^{2} d=c d b d-c(a c)^{d}(a c)^{2} d \\
& -\left[c(a c)^{d} a(c d b d)-c(a c)^{d} a(c a c d)\right]=c d b d-c a c(a c)^{d} a c d \\
& -\left[c(a c)^{d} a c d b d-c(a c)^{d} a c d b a c(a c)^{d} d\right] \\
& =c d b d-c a c(a c)^{d} a c d-c(a c)^{d} a c d b\left[1-a c(a c)^{d}\right] d \\
& =c d b d-c d b(a c)^{d} a c d-c(a c)^{d} a c d b p d \\
& =\left[c d b-c(a c)^{d} a c d b\right] p d=c(p d b) p d .
\end{aligned}
$$

Since $(p a) c=a c-(a c)^{2}(a c)^{d} \in R^{q n i l}$. In view of Lemma 2.1, $b(p d) \in R^{\text {qnil }}$. Therefore $b d$ has g-Drazin inverse e and $e=b h^{2} a=(b d)^{d}$.
\Longleftarrow In view of [6, Theorem 2.2], $d b \in R^{d}$. Applying the preceding discussion, we have $c a \in R^{d}$. By using [6, Theorem 2.2] again, $a c \in R^{d}$. This completes the proof.

In the case that $c=b$ and $d=a$, we recover the Cline's formula for g-Drazin inverse. In [5, Theorem 2.3], Lian and Zeng concerned Cline's formula under the condition $a b a=a c a$. We now derive

Corollary 2.3. Let R be a ring, and let $a, b, c \in R$ satisfying

$$
\begin{aligned}
(a b a) b & =(a c a) b, b(a b a)
\end{aligned}=b(a c a), ~=~(a b a) c=(a c a) c, c(a b a)=c(a c a) .
$$

Then $a c \in R^{d}$ if and only if $b a \in R^{d}$. In this case, $(b a)^{d}=b\left((a c)^{d}\right)^{2} a$.
Proof. Choosing $d=a$ in Theorem 3.2, we obtain the result.
Corollary 2.4. ([7, Theorem 3.2]) Let R be a ring, and let $a, b, c \in R$ satisfying

$$
a c d=d b d, d b a=a c a
$$

Then ac $\in R^{d}$ if and only if $b d \in R^{d}$. In this case, $(b d)^{d}=b\left((a c)^{d}\right)^{2} d$.
Proof. By hypothesis, we easily check that

$$
\begin{aligned}
& (a c)^{2}=(d b)(a c),(d b)^{2}=(a c)(d b) \\
& b(a c) a=b(d b) a, c(a c) d=c(d b) d
\end{aligned}
$$

This completes the proof by Theorem 2.2.
An element $a \in R$ has Drazin inverse in the case that there exists $b \in R$ such that

$$
b=b a b, a b=b a, a^{k}=a^{k+1} b
$$

for some $k \in \mathbb{N}$ The preceding b is unique if it exists. It is denoted by a^{D}. The smallest k satisfying the preceding condition is called the Drazin index of a. It is denoted by $i(a)$.

Theorem 2.5. Let R be a ring, and let $a, b, c, d \in R$ satisfying

$$
\begin{gathered}
(a c)^{2}=(d b)(a c),(d b)^{2}=(a c)(d b) \\
b(a c) a=b(d b) a, c(a c) d=c(d b) d
\end{gathered}
$$

Then ac $\in R^{D}$ if and only if $b d \in R^{D}$. In this case,

$$
\begin{gathered}
(b d)^{D}=b\left((a c)^{D}\right)^{2} d \\
i(b d) \leq i(a c)+2 .
\end{gathered}
$$

