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Integral Modification of Apostol-Genocchi Operators

Neha?, Naokant Deo?

Delhi Technological University, Department of Applied Mathematics, Bawana Road, Delhi-110042, India

Abstract. In this article, we consider Jain-Durrmeyer operators associated with the Apostol-Genocchi
polynomials and study the approximation properties of these Durrmeyer operators. Furthermore, we
examine the approximation behaviour of these operators including K—functional. We estimate the rate of
convergence of the proposed operators for function in Lipschitz-type space and local approximation results
by using modulus of continuity. Employing Mathematica software, to show the approximation and the
absolute error graphically by varying the values of given parameters.

1. Introduction and motivation

The classical Bernoulli polynomials B, (x), Euler polynomials E,(x), and Genocchi polynomials G, (x),
together with their familiar generalizations B“(x), E®(x) and G (x) of (real or complex) order a, are usually
by means of the following generating functions (see, [3} 131} 132} [36] [39]143] for details,):
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so that, obviously

B,(x) := BY(x), Eu(x):=EP(x), and G,(x):=GP(x), (neNy), (4)
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where Ny := NU {0} (N :=1{1,2,3,---}).
The classical Bernoulli numbers B, (x), Euler numbers E, (x) and Genocchi numbers G,(x) can be readily
found from Equations (1), (2) and (3) that
B, := Bn(O) = BS)(O), E, = En(O) = Eﬁll)(O), and G, = Gn(o) = G1(11)(0)’

respectively.

Analogues of the classical Bernoulli polynomials and numbers were first investigated by Apostol [9] and
later on Srivastav [37]. An analogous extension of the generalized Euler polynomials as the Apostol-Euler
polynomials studied by Luo.

Moreover, Luo [25H28] introduced and investigated the Apostol-Genocchi polynomials of (real or com-
plex) order a, which are defined as follows:

Definition 1.1. [26] The Apostol-Genocchi polynomials G® (1) (A €Q) of (real or complex) order a in variable
x are defined by means of the generating function:

22 . Xz __ . (@) . Zn
(MZH) e —;Gn @A) (i <[log (=)

;1% =1). (5)

with, of course,

G () = G (1) and G (1) := G (0;4)
and

Gn(x;A) = G (x; 1) and G, (1) =GP (),

where G, (), G,(f’) (A) and G, (x; A) denote the so-called Apostol-Genocchi numbers, Apostol-Genocchi numbers of
order o and Apostol-Genocchi polynomials, respectively.

Remark 1.2. When A # —1in , the order a of the generalized Apostal-Genocchi polynomials G (x : A) should
tacitly be restricted to non negative integer values.

For our convenience, we consider the operators in the following form:

For f € C[0, o), the operator is defined as:

o " o K\ o (l+e @ GV mA) (k
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where G,((a) (x; A) is generalized Apostol-Genocchi polynomials, which have the generating function of the
form

2t \® > £
() =Y @why,  <m. @)
k=0 '

The Apostol-Genocchi polynomials and their properties are studied by many researchers for the detail here
we refer (cf. [8][14) (19,120} 23} 27, 28,30, 33} 34, 40-42]).
In [29], the following explicit formula for the Apostol-Genocchi polynomials G;{“) (x; A) is given:

k—a ; .
k Al k—a\fa+i-1
(@) (e 1) = 20 E -
G () =2 a'(a) — (1 +A)a+i( i )( i )
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where k,a € NU {0}, x € R, A € R\ {-1} and »F1[a, b; c; z] denotes the Gaussian hypergeometric function
defined by

ot - vV @az _abz  a@+1Dbb+1) 2
ZFl[a/b/C/Z] - s (C)n 1’1! - C 1' + —C 2, + ’

where (a)g =1, (@), =a(@+1)---(a+n-1) = H{;—Z;’, (n>1)and 0 < a < 1 (see [2], pp. 37).

Over the most recent two decades, an amazing number of papers showed up contemplating Genocchi
numbers, their combinatorial relations, Genocchi polynomials, and their speculations alongside their dif-
ferent extensions and integral representations, which provides a new direction in the field of positive linear
operators. To the readers, we suggest the following articles (cf. [4,[10} 17, 21]).

Jain [22] introduced a new class of linear operators as:

@vw—Z#” ()xza 9)

where0 < <1and

(ﬁ) nx(nx + kﬁ)k_le—(nx+k/3)
P (0= . '

For = 0, these operators reduce to Szdsz-Mirakyan operators. Several researchers studied Jain operators
and their integral variant (See [5, 6} 11} 16} 135} 44]).

Durrmeyer variants of various operators are studied by several researchers (see [1, 11513} 45]) but in the
year 2015, Gupta and Greubel [18] introduced the Durrmeyer variant of Jain operators (9). Motivated
from [18]], we now consider a Durrmeyer type modification of Apostol-Genocchi operators based on Jain
operators. For f € C[0, o0) the operators are defined as:

%m@-(f%%m%@%f oD ©f ) ds (10)

<®@f@

=;<@%H>

b (x),

where (f,g) = fooo f (&g (&)déE.

