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Abstract. In recent years, a number of extensive applications of difference operators through sequence
spaces have been developed. The most crucial application is being used in the study of functional analysis,
operator theory and matrix theory. In this context, the present article makes an attempt to provide a survey
on various difference operators and unify them by introducing two m + 1-th sequential band matrices. The
purpose of this work is also to extend the determination of their inverses and derive an adaptive recursive
free formula for matrix inversions. We provide two relevant formulas for inversion of m + 1-th sequential
lower and upper band matrices. Subsequently, the idea is being applied to develop a new explicitly formula
for matrix inversion.

1. Introduction and preliminaries

Let w be the space of all real valued sequences. By N, we denote the set of all positive integers and
N0 = N ∪ {0}. Let A = (ai j) (i, j ∈ N) represent an infinite matrix. Then for any two sequence spaces X and
Y, we define a matrix mapping A : X→ Y, as

(Ax)n :=
∑

k

ankxk, (n ∈N0). (1)

In fact, for a sequence x = (xk) ∈ X, Ax is called as the A−transform of x provided the series in (1) converges
for each n ∈N0.

A matrix A = (ank) is called triangular if ank = 0 for k > n. It is called a triangle if it is triangular and
ann , 0 for all n. It is well-known that a triangular matrix has an inverse if and only if it is a triangle( see
[40]).

Now, using the idea of A−transform of the sequence x = (xk), the generalized difference operators
BL(a[m]) and BU(a[m]) are defined by

(BL(a[m])x)k =

m∑
i=0

ak−i(i)xk−i
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and

(BU(a[m])x)k =

m∑
i=0

ak+i(i)xk+i

for all k,m ∈ N0, where a[m] = {a(0), a(1), . . . a(m)}, the set of convergent sequences a(i) = (ak(i))k∈N0 (0 ≤ i ≤
m) of real numbers (see [5, 6, 23]). In matrix notations, the difference operators BL(a[m]) and BU(a[m]) are
being expressed as:

BL(a[m]) :=



a0(0) 0 0 . . . 0 0 . . .
a0(1) a1(0) 0 . . . 0 0 . . .
a0(2) a1(1) a2(0) . . . 0 0 . . .
...

...
...

. . .
...

...
...

a0(m) a1(m − 1) a2(m − 2) . . . am(0) 0 . . .
0 a1(m) a2(m − 1) . . . am(1) am+1(0) . . .
...

...
...

...
...

...
. . .


and

BU(a[m]) :=



a0(0) a0(1) a0(2) . . . a0(m) 0 . . .
0 a1(0) a1(1) . . . a1(m − 1) a1(m) . . .
0 0 a2(0) . . . a2(m − 2) a2(m − 1) . . .
...

...
...

. . .
...

...
...

0 0 0 . . . am(0) am(1) . . .
0 0 0 . . . 0 am+1(0) . . .
...

...
...

...
...

...
. . .


.

Examples:

• Let us take a sequence x = (xk), with xk = 1 for all k ∈N0, then we have BL(a[m])x→ la[m], where

la[m] = lim
k→∞

(ak(0) + ak−1(1) + · · · + ak−m(m)) .

• Consider a sequence x = (xk), with xk = k for all k ∈N0 and for a given positive integer m,

ak−i(i) =

1/(k − i), (0 ≤ i ≤ m and k , i)
0, ( otherwise).

Then

(BL(a[m])x)k =

m∑
i=0

ak−i(i)(k − i)

= k[ak(0) + ak−1(1) + ak−2(2) + · · · + ak−m(m)]
− [ak−1(1) + 2ak−2(2) + 3ak−3(3) + · · · + mak−m(m)]

= k
[1

k
+

1
k − 1

+
1

k − 2
+ · · · +

1
k −m

]
−

[ 1
k − 1

+
2

k − 2
+

3
k − 3

+ · · · +
m

k −m

]
.

Now, for a positive integer m, (BL(a[m])x)k → m + 1 as k→∞.
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• Consider a sequence x = (xk), with xk = k for all k ∈N0 and for a given integer m > 1,

ak−i(i) =

(−1)i(m
i
)
, (0 ≤ i ≤ m)

0, ( otherwise)
, for all k ∈N0.