Proof. \Longrightarrow Since $a c \in R^{D}$, we see that $a c \in R^{d}$. It follows by Theorem 2.2 that $b d \in R^{d}$ and $(b d)^{d}=b\left((a c)^{d}\right)^{2} d$. Then $b d(b d)^{d}=(b d)^{d} b d$ and $(b d)^{d}=(b d)^{d}(b d)(b d)^{d}$. Clearly, we have

$$
\begin{aligned}
1-(d b)^{2}\left((a c)^{d}\right)^{2} & =1-a c d b(a c)\left((a c)^{d}\right)^{3} \\
& =1-a c(d b a c)\left((a c)^{d}\right)^{3} \\
& =1-a c(a c)^{d} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
b d-(b d)^{2}(b d)^{d} & =b d-(b d)^{2} b\left((a c)^{d}\right)^{2} d \\
& =b\left[1-(d b)^{2}\left((a c)^{d}\right)^{2}\right] d \\
& =b\left[1-a c(a c)^{d}\right] d .
\end{aligned}
$$

Further, we have

$$
\begin{aligned}
{\left[1-(b d)(b d)^{d}\right](b d)^{3} } & =b\left[1-a c(a c)^{d}\right](d b d b) d \\
& =b\left[1-a c(a c)^{d}\right](a c d b) d \\
& =b\left[1-(a c)(a c)^{d}\right](a c) d b d
\end{aligned}
$$

Write $m=i(a c)$. By induction, we have

$$
\begin{aligned}
{\left[1-(b d)(b d)^{d}\right](b d)^{m+2} } & =b\left[1-(a c)(a c)^{d}\right](a c)^{m} d b d \\
& =0 .
\end{aligned}
$$

Therefore $\left[b d-(b d)^{2}(b d)^{d}\right]^{m+2}=0$, and so $b d$ has Drazin inverse. Moreover, we have $i(b d) \leq m+2=i(a c)+2$, as required.
\Longleftarrow This is proved as in Theorem 2.2.
Corollary 2.6. Let R be a ring, and let $a, b, c \in R$ satisfying

$$
\left.\begin{array}{rl}
(a b a) b & =(a c a) b, b(a b a)
\end{array}=b(a c a), ~=~=~ a b a\right) c=(a c a) c, c(a b a)=c(a c a) .
$$

Then $a c \in R^{D}$ if and only if $b a \in R^{D}$. In this case,

$$
\begin{aligned}
(b a)^{D} & =b\left((a c)^{D}\right)^{2} a \\
i(b a) & \leq i(a c)+1
\end{aligned}
$$

Proof. We prove that $a c \in R^{D}$ if and only if $b a \in R^{D}$ by choosing $d=a$ in Theorem 2.5. Moreover, we check that $b a-(b a)^{2}(b a)^{D}=b\left[1-a c(a c)^{D}\right] a$, and so

$$
\begin{aligned}
{\left[1-(b a)(b a)^{D}\right](b a)^{2} } & =b\left[1-a c(a c)^{D}\right] a b a \\
& =b a b a-b a c(a c)^{D} a b a \\
& =b a c a-b a c\left((a c)^{D}\right)^{2} a(c a b a) \\
& =b a c a-b a c\left((a c)^{D}\right)^{2} a(c a c a) \\
& =b\left[a c-(a c)^{2}(a c)^{D}\right] a \\
& =b\left[1-(a c)(a c)^{D}\right](a c) a .
\end{aligned}
$$

By induction, we have $\left[1-(b a)(b a)^{D}\right](b a)^{m+1}=b\left[1-(a c)(a c)^{D}\right](a c)^{m} a=0$, where $m=i(a c)$. This shows that

$$
(b a)^{m+1}-(b a)^{m+2}(b a)^{D}=\left[1-(b a)(b a)^{d}\right](b a)^{m+1}=0 .
$$

Therefore $i(b a) \leq m+1=i(a c)+1$, as asserted.

The group inverse of $a \in R$ is the unique element $a^{\#} \in R$ which satisfies $a a^{\#}=a^{\#} a, a=a a^{\#} a, a^{\#}=a^{\#} a a^{\#}$. We denote the set of all group invertible elements of R by $R^{\#}$. As is well known, $a \in R^{\#}$ if and only if $a \in R^{D}$ and $i(a)=1$.