Some interesting results are studied by several mathematicians which have given a new direction in the
field of positive linear operators (cf. [4} 10} 17, 21])).
The main goal of this article is to construct Durrmeyer type operators of Apostol-Genocchi operators (6)
based on the Jain operators (9) with real parameters a, 8, and A. We obtain moments and estimate the rate
of convergence of Jain-Durrmeyer operators associated with the Apostol-Genocchi operator. We establish
approximation estimates such as a global approximation theorem along with some convergence estimates
in terms of usual modulus of continuity and examine the approximation behaviour of these operators
including K—functional. We also estimate the rate of convergence of the proposed operators for function in
Lipschitz-type space. Moreover, the graphical interpretation to find the absolute error for some particular
values of parameters by using Mathematica software.
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2. Basic Properties

Lemma 2.1. [18] For 0 < g < 1, we have
< ®) ©), 5r>

(@)

where P, (k; B) is a polynomial of order r in variable k and (f, g) = j:o f(&)g(&)dE. In particular
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Lemma 2.2. [34] For ?I‘,,"’A(t’”; x), m=0,1,2,3 and 4, we have
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Lemma 2.3. For the operators H,, given by (10), the moments up to second order are given by

1
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Proof. By using Lemma[2.1]and Lemma 2.2} we get
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Lemma 2.4. By direct computation, we have

Hy(6 =050 = 3 { Tre + o5 B

T+ed 1-8

and
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Lemma 2.5. For the operators H,,, we have
[Ha(f3 2] < 11l
where f € C[0, ) and ||fl| = sup [f(x)l.

x€[0,00)

Proof. From operators and using Lemma 2.3} we get

) 1
ZU‘@@@b%qf“%wma
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k=0
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3. Main Results

Let f € Cé[O, 00) be denoted the space of all functions f € Cg[0, ) such that f’, f"* define in C[0, o). Let
“ f || be denoted the usual supremum norm of a bounded function f. Then the Peetre’s K—functional

K(f,0)= inf {||f—qll+5]s”|l}. (11)

g€C2[0,00)

and for 6 > 0 the modulus of continuity of second order

w2 (f,0)= sup |f(x+2h) —2f (x+h)+ f(x)|. (12)

0<h<d,x€[0,00)

Also from ([15]], p. 177, Theorem 2.4), there exists a constant C > 0 such that
K(f,5) < Can (f, V5). (13)
Now we get the following approximation results.

With the help of Bohman-Korovkin-Popoviciu theorem (see [24]) we prove the uniform convergence of
the Apostol-Genocchi-Jain-Durremyer operators (10).

Theorem 3.1. Let us f € C[0, c0) N O and this function also belongs to the class

()
51s convergent as x — oo}.
X

={f:x€[0,oo),1
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Then, the uniformly on each compact subset of [0, ), where C[0, o) is the space of all real-valued continuous
functions on [0, o), i.e.,
lim %4, (f;) = f(x)
where a(n) be such that « — 0 as n — oo.

Proof. Asa — 0asn — oo, from Lemma[2.3) we have

lim H, (51'; x) =x, i=0,1,2

n—oo

uniformly on each compact subset of the non-negative half line real axis. Hence, we get the desired result by
applying the well-known Korovkin-type theorem [7] regarding the convergence of a sequence of positive
linear operators. [

Theorem 3.2. If f € Cg[0, o0) then for x € [0, o0), we have

[, (f;%) = f(x)] < 20 (f; H, ((& - x)z;x)),
where w is the modulus of continuity of f [15]] defined as:
w(f;x):= sup (f(x) —f(y)(.

x,y€[0,00)
|x—y‘£1§

Proof. Applying the well-known property of w (f; x), Lemma and from operators (10), we have

b 1
Z(f (8) (g)dé) bfjli(x)f (ﬂ) ) (€ (F () — F () de
k=0 WO 0

b -1

[Ha (fi2) = f()] =

=0
Y (ﬁ) <a (ﬁ) 1.

= 1 (ﬁ) (a)

= _1 +5 L (fo ¢ (&) d(S) (x)f (é)lg x| dglw(f 5).

For the integration, the following result holds by using Cauchy-Schwarz inequality

|7{n(f;X)—f(X)|S:1+%Z( f " (é)dé) b“*’(x)( f p0) 5)d5)

1/2
(f P(ﬁ)(é )(E—x) dé) dé]w(f;é),

Now using the last inequality for infinite sum and we have

[#H, (30 — £)]

s[1+%{2( [ é)da) o [ o) coe) |
k=0
< ( f ®) ¢ da) b () f ®) )¢ - )2d5}1/2]w(f;6)
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(H, (012 4, (& - 075)) |0 (750).
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By taking
1/2
0= {7—(” ((E - x)2;x)} .
We get the required result. [
Now, for 0 < ¢ < 1 and let us present approximation in terms of Lipschitz constant defined as:

m = |’

Lt = { f e Colle9) <) ~ flno)] < K==

}, 1,12 € [0, 0),

where K > 0 is a constant.