Then it is clearly observed that

(BL(a[m])x)k =

m∑
i=0

(−1)i
(
m
i

)
(k − i)

= k

 m∑
i=0

(−1)i
(
m
i

) −m

 m∑
i=0

(−1)i
(
m − 1

i

)
= 0

Therefore, for any positive integer m > 1, (BL(a[m])x)k → 0 as k→∞.

It is remarked that the proposed difference operators induce several difference operators under suitable
choice of the sequences a(i) = (ak(i))k∈N0 (0 ≤ i ≤ m). We state some of the special cases of these operators
in the following table:

Table 1
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Sl.No. a(i); (0 ≤ i ≤ m) Special cases

1. ak±i(i) =

(−1)i, (i = 0 and i = 1)
0, (2 ≤ i ≤ m)

; ( k ∈N0) ∆(1),∆ [2, 32]

2. ak±i(i) =

(−1)i(m
i
)
, (0 ≤ i ≤ m)

0, (i > m)
; ( k ∈N0) ∆(m),∆m[1, 26]

3. ak−i(i) =


r, (i = 0)
s, (i = 1)
0, (i > m)

; ( k ∈N0) B(r, s)[4, 27]

4. ak−i(i) =


r, (i = 0)
s, (i = 1)
t, (i = 2)
0, (i > 2)

; ( k ∈N0) B(r, s, t)[28]

5. ak−i(i) =


rk, (i = 0)
sk−1, (i = 1)
0, (i > 1)

; (k ∈N0) B(̃r, s̃)[38]

6. ak−i(i) =


rk, (i = 0)
sk−1, (i = 1)
tk−2, (i = 2)
0, (i > 2)

; ( k ∈N0) B(̃r, s̃, t̃)[7]

7. ak−i(i) =



rk, (i = 0)
sk−1, (i = 1)
tk−3, (i = 2)
uk−3, (i = 3)
0, (i > 3)

; ( k ∈N0) B(̃r, s̃, t̃, ũ)[7]

8. ak−i(i) =

(−1)i(m
i
)
νk−i, (0 ≤ i ≤ m)

0, (i > m)
; ( k ∈N0) ∆m

ν [8, 24, 25]

9. ak−i(i) =

ukvk−i, (0 ≤ i ≤ m)
0, (i > m)

; ( k ∈N0) G(u, v)[3]

10. ak−i(i) =


ukvk, (i = 0)
uk(vk−i − vk−i+1) (1 ≤ i ≤ m)
0, (i > m)

; ( k ∈N0) G(u, v; ∆)[39]

11. ak−i(i) =

 1
k+1 , (0 ≤ i ≤ m)
0, (i > m)

; ( k ∈N0) (C, 1)[20]

12. ak−i(i) =

 sitk−i
rk
, (0 ≤ i ≤ m)

0, (i > m)
; ( k ∈N0) A(r, s, t)[34]

13. ak−i(i) =


(k

i
)
(1 − p)k−ipi, (0 ≤ i ≤ m)

0, (i > m)
; (0 < p < 1, k ∈N0) Ep[31]

14. ak−i(i) =


fk

fk+1
, (i = 0)

−
fk+1

fk
, (i = 1)

0, (i > 2)

; ( k ∈N0) F̂[19]

15. ak−i(i) =

 (k
i)

2k(i+1) , (0 ≤ i ≤ k)

0, (i > k)
; (k ∈N0) B̃[15]

16. ak−i(i) =

 tk−i
Tk
, (0 ≤ i ≤ k)

0, (i > k)
; (k ∈N0) Nt[16, 17]
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Nowadays, one of the most interesting areas of research in mathematics is the study of difference
operators and related sequence spaces which has been attracted in different areas of mathematical sciences
especially in applied and computational mathematics involving calculus, matrix and approximation theory.
Nevertheless, the applications are also found in the theory of function spaces, modular spaces, fractional
difference operators, operational matrices and differential equations. The idea of difference sequence spaces
plays a significant role in most of the applied and scientific problems involving the spectral properties of
bounded linear operators (see [2, 4, 7, 8, 18, 22, 24, 25, 27, 28]), topological structures including matrix
transformations (see [1, 3, 13, 19–21, 26, 29, 30, 33–36, 38, 39]), approximation theory and fractional calculus
(see [9–12, 14, 37]), etc. In fact, the study of all the ideas discussed earlier is only feasible and convenient upon
the determination of related inverse operators. The primary objective of this work is to find the inverse of
the most of the difference operators and apply this idea in matrix inversions. For matrix inversion, several
methods have been employed and most of the popular methods such as Gaussian Elimination, Gauss
Jordan, Cholesky decomposition etc. are involved with a series of recursive calculations. Without taking
the evaluations of previous elements it is observed that any arbitrary element of the inverse matrix can not
be computed explicitly. Recently, using difference operators, Baliarsingh et al.[6] proposed an algorithm
to find the inverse of a nonsingular matrix in non pivot case, but the proposed algorithm does not work
in transition cases (pivot cases). In this work, using some existing results, we find the explicit formula for
matrix inversion in both pivot and non pivot cases.