Theorem 2.7. Let R be a ring, and let $a, b, c \in R$ satisfying

$$
\begin{aligned}
& (a b a) b=(a c a) b, b(a b a)=b(a c a), \\
& (a b a) c=(a c a) c, c(a b a)=c(a c a) .
\end{aligned}
$$

If $a c \in R^{\#}$, then $(b a)^{2} \in R^{\#}$. In this case, $(a c)^{\#}=a\left[(b a)^{2}\right]^{\#} c$.
Proof. Since $a c \in \mathcal{A}^{\#}$, it follows by Corollary 2.6 that $b a \in \mathcal{A}^{D}$ and $(b a)^{D}=b\left[(a c)^{2}\right]^{D} a$. Moreover, we have $i(b a) \leq i(a c)+1=2$. Set $x=(b a)^{D}$. Then $(b a)^{2}=(b a)^{3} x=(b a)^{2} x^{2}(b a)^{2}, x^{2}=x^{2}(b a)^{2} x^{2}$. Hence $\left[(b a)^{2}\right]^{\#}=x^{2}$. We observe that

$$
\begin{aligned}
a\left[(b a)^{2}\right]^{D} c & =a\left[(b a)^{D}\right]^{2} c \\
& =a b\left[(a c)^{2}\right]^{D} a b\left[(a c)^{2}\right]^{D} a c \\
& \left.=a b\left[(a c)^{2}\right]^{D}(a b a c)(a c)^{D}\right]^{2} \\
& =a b\left[(a c)^{2}\right]^{D}(a c)^{2}\left[(a c)^{D}\right]^{2} \\
& =(a b a c)\left[(a c)^{D}\right]^{3} \\
& =(a c)^{2}\left[(a c)^{D}\right]^{3} \\
& =(a c)^{D},
\end{aligned}
$$

therefore $(a c)^{\#}=a\left[(b a)^{2}\right]^{\#} c$, as desired.
Corollary 2.8. Let \mathcal{A} be a Banach algebra, and let $a, b, c \in \mathcal{A}$ satisfying $a b a=a c a$. If $a c \in \mathcal{A}^{\#}$, then $(b a)^{2} \in \mathcal{A}^{\#}$. In this case, $(a c)^{\#}=a\left[(b a)^{2}\right]^{\#} c$.

Proof. This is clear from Theorem 2.7.

3. Extensions in Banach algebras

In this section, we investigate the generalized Cline's formula in a Banach algebra. We observe that the condition " $b(a c) a=b(d b) a, c(a c) d=c(d b) d^{\prime \prime}$ in Theorem 2.2 can be dropped in Banach algebra.

Theorem 3.1. Let \mathcal{A} be a Banach algebra, and let $a, b, c, d \in \mathcal{A}$ satisfying

$$
\begin{aligned}
& (a c)^{2}=(d b)(a c) \\
& (d b)^{2}=(a c)(d b)
\end{aligned}
$$

Then $a c \in \mathcal{A}^{d}$ if and only if $b d \in \mathcal{A}^{d}$. In this case, $(b d)^{d}=b\left[(a c)^{d}\right]^{3} d b d$.
Proof. \Longrightarrow Let $a c a=a^{\prime}, b=b^{\prime}, c=c^{\prime}$ and $d b d=d^{\prime}$. Then we have

$$
\begin{aligned}
& \left(a^{\prime} c^{\prime}\right)^{2}=(a c)^{4}=(d b)^{3} a c=d b d b a c a c=\left(d^{\prime} b^{\prime}\right)\left(a^{\prime} c^{\prime}\right), \\
& \left(d^{\prime} b^{\prime}\right)^{2}=(d b)^{4}=(a c)(d b)^{2}(d b)=(a c)^{2}(d b)^{2}=\left(a^{\prime} c^{\prime}\right)\left(d^{\prime} b^{\prime}\right) \\
& b^{\prime}\left(a^{\prime} c^{\prime}\right) a^{\prime}=b(a c)^{3} a=b d b d b a c a=b^{\prime}\left(d^{\prime} b^{\prime}\right) a^{\prime} \\
& c^{\prime}\left(a^{\prime} c^{\prime}\right) d^{\prime}=c(a c a c) d b d=c(d b)^{3} d=c^{\prime}\left(d^{\prime} b^{\prime}\right) d^{\prime}
\end{aligned}
$$