Theorem 3.3. Suppose that f € Lipy, then

0/2
[ () - £ < K {94 (€ - 0250))
Proof. Since f € Lipy and 0 < 9 < 1, we have

| (f; %) = £ = [Ha (F(E) = f(0);%)|
< 7-6,( 'x)

E—x XIQ

From (14), it becomes

0 00
H, ((fﬂj;lg/z' )=2( f o (E)dé) 2 (x) f o O & - J;L/zdé
y (2-0)/2
Z(f P(ﬁ)(é)dé) b(“’(x)f p(ﬁ)(é)dg 0
k=0
= -1
8 Z( f p(ﬁ)@dg) b (x) f ?) (5)(55 +x>) } ,

where we use the Holder inequality by taking p = ﬁ dg= % Now using the fact that

€ — x/°
(Hn((é+x§9/2') (7 (101 Q)/Z{x ACeE x)}

This proves the required results. [

I/\

1
t+ < y,wehave

0/2

Theorem 3.4. For every f € Cg[0, 00) we have

+o(f 1),

94,30 = )] < Mo, 2220

where M > 0 is a constant.

Proof. We consider the auxiliary operators

Ho 5= 94,50 (- s L { o+ 75 )+ 15
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Using Lemma 2.3 we obtain

Hy(e;x) =1, and H,(er;x) = x,

ie., ?T{n preserve constants and linear functions. Therefore
Hy (01 = 2);%) = 0. (16)
Let f € C2[0, o) and using Taylor’s expansion
&
g&)=gx)+(E-x)g'(x) + f (E—-u)g’(w)du, & x€][0,00). (17)
X
Applying H, to above expansion and using (I7), we have
— — — &
Hu (9:%) = 9(&) = 9’ )H, (& = x;) + H,, ( f (& -wyg"wdu;x|,
X
and from (16), we have
[ (5:) - 9(8)

_ &
swn( IR

;x)
'3
f (& = 1) g (u)du

]
a(1-p)

(1—5)7‘*'%{ Trel +11f5} 1 (al-p) 1 ’
J (a-pres LA Trar + 1) ) o

Now we consider

<,

< (&-x)

E

gI/

[ e=ngwm
then we get
|€{n (g;%) - Q(X)‘ < (Ho (6 =07 5%) + (Ha (€ - ,207))
From Lemma 2.3/ and using (T5), for the operators H"), we have
4, (%) - F00| < [ (F = 930)| + |Fu () — 90| + o) - F0)|

1 [a(l-p) 1
f((l_ﬁ)ﬂﬁ{ T+ed +ﬂ})_f(x)|
54”1[_57)""(7{11 ((é—x)z;x)+(‘Hn (cf—x;x)z))

+w (f, Hu (& = x;x)).

Taking infimum on the right hand side over g € W2, and from (13), we have

g/l .

+

g//

74 (x, )

o () - f0)| < 4K2(f, ; )+a)(f,’[a,)

On(x, )

ssz(f, )m(ﬂm,

where 72(x,a) = H, ((cS - x)2 ;x) + (7-(,1 (& —x; x)2) andt, = H,(E-xx). O



Neha, N. Deo / Filomat 35:8 (2021), 2533-2544

Example 3.5. Let f(x) = x> —2x>+x—-2,a =2, =.01, A = 4and n € {10,20,30}. The convergence of the defined
operators H, towards the function f(x) and the absolute error E,(x) = |H,, (f;x)—f (x)| of the operators are shown
in Fig(a) and Fig(b) respectively. The absolute error of the operators are also computed in Table 1 for some values in

[1,3].

Table 1: Absolute error of the considered operators with function f(x) = x3 - 2x% 4+ x — 2 for n = {10,20, 30}.

Fig(b)

X n=10 n =20 n =230

1 0.31827 0.12793 0.07812
1.2 0.58023 0.24848 0.15482
1.4 091155 0.40104 0.25106
1.6 1.31081 0.58416 0.36541
1.8 1.77657 0.79643 0.49645
2.0 230742 1.03641 0.64276
2.2 290192 1.30269 0.80290
24 3.55866 1.59383 0.97545
2.6 4.27620 1.90842 1.15890
2.8 5.05312 2.24502 1.35209
3.0 5.88800 2.60221 1.55333
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4. Conclusion:

Genocchi numbers and polynomials have been extensively studied in many different contexts in
branches of mathematics. Prakash et al. [34] constructed a sequence of operators by using these poly-
nomials and studied some approximation properties. Our prime objective in this paper is to consider the
Jain-Durrmeyer operators associated with the Apostol-Genocchi polynomials depending on some param-
eters @, f, and A. We analyze the approximation behaviour of these operators including K-functional and
find local approximation results by using modulus of continuity. We have also calculated the rate of con-
vergence of operators by means of Lipschitz-type space. Lastly, we discussed the graphical interpretation
to find the absolute error for some particular values of parameters using Mathematica software.

Motivated by a recently-published survey-cum-expository review article [38], the interested reader’s
attention is drawn toward the possibility of investigating the basic (or g-) extensions of the results which are
presented in this paper. However, as already pointed out on Page 340 in [38]], their further extensions using
the so-called (p, g)-calculus will be rather trivial and inconsequential variations of the suggested extensions
which are based upon the classical g-calculus, the additional parameter p being redundant or superfluous.
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