Let Mn(R) be the set of all n× n (square) matrices overR and A ∈Mn(R) be a non singular matrix, given
by

A := (ai j) =


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a3n
...

...
...

. . .
...

an1 an2 an3 . . . ann


.

Then A can be factorized, called LU factorization and expressed as products LU with L, a lower-unitriangular
matrix and U, an upper-triangular matrix provided such product exists. In general, a triangular matrix is
called unitriangular if all of its diagonal entries are equal to one. Now, we may write A := LU, where

L := (li j) =


1 0 0 . . . 0

l21 1 0 . . . 0
l31 l32 1 . . . 0
...

...
...

. . .
...

ln1 ln2 ln3 . . . 1


and U := (ui j) =


u11 u12 u13 . . . u1n
0 u22 u23 . . . u2n
0 0 u33 . . . u3n
...

...
...

. . .
...

0 0 0 . . . unn


.

and

det(L) = 1 and det(U) =

n∏
i=1

uii.

An n × n permutation is a matrix with precisely one entry whose value is ’1’ in each column and row,
and all of whose others are ’0’. The rows of a permutation matrix are k-permutation of the rows of identity
matrix In. In componentwise, the permutation matrix P = (pi j) can be expressed as

pi j =

1, ( j = ki)
0, (otherwise),

where ki signifies the k-permutation of i−th row of identity matrix In. It is remarked that P is invertible,
det(P) = ±1, and more precisely, P−1 = PT, transpose matrix of P.
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However, for any non singular arbitrary matrix A, sometimes the corresponding LU factorization may
not be possible directly, but it is noted that appropriate permutations of the rows will convert any invertible
matrix A to a matrix of the form LU. In fact, there should be a permutation matrix P ∈Mn(R) such that PA
has an LU factorization, where P is a permutation matrix. Now, we have the following important results
which are being used for proving main theorems:

Remark 1.1. For any invertible matrix A ∈ Mn(R), there exists a permutation matrix P ∈ Mn(R), a lower-
unitriangular matrix L ∈ Mn(R), and an upper-triangular matrix U ∈ Mn(R) with PA = LU, or equivalently
A = PTLU.

Remark 1.2. It is noted that if the matrix A has directly LU-factorization, then the permutation matrix given in
Remark 1.1 can be chosen as an identity matrix of same size.

Remark 1.3. For any invertible matrix A ∈Mn(R), let the LU-factorization of the matrix A via permutation matrix
P be A = PTLU, then inverse of A is given by

A−1 = U−1L−1P.

2. Main results

In this section, we compute the individual inverses of the lower-unitriangular matrix L and the upper-
triangular matrix U in simplified form. Finally, applying these results, we construct a new algorithm for
matrix inversion.

Theorem 2.1. The explicit formula for inverse of the matrix L is given by

l−1
nk =


1, (k = n)
n−k∑
i=1

(−1)n−k+i−1lk+i,kD(k)
n−k−i(L), (0 ≤ k ≤ n − 1)

0, (k > n)

, (n, k ∈N0).

where

D(k)
n−k(L) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

lk+1,k 1 0 . . . 0
lk+2,k lk+2,k+1 1 . . . 0
lk+3,k lk+3,k+1 lk+3,k+2 . . . 0
...

...
...

. . .
...

ln,k ln,k+1 ln,k+2 . . . ln,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (n, k > 1) with D(k)

0 (L) = 1.

Proof. From [6], it is observed that the inverse elements of the matrix L are given by

l−1
nk =


1, (k = n)
(−1)n−kD(k)

n−k(L), (0 ≤ k ≤ n − 1)
0, (k > n)

, (n, k ∈N0).
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Now, on expansion of the determinant D(k)
n−k(L), we get

D(k)
n−k(L)

= lk+1,k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

lk+2,k+1 1 0 . . . 0
lk+3,k+1 lk+3,k+2 1 . . . 0
lk+4,k+1 lk+4,k+2 lk+4,k+3 . . . 0
...