Since $a c \in \mathcal{A}^{d}$, it follows by [3, Theorem 2.7] that $a^{\prime} c^{\prime}=(a c)^{2} \in \mathcal{A}^{d}$, In light of Theorem 2.2, $b^{\prime} d^{\prime}=(b d)^{2} \in \mathcal{A}^{d}$. Therefore $b d \in \mathcal{F}^{d}$ by [3, Theorem 2.7]. Moreover, we have

$$
\begin{aligned}
(b d)^{d} & =\left[(b d)^{2}\right]^{d} b d \\
& =\left(b^{\prime} d^{\prime}\right)^{d} b d=b^{\prime}\left[\left(a^{\prime} c^{\prime}\right)^{d}\right]^{2} d^{\prime} b d \\
& =b\left[(a c)^{d}\right]^{4}(d b)^{2} d \\
& =b\left[(a c)^{d}\right]^{4}(a c d b) d \\
& =b\left[(a c)^{d}\right]^{3} d b d
\end{aligned}
$$

as required.
\Longleftarrow Since $d b \in \mathcal{A}^{d}$, applying the preceding discussion, we have $c a \in \mathcal{A}^{d}$. Therefore $a c \in \mathcal{A}^{d}$, by using the Cline's formula.

As easy consequences, we now derive
Corollary 3.2. Let \mathcal{A} be a Banach algebra, and let $a, b, c \in \mathcal{A}$. If $(a b a) b=(a c a) b,(a b a) c=(a c a) c$, then $a c \in \mathcal{A}^{d}$ if and only if $b a \in \mathcal{A}^{d}$. In this case, $(b a)^{d}=b\left[(a c)^{d}\right]^{3} a b a$.

Proof. This is obvious by choosing $d=a$ in Theorem 3.1.
Corollary 3.3. Let \mathcal{A} be a Banach algebra, and let $a, b, c, d \in \mathcal{A}$ satisfying

$$
\begin{aligned}
& (a c)^{2}=(d b)(a c), \\
& (d b)^{2}=(a c)(d b) .
\end{aligned}
$$

Then $a c \in \mathcal{A}^{D}$ if and only if $b d \in \mathcal{A}^{D}$. In this case, $(b d)^{D}=b\left[(a c)^{D}\right]^{3} d b d$.
Proof. \Longrightarrow Since $a c \in \mathcal{A}^{D}$, we see that $a c \in \mathcal{A}^{d}$. By virtue of Theorem 3.1, $b d \in \mathcal{A}^{d}$ and $(b d)^{d}=b\left[(a c)^{d}\right]^{3} d b d$. Let $m=i(a c)$. Then $\left[a c-(a c)^{2}(a c)^{D}\right]^{m}=0$. One easily checks that

$$
\begin{aligned}
1-(b d)(b d)^{d} & =1-b d b\left[(a c)^{D}\right]^{3} d b d \\
& =1-b d b a c\left[(a c)^{D}\right]^{4} d b d \\
& =1-b(a c)^{2}\left[(a c)^{D}\right]^{4} d b d \\
& =1-b\left[(a c)^{D}\right]^{2} d b d .
\end{aligned}
$$

Then

$$
\begin{aligned}
{\left[1-(b d)(b d)^{d}\right](b d)^{3} } & =\left[1-b\left[(a c)^{D}\right]^{2} d b d\right](b d)^{3} \\
& =(b d)^{3}-b\left[(a c)^{D}\right]^{2} d(b d)^{4} \\
& =b a c d b d-b\left[(a c)^{D}\right]^{2}(a c)^{3} d b d \\
& =b\left[1-a c(a c)^{D}\right] a c(d b d) .
\end{aligned}
$$

By induction, we have

$$
\begin{aligned}
{\left[b d-(b d)^{2}(b d)^{d}\right]^{m+2} } & =\left[1-(b d)(b d)^{d}\right](b d)^{m+2} \\
& =b\left[1-a c(a c)^{D}\right](a c)^{m}(d b d) \\
& =b\left[a c-a c^{2}(a c)^{D}\right]^{m}(d b d) \\
& =0
\end{aligned}
$$

Therefore

$$
(b d)^{D}=(b d)^{d}=b\left[(a c)^{D}\right]^{3} d b d
$$

as required.
\Longleftarrow This is proved as in Theorem 3.1.
An element a in a Banach algebra \mathcal{A} has p-Drazin inverse provided that there exists $b \in \operatorname{comm}(a)$ such that $b=b^{2} a, a^{k}-a^{k+1} b \in \mathcal{A}^{\text {rad }}$ for some $k \in \mathbb{N}$. The preceding b is unique if it exists. It is denoted by a^{\ddagger} (see [12]). We now derive

Theorem 3.4. Let \mathcal{A} be a Banach algebra, and let $a, b, c, d \in \mathcal{A}$ satisfying

$$
\begin{aligned}
& (a c)^{2}=(d b)(a c) \\
& (d b)^{2}=(a c)(d b)
\end{aligned}
$$

Then ac $\in \mathcal{A}^{\ddagger}$ if and only if $b d \in \mathcal{A}^{\ddagger}$. In this case, $(b d)^{\ddagger}=b\left[(a c)^{\ddagger}\right]^{3} d b d$.

Proof. \Longrightarrow Since $a c \in \mathcal{A}^{\ddagger}$, we have $a c \in \mathcal{A}^{d}$. In light of Theorem 3.1, $b d \in \mathcal{A}^{d}$ and $(b d)^{d}=b\left[(a c)^{\ddagger}\right]^{3} d b d$. Assume that $\left[a c-(a c)^{2}(a c)^{\ddagger}\right]^{m} \in \mathcal{A}^{\text {rad }}$ for some $m \in \mathbb{N}$. As in the proof of Corollary 3.3, we have

$$
\begin{aligned}
{\left[b d-(b d)^{2}(b d)^{d}\right]^{m+2} } & =b\left[a c-a c^{2}(a c)^{d}\right]^{m}(d b d) \\
& \in \mathcal{A}^{\text {rad }} .
\end{aligned}
$$

Therefore

$$
(b d)^{\ddagger}=b\left[(a c)^{\ddagger}\right]^{3} d b d
$$

as asserted.
\Longleftarrow By virtue of [12, Theorem 3.6], $d b \in \mathcal{A}^{\ddagger}$. Then we have $c a \in \mathcal{A}^{\ddagger}$ by the discussion above. So the theorem is true by [12, Theorem 3.6].

Corollary 3.5. Let \mathcal{A} be a Banach algebra, and let $a, b, c \in \mathcal{A}$. If $(a b a) b=(a c a) b,(a b a) c=(a c a) c$, then $a c \in \mathcal{A}^{\ddagger}$ if and only if $b a \in \mathcal{A}^{\ddagger}$. In this case, $(b a)^{\ddagger}=b\left[(a c)^{\ddagger}\right]^{3} a b a$:

Proof. This is obvious by choosing $d=a$ in Theorem 3.4.
The following example illustrates that Theorem 3.4 is not a trivial generalization of [7, Theorem 4.1].

Example 3.6.

Let $\mathcal{A}=M_{4}(\mathbb{C})$. Choose

$$
a=b=c=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right), d=\left(\begin{array}{llll}
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \in M_{4}(\mathbb{C})
$$

Then

$$
\begin{aligned}
& (a c)^{2}=(d b)(a c)=0 \\
& (d b)^{2}=(a c)(d b)=0
\end{aligned}
$$

We see that $a c$ and $b d$ are nilpotent matrices and so have p-Drazin inverses. In this case,

$$
\text { acd }=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \neq\left(\begin{array}{llll}
0 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=d b d
$$