...
...

. . .
...

ln,k+1 ln,k+2 ln,k+3 . . . ln,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

lk+2,k 1 0 . . . 0
lk+3,k lk+3,k+2 1 . . . 0
lk+4,k lk+4,k+2 lk+4,k+3 . . . 0
...

...
...

. . .
...

ln,k ln,k+2 ln,k+3 . . . ln,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= lk+1,kD(k+1)

n−k−1(L) − lk+2,kD(k+2)
n−k−2(L) + lk+3,kD(k+3)

n−k−3(L) + · · · + (−1)n−kln−1,kD(n−1)
1 (L) + (−1)n−k−1ln,k

=

n−k∑
i=1

(−1)i−1lk+i,kD(k+i)
n−k−i(L).

This concludes the proof.

Theorem 2.2. The explicit formula for inverse of the matrix U is given by

u−1
nk =



1
unn

, (k = n)
k−n∑
i=1

(−1)k−n+i−1un,n+iD
(n+i)
k−n−i(U)

unn
∏k

j=i+n u j j
, (k > n)

0, (k < n)

, (n, k ∈N0).

where

D(n)
k−n(U) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

un,n+1 un,n+2 un,n+3 . . . un,k
un+1,n+1 un+1,n+2 un+1,n+3 . . . un+1,k

0 un+2,n+2 un+2,n+3 . . . un+2,k
...

...
...

. . .
...

0 0 0 . . . uk−1,k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (n, k > 1) with D(n)

0 (U) = 1.

Proof. Proof follows from [6] and subsequently, we represent the inverse of the matrix U as

u−1
nk =


1

unn
, (k = n)

(−1)k−n∏k
j=n u j j

D(n)
k−n(U), (k > n)

0, (k < n)

, (n, k ∈N0).
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However, the value of determinants D(n)
k−n(U) for each n, k ∈N0 is being calculated as

D(n)
k−n(U) = un,n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

un+1,n+2 un+1,n+3 un+1,n+4 . . . un+1,k
un+2,n+2 un+2,n+3 un+2,n+4 . . . un+2,k

0 un+3,n+3 un+3,n+4 . . . un+3,k
...

...
...

. . .
...

0 0 0 . . . uk−1,k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
− un+1,n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

un,n+2 un,n+3 un,n+4 . . . un,k
un+2,n+2 un+2,n+3 un+2,n+4 . . . un+2,k

0 un+3,n+3 un+3,n+4 . . . un+3,k
...

...
...

. . .
...

0 0 0 . . . uk−1,k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= un,n+1D(n+1)

k−n−1(U) − un+1,n+1un,n+2D(n+2)
k−n−2(U) + un+1,n+1un+2,n+2un,n+3D(n+3)

k−n−3(U)+

· · · + (−1)k−nun+1,n+1 . . . uk−2,k−2un,k−1D(k−1)
1 (U) + (−1)k−n−1un+1,n+1 . . . uk−1,k−1un,k

= un,n+1D(n+1)
k−n−1(U) +

k−n∑
i=2

(−1)i−1un,n+i

i−1∏
j=1

un+ j,n+ jD
(n+i)
k−n−i(U)

=

k−n∑
i=1

(−1)i−1un,n+i

i−1∏
j=1

un+ j,n+ jD
(n+i)
k−n−i(U).

Now, for k > n it is calculated that

u−1
nk =

(−1)k−n∏k
j=n u j j

k−n∑
i=1

(−1)i−1un,n+i

i−1∏
j=1

un+ j,n+ jD
(n+i)
k−n−i(U)

=

k−n∑
i=1

(−1)k−n+i−1un,n+iD
(n+i)
k−n−i(U)

unn
∏k

j=i+n u j j
.

This completes the proof.