4. Applications

Let X be a Banach space, and let $\mathcal{L}(X)$ denote the set of all bounded linear operators from the Banach space X to itself, and let $A \in \mathcal{L}(X)$. The Drazin spectrum $\sigma_{D}(A)$ and g-Drazin spectrum $\sigma_{d}(A)$ are defined by

$$
\begin{aligned}
\sigma_{D}(A) & =\left\{\lambda \in \mathbb{C} \mid \lambda I-A \notin \mathcal{L}(X)^{D}\right\} \\
\sigma_{d}(A) & =\left\{\lambda \in \mathbb{C} \mid \lambda I-A \notin \mathcal{L}(X)^{d}\right\}
\end{aligned}
$$

For the further use, we now record the following generalized Jacobson's lemma (see [9]).
Lemma 4.1. Let R be a ring, and let $a, b, c, d \in R$ satisfying

$$
\begin{gathered}
(a c)^{2}=(d b)(a c),(d b)^{2}=(a c)(d b) \\
b(a c) a=b(d b) a, c(a c) d=c(d b) d
\end{gathered}
$$

Then $1-a c \in R^{-1}$ if and only if $1-b d \in R^{-1}$. In this case,

$$
(1-b d)^{-1}=\left[1-b(1-a c)^{-1}(a c d-d b d)\right]\left[1+b(1-a c)^{-1} d\right]
$$

Proof. \Longrightarrow Let $s=(1-a c)^{-1}$. Then $s(1-a c)=1=(1-a c) s$, and so $1-s=-s a c=-a c s$. We check that

$$
\begin{aligned}
(1+b s d)(1-b d) & =1-b(1-s) d-b s d b d \\
& =1+b s a c d-b s d b d \\
& =1+b s(a c d-d b d)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& {[1-b s(a c d-d b d)](1+b s d)(1-b d) } \\
= & 1-b s(a c d-d b d) b s(a c d-d b d) \\
= & 1 .
\end{aligned}
$$

Also we check that

$$
\begin{aligned}
(1-b d)(1+b d+b a c s d) & =1-b d b d+b(1-d b) a c s d \\
& =1-b[d b(1-a c)-(1-d b) a c] s d \\
& =1-b(d b-a c) s d ;
\end{aligned}
$$

hence, we have

$$
\begin{aligned}
& (1-b d)(1+b d+b a c s d)[1+b(d b-a c) s d] \\
= & 1-b(d b-a c) s d b(d b-a c) s d \\
= & 1-b(d b-a c) s d b(d b-a c)(1+a c s) d \\
= & 1-b(d b-a c) s d b(d b-a c) d \\
= & 1 .
\end{aligned}
$$

That is, $1-b d$ is right and left invertible. Obviously, the left and right inverses of $1-b d$ coincide with each other. Therefore

$$
(1-b d)^{-1}=[1-b s(a c d-d b d)](1+b s d)
$$

as desired.
\Longleftarrow In light of [9, Lemma 1.4], $1-d b \in R^{-1}$. Applying the discussion above, we see that $1-c a \in R^{-1}$. By using [7, Theorem 2.1] again, $1-a c \in R^{-1}$, as asserted.

We have at our disposal all the information necessary to prove the following.
Theorem 4.2. Let $A, B, C, D \in \mathcal{L}(X)$ such that

$$
\begin{gathered}
(A C)^{2}=(D B)(A C),(D B)^{2}=(A C)(D B) \\
B(A C) A=B(D B) A, C(A C) D=C(D B) D .
\end{gathered}
$$

then

$$
\sigma_{d}(B D)=\sigma_{d}(A C)
$$

Proof. Case 1. $0 \in \sigma_{d}(B D)$. Then $B D \notin \mathcal{L}(X)^{d}$. In view of Theorem 2.2, $A C \notin \mathcal{L}(X)^{d}$. Thus $0 \in \sigma_{d}(A C)$.
Case 2. $0 \notin \lambda \in \sigma_{d}(B D)$. Then $\lambda \in \operatorname{acco} \sigma(B D)$; hence,

$$
\lambda=\lim _{n \rightarrow \infty}\left\{\lambda_{n} \mid \lambda_{n} I-B D \notin \mathcal{L}(X)^{-1}\right\}
$$