Theorem 2.3. The explicit formula for inverse of the matrix A without pivoting via matrices L = (li j) and U = (ui j)
is given by

a−1
i j =



∑n
k= j+1

∑k−i
m=1

∑k− j
p=1(−1)m+p−i− jui,i+ml j+p, j

D(i+m)
k−i−m(U)D( j)

k− j−p(L)

uii
∏k

r=i+m urr

+
∑ j−i

m=1(−1) j−i+m−1ui,i+m
D(i+m)

j−i−m(U)

uii
∏ j

r=i+m urr
, (i ≤ j)∑n

k=i+1
∑k−i

m=1
∑k− j

p=1(−1)m+p−i− jui,i+ml j+p, j
D(i+m)

k−i−m(U)D( j)
k− j−p(L)

uii
∏k

r=i+m urr

+ 1
uii

[∑i− j
m=1(−1)i− j+m−1l j+m, jD

( j)
i− j−m(L)

]
, (i > j)

,

Proof. For non pivoting case, consider a matrix A which has LU factorizations directly, then its inverse can
be found out immediately as

A−1 = U−1L−1.

More precisely, using Theorems 2.1 and 2.2, the elements of the inverse matrix A−1 = (a−1
i j ) (i, j ∈ N) are

being calculated explicitly as follows:
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For all i ≤ j,

a−1
i j =

n∑
k= j

u−1
ik l−1

kj

=u−1
i j l−1

j j +

n∑
k= j+1

u−1
ik l−1

kj

=

j−i∑
m=1

(−1) j−i+m−1ui,i+m

D(i+m)
j−i−m(U)

uii
∏ j

r=i+m urr

+

n∑
k= j+1

k−i∑
m=1

k− j∑
p=1

(−1)m+p−i− jui,i+ml j+p, j

D(i+m)
k−i−m(U)D( j)

k− j−p(L)

uii
∏k

r=i+m urr
.

For all i > j,

a−1
i j =

n∑
k=i

u−1
ik l−1

kj

=u−1
ii l−1

i j +

n∑
k=i+1

u−1
ik l−1

kj

=
1
uii

 i− j∑
m=1

(−1)i− j+m−1l j+m, jD
( j)
i− j−m(L)

 +

n∑
k=i+1

k−i∑
m=1

k− j∑
p=1

(−1)m+p−i− jui,i+ml j+p, j

D(i+m)
k−i−m(U)D( j)

k− j−p(L)

uii
∏k

r=i+m urr

Theorem 2.4. The explicit formula for A−1 with pivoting via matrices L = (li j), U = (ui j) and P is given by

A−1 = (ri j) = (a−1
is ),

where s-th row of In is being k-permutated to get permutation matrix P and

a−1
is =



∑n
k=s+1

∑k−i
m=1

∑k−s
p=1(−1)m+p−i−sui,i+mls+p,s

D(i+m)
k−i−m(U)D(s)

k−s−p(L)

uii
∏k

r=i+m urr

+
∑s−i

m=1(−1)s−i+m−1ui,i+m
D(i+m)

s−i−m(U)
uii

∏s
r=i+m urr

, (i ≤ s)∑n
k=i+1

∑k−i
m=1

∑k−s
p=1(−1)m+p−i−sui,i+mls+p,s

D(i+m)
k−i−m(U)D(s)

k−s−p(L)

uii
∏k

r=i+m urr

+ 1
uii

[∑i−s
m=1(−1)i−s+m−1ls+m,sD

(s)
i−s−m(L)

]
, (i > s)

,

Proof. The proof follows from Remark 1.1.

Remark 2.5. In Theorem 2.4, it is seen that the elements of A−1 = (ri j) can be determined by taking m-permutation
of j-th column of (a−1

i j ), defined in Theorem 2.3.

Remark 2.6. Theorem 2.4 is valid for both pivoting and non pivoting cases. In particular, for non pivoting case, the
permutation matrix P is reduced to the identity matrix In, therefore the result of Theorem 3 is immediately obtained
from Theorem 2.4.

As an application of Theorems 2.1 and 2.2, we may list the inverses of matrices provided in Table 1 given
in previous section as follow:

Table 2
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Operators Corresponding Matrix(a = (ank)) Inverse(B = (bnk))

∆(1)


1, (k = n)
−1, (k = n + 1)
0, (otherwise)

1, (k ≥ n)
0, (otherwise)

∆


1, (k = n)
−1, (k = n − 1)
0, (otherwise)

1, (0 ≤ k ≤ n)
0, (otherwise)

∆m

(−1)k−n( m
k−n

)
, (k ≥ n)

0, (otherwise)

(−1)k−n(m+k−n−1
k−n

)
, (k ≥ n)

0, (otherwise)

∆(m)

(−1)n−k( m
n−k

)
, (0 ≤ k ≤ n)

0, (otherwise)

(−1)n−k(m+n−k−1
n−k

)
, (0 ≤ k ≤ n)

0, (otherwise)

B(r, s)


r, (k = n)
s, (k = n − 1)
0, (otherwise)


1
r , (k = n)
(−1)n−ksn−k

rn−k+1 , (0 ≤ k < n)
0, (otherwise)

B(r, s, t)


r, (k = n)
s, (k = n − 1)
t, (k = n − 2)
0, (otherwise)


1
r , (k = n)

1
r

n−k∑
j=0

zn−k− j
1 z j

2(c.f.(4)), (0 ≤ k < n)

0, (otherwise)

G(u, v)

unvk, (k ≤ n)
0, (otherwise)


1

unvn
, (k = n)

−
1

un−k−1vn−k
, (k = n − 1)

0, (otherwise)

G(u, v; ∆)


unvn, (k = n)
un(vk − vk+1), (0 ≤ k < n)
0, (otherwise)


1

unvn
, (k = n)

−
(vk−vk+1)
ukvkvk+1

, (0 ≤ k < n)
0, (otherwise)

(C, 1)

 1
n+1 , (0 ≤ k ≤ n)
0, (otherwise)


n, (k = n)
−(n − 1), (k = n − 1)
0, (otherwise)

B(r̃, s̃)


rk, (k = n)
sk, (k = n − 1)
0, (otherwise)


1
rn
, (k = n)

(−1)n−k ∏n−1
i=k si∏n

j=k r j
, (0 ≤ k < n)

0, (otherwise)

B(r̃, s̃, t̃)


rk, (k = n)
sk, (k = n − 1)
tk, (k = n − 2)
0, (otherwise)


1
rn
, (k = n)

(−1)n−kD(k)
n−k(r̃,s̃,t̃)∏n

j=k r j
(c.f.(2)), (0 ≤ k < n)

0, (otherwise)

F̂


fn

fn+1
, (k = n)

−
fn+1

fn
, (k = n − 1)

0, (otherwise)

 f 2
n+1

fk fk+1
, (0 ≤ k ≤ n)

0, (otherwise)

B̃

 (n
k)

2k(k+1) , (0 ≤ k ≤ n)

0, (otherwise)


∑n

j=k
( j

k

)
2k(2 j − k + 1) (0 ≤ k ≤ n)

0, (otherwise)

Nt

 tn−k
Tn
, (0 ≤ k ≤ n)

0, (otherwise)

(−1)n−kDn−kTk(c.f.(3)), (0 ≤ k ≤ n)
0, (otherwise)

Ep


(n

k
)
(1 − p)n−kpk, (0 ≤ k ≤ n)

0, (otherwise)

(−1)n−k(n
k
)
(1 − p)n−kp−n, (0 ≤ k ≤ n)

0, (otherwise)
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where

D(k)
n−k(r̃, s̃, t̃) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

sk rk+1 0 . . . 0
tk sk+1 rk+2 . . . 0
0 tk+1 sk+2 . . . 0
...

...
...

. . .
...

0 0 0 . . . sn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2)

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t1 1 0 . . . 0
t2 t1 1 . . . 0
t3 t2 t1 . . . 0
...

...
...

. . .
...

tn tn−1 tn−3 . . . t1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,D0 = 1, (3)

z1 =
−s +

√

s2 − 4rt
2r

, z2 =
−s −

√

s2 − 4rt
2r

and Tn =

n∑
k=0

tk. (4)

Now, using Theorems 2.3 and 2.4, we construct the following algorithm for matrix inversion:
Algorithm (Matrix inversion with and without pivoting):

Step 1 : LU factorization

• Input n, size of matrix A and elements of A.

• Decompose A as A = PLU, and compute P,L and U.

Step 2 : Inverse of L

• Set L = (li j)n×n = (r1; r2; . . . ; rn)T, where rk = (rk
1, r

k
2 . . . r

k
n), kth row vector of L with rk

j = lkj, (1 ≤ j <
k), l j j = 1 and 0 otherwise.

• Compute the matrix [D(k)
n−k(L)] = (di j(L))(n−k)×(n−k) = (rk+1; rk+2; . . . ; rn)T .

• Compute D(k)
n−k(L) =

∑n−k
i=1 (−1)i−1lk+i,kD(k+i)

n−k−i(L) for n > k, 1 for n = k, and 0 for n < k.