Let $\lambda_{n} \neq 0$. Then $I-B\left(\frac{1}{\lambda_{n}} D\right) \in \mathcal{L}(X)^{-1}$. By hypothesis, we have

$$
\begin{gathered}
\left(\frac{1}{\lambda_{n}} A C\right)^{2}=\left(\frac{1}{\lambda_{n}} D B\right)\left(\frac{1}{\lambda_{n}} A C\right),\left(\frac{1}{\lambda_{n}} D B\right)^{2}=\left(\frac{1}{\lambda_{n}} A C\right)\left(\frac{1}{\lambda_{n}} D B\right) ; \\
B\left(\frac{1}{\lambda_{n}} A C\right) \frac{1}{\lambda_{n}} A=B\left(\frac{1}{\lambda_{n}} D B\right) \frac{1}{\lambda_{n}} A, C\left(\frac{1}{\lambda_{n}} A C\right) \frac{1}{\lambda_{n}} D=C\left(\frac{1}{\lambda_{n}} D B\right) \frac{1}{\lambda_{n}} D .
\end{gathered}
$$

In light of Lemma 4.1, we have $I-\left(\frac{1}{\lambda_{n}} A\right) C \notin \mathcal{L}(X)^{-1}$. Then we check that

$$
\lambda=\lim _{n \rightarrow \infty}\left\{\lambda_{n} \mid \lambda_{n} I-A C \notin \mathcal{L}(X)^{-1}\right\} \in \operatorname{acco}(A C)=\sigma_{d}(A C) .
$$

Therefore $\sigma_{d}(B D) \subseteq \sigma_{d}(A C)$. Analogously, we have $\sigma_{d}(A C) \subseteq \sigma_{d}(B D)$, the result follows.

Corollary 4.3. Let $A, B, C \in \mathcal{L}(X)$. If $(A B A) B=(A C A) B,(A B A) C=(A C A) C$, then

$$
\sigma_{d}(A C)=\sigma_{d}(B A)
$$

Proof. By choosing $D=A$ in Theorem 4.2, we complete the proof.
For the Drazin spectrum $\sigma_{D}(a)$, we now derive
Theorem 4.4. Let $A, B, C, D \in \mathcal{L}(X)$ such that

$$
\begin{gathered}
(A C)^{2}=(D B)(A C),(D B)^{2}=(A C)(D B) \\
B(A C) A=B(D B) A, C(A C) D=C(D B) D
\end{gathered}
$$

then

$$
\sigma_{D}(B D)=\sigma_{D}(A C)
$$

Proof. By virtue of Theorem 2.5, $A C \in \mathcal{L}(X)^{D}$ implies that $B D \in \mathcal{L}(X)^{D}$. This completes the proof by [13, Theorem 3.1].

A bounded linear operator $T \in \mathcal{L}(X)$ is Fredholm operator if $\operatorname{dim} N(T)$ and $\operatorname{codim} R(T)$ are finite, where $N(T)$ and $R(T)$ are the null space and the range of T respectively. For each nonnegative integer n define $T_{|n|}$ to be the restriction of T to $R\left(T^{n}\right)$. If for some $n, R\left(T^{n}\right)$ is closed and $T_{|n|}$ is a Fredholm operator then T is called a B-Fredholm operator. The B-Fredholm spectrum of T are defined by

$$
\sigma_{B F}(T)=\{\lambda \in \mathbb{C} \mid T-\lambda I \text { is not a B-Fredholm operator }\} .
$$

Corollary 4.5. Let $A, B, C \in \mathcal{L}(X)$ such that

$$
(A B A) B=(A C A) B,(A B A) C=(A C A) C
$$

then

$$
\sigma_{B F}(A C)=\sigma_{B F}(B A)
$$

Proof. Let $\pi: \mathcal{L}(X) \rightarrow \mathcal{L}(X) / F(X)$ be the canonical map and $F(X)$ be the ideal of finite rank operators in $\mathcal{L}(X)$. As is well known, $T \in \mathcal{L}(X)$ is B-Fredholm if and only if $\pi(T)$ has Drazin inverse. By assumption, we have

$$
\begin{aligned}
& \pi(A) \pi(B) \pi(A) \pi(B)=\pi(A) \pi(C) \pi(A) \pi(B) \\
& \pi(A) \pi(B) \pi(A) \pi(C)=\pi(A) \pi(C) \pi(A) \pi(C)
\end{aligned}
$$

The corollary is therefore established by Theorem 4.4.

Acknowledgement

The authors would like to thank the referee for his/her careful reading and helpful comments for the improvement of this paper.

References

[1] H. Chen and M.S. Abdolyousefi, Cline's formula for g-Drazin inverses in a ring, Filomat, 33(2019), 2249-2255.
[2] A. Gupta and A. Kumar, A new characterization of generalized Browder's theorem and a Cline's formula for generalized Drazin-meromorphic inverses, arXiv:1905.01599v1 [math.SP] 5 May 2019.
[3] Y. Jiang; Y. Wen and Q. Zeng, Generalizations of Cline's formula for three generalized inverses, Revista de la UMA, 58(2017), 127-134.
[4] M. Karmouni and A. Tajmouati, A Cline's formula for the generalized Drazin-Riesz inverses, Funct. Anal. Approx. Comput., 10(2018), 35-39.
[5] Y. Lian and Q. Zeng, An extension of Cline's formula for generalized Drazin inverse, Turk. Math. J., 40(2016), 161-165.
[6] Y. Liao; J. Chen and J. Cui, Cline's formula for the generalized Drazin inverse, Bull. Malays. Math. Sci. Soc., 37(2014), 37-42.
[7] V.G. Miller and H. Zguitti, New extensions of Jacobson's lemma and Cline's formula, Rend. Circ. Mat. Palermo, II. Ser., 67(2018), 105-114.
[8] D. Mosić, A note on Cline's formula for the generalized Drazin inverse, Linear Multilinear Algebra, 63(2014), 1106-1110.
[9] D. Mosić, Extensions of Jacobson's lemma for Drazin inverses, Aequat. Math., 91(2017), 419-427.
[10] D. Mosić, On Jacobson's lemma and Cline's formula for Drazin inverses, Revista de la Union Matemática Argentina, 61(2020), 267-276.
[11] G. Shi; J. Chen; T. Li and M. Zhou, Jacobson's lemma and Cline's formula for generalized inverses in a ring with involution, Comm. Algebra, Apr 2020, DOI: 10.1080/00927872.2020.1752226.
[12] Z. Wang and J. Chen, Pseudo Drazin inverses in associative rings and Banach algebras, Linear Algebra Appl., 437(2012), $1332-1345$.
[13] K. Yang and X. Fang, Common properties of the operator products in spectral theory, Ann. Funct. Anal., 6(2015), 60-69.
[14] Q.P. Zeng and H.J. Zhong, New results on common properties of the products AC and BA, J. Math. Anal. Appl., 427(2015), 830-840.
[15] Q.P. Zeng; Z. Wu and Y. Wen, New extensions of Cline's formula for generalized inverses, Filomat, 31(2017), 1973-1980.

[^0]: 2020 Mathematics Subject Classification. Primary 15A09; Secondary 47A11
 Keywords. Cline's formula; Generalized Drazin inverse; Drazin inverse; group inverse; Banach algebra.
 Received: 26 June 2020; Revised: 24 January 2021; Accepted: 31 January 2021
 Communicated by Dijana Mosić
 Corresponding author: Marjan Sheibani Abdolyousefi
 Research supported by the Natural Science Foundation of Zhejiang Province, China (No. LY21A010018).
 Email addresses: huanyinchen@aliyun.com (Huanyin Chen), m.sheibani@semnan.ac.ir (Marjan Sheibani Abdolyousefi)