• Compute inverse of L as L−1 = (l−1
nk ) = (−1)n−kD(k)

n−k(L) for n > k and set l−1
nk = 1 for k = n, and 0 for

k > n.

Step 3 : Inverse of U

• Set U = (ui j)n×n = (c1; c2; . . . ; cn), where ck = (ck
1, c

k
2 . . . c

k
n)T, kth column vector of U with ck

i =
uik, (i < k ≤ n),uii , 0 and 0 otherwise.

• Compute the matrix [D(n)
k−n(U)] = (di j(U))(k−n)×(k−n) = (cn+1; cn+2; . . . ; ck) .

• Compute D(n)
k−n(U) =

∑k−n−1
i=1 (−1)i−1un,n+i

∏i−1
j=1 un+ j,n+ jD

(n+i)
k−n−i(U) for k > n, 1 for k = n, and 0 for k < n

• Compute inverse of U as U−1 = (u−1
nk ) =

∑k−n
i=1

(−1)k−n+i−1un,n+iD
(n+i)
k−n−i(U)

unn
∏k

j=i
for k > n and set u−1

nk = 1
unn

for

k = n and 0 for k < n.

Step 4 : Inverse of A

• Compute inverse of A as A−1 = U−1L−1P.
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3. Example, discussion and verification

In this section, we provide a numerical example illustrating which the detail of the proposed algorithm
is described. The time complexity and other features of the algorithm are discussed. We also design the
relevant MATLAB codes for the algorithm and implement it against different type and size of matrices.
Example 1: Consider a non singular matrix A of order 4, where

A =


0 2 3 5
4 0 6 5
8 1 10 0
2 3 4 1


Note that factorization of A is only possible by pivoting rows. On LU factorization of A (Step 1 of the
algorithm), we have

P =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 ,L =


1 0 0 0
0 1 0 0
2 1/2 1 0

1/2 3/2 1 1

 and U =


4 0 6 5
0 2 3 5
0 0 −7/2 −25/2
0 0 0 7/2


From Step 2 of the algorithm, we can calculate the values of D(k)

n−k(L) = D(k)
n−k as follows:

D(1)
1 = 0; D(1)

2 =

∣∣∣∣∣ 0 1
2 1/2

∣∣∣∣∣ = −2; D(1)
3 =

∣∣∣∣∣∣∣∣
0 1 0
2 1/2 1

1/2 3/2 1

∣∣∣∣∣∣∣∣ = −3/2;

D(2)
1 = 1/2; D(2)

2 =

∣∣∣∣∣ 1/2 1
3/2 1

∣∣∣∣∣ = −1; D(3)
1 = 1.

The inverse of L can be calculated as

L−1 =


1 0 0 0

(−1)2−1D(1)
1 1 0 0

(−1)3−1D(1)
2 (−1)3−2D(2)

1 1 0
(−1)4−1D(1)

3 (−1)4−2D(2)
2 (−1)4−3D(3)

1 1

 =


1 0 0 0
0 1 0 0
−2 −1/2 1 0
3/2 −1 −1 1


Similarly, from Step 3 of the algorithm, one may calculate the values of D(n)

k−n(U) = D(n)
k−n as follows:

D(1)
1 = 0; D(1)

2 =

∣∣∣∣∣ 0 6
2 3

∣∣∣∣∣ = −12; D(1)
3 =

∣∣∣∣∣∣∣∣
0 6 5
2 3 5
0 −7/2 −25/2

∣∣∣∣∣∣∣∣ = 115;

D(2)
1 = 3; D(2)

2 =

∣∣∣∣∣ 3 5
−7/2 −25/2

∣∣∣∣∣ = −20; D(3)
1 = −25/2.

Using Step 3 of the algorithm, the inverse of U can be calculated as

U−1 =


1/4

(−1)2−1D(1)
1

8
(−1)3−1D(1)

2
−28

(−1)4−1D(1)
3

−98

0 1/2
(−1)3−2D(2)

1
−7

(−1)4−2D(2)
2

−49/2

0 0 −2/7
(−1)4−3D(3)

1
−49/4

0 0 0 2/7

 =


1/4 0 3/7 115/98
0 1/2 3/7 40/49
0 0 −2/7 −50/49
0 0 0 2/7


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Finally, using Step 4 of the algorithm, we obtain

A−1 = U−1L−1P =


−1.3878 1.1531 −0.7449 1.1735
−0.5306 0.3673 −0.3878 0.8163
1.1633 −0.9592 0.7347 −1.0204
−0.2857 0.4286 −0.2857 0.2857


As the central theme of the present algorithm is the evaluations of determinants D(k)

n (L) and D(k)
n (U) by

breaking down them to the simpler form, we need to find the computational costs for both of the evaluation
of the determinants. Theorems 2.1 and 2.2 suggest that the computational cost for both of the algorithms
for complete evaluations of these determinant is n(n+1)

2 , where n denotes the size of the determinant. As
we know the computational costs for LU decomposition and matrix multiplication are, respectively n3/3
and n2, all together the entire algorithm takes 2n3+15n2+3n

6 and 2n3+9n2+3n
6 computations for pivot and non

pivot cases. However, this time complexity will be remarkably reduced in the case of sparse and Cesàro
type matrices, where the evaluations of the determinants of Hessenberg matrices [D(k)

n (L)] and [D(k)
n (U)]

takes less number of computations comparatively. In fact, for a Cesàro matrix the prosed algorithm needs
only n3+3n2+3

6 computations for non pivot case. The main advantage of the proposed algorithm is that
even for transient stage of LU factorization, it does not become unstable and it works normally by adding
few numbers of additional computations. As it is known that the algorithm involves the evaluation of
determinants Hessenberg matrices [D(k)

n (L)] and [D(k)
n (U)], we conclude that it seems to be stable if ‖[D(k)

n (L)]‖
and ‖[D(k)

n (U)]‖ are finite. An other important feature of this algorithm is that one can find the explicit
expression of any elements of the inverse matrix without considering its previous or neighboring elements.
Verification: Above algorithms are being programmed using MATLAB codes and also verified by taking
different size of matrices. For instances, we take an example of a matrices of size 10 and by compiling the
respective program in MATLAB we get following output.

Example 2 :

enter the matrix : [0 2 3 4 5 6 7 8 9 1 ; 2 0 3 5 6 3 2 8 2 4 ; 1 8 0
5 1 7 2 9 3 6 ; 1 8 3 0 3 6 1 5 0 3 ; 1 2 5 6 0 3 2 7 8 2 ; 1 3 1 4 5
0 0 3 4 5 ; 6 1 3 9 3 4 0 4 1 7 ; 0 4 1 8 3 4 6 0 1 0 ; 1 4 8 3 5 9 2
7 0 3 ; 9 8 3 7 9 1 4 8 2 0]

inv matr ix =
0 .0801 0 . 0 2 8 0 0 . 0 9 0 4 0 .1539 0 . 0 0 9 8 0 . 1 2 0 2 0 .1561 0 . 0 5 9 0 0 . 1 2 0 1 0 .0340
0 . 0 5 5 6 0 . 0 0 7 6 0 . 0 1 5 8 0 .1331 0 .0554 0 .0225 0 . 0 3 7 7 0 .0440 0 . 0 5 9 4 0 .0117
0 . 0 8 9 6 0 .3511 0 . 3 7 5 3 0 .6288 0 .2541 0 . 1 8 6 4 0 .0704 0 .1182 0 . 3 3 9 4 0 . 1 2 2 9
0 . 0 6 3 2 0 . 2 1 9 2 0 .2424 0 . 5 0 9 5 0 . 0 5 7 1 0 .1591 0 . 0 8 5 5 0 .0068 0 .3104 0 .0896

0 .0582 0 . 2 7 9 9 0 .2049 0 . 5 1 6 3 0 . 2 1 3 4 0 .2722 0 . 0 9 9 8 0 . 0 8 9 2 0 .3818 0 .1144
0 .1370 0 . 5 6 5 6 0 .4056 0 . 7 9 6 1 0 . 2 8 5 4 0 .2247 0 . 0 3 6 2 0 . 1 6 5 9 0 .5937 0 .1340
0 . 0 0 2 8 0 .8088 0 . 6 4 6 6 1 .3313 0 .3050 0 . 5 1 2 5 0 .2040 0 .2820 0 . 9 4 0 7 0 . 2 6 4 2
0 . 0 5 4 7 0 .1598 0 .0529 0 .0034 0 .0502 0 . 0 8 0 6 0 . 0 7 0 9 0 . 0 2 0 5 0 . 0 3 7 8 0 .0131

0 .1118 0 . 3 1 8 0 0 .1415 0 . 3 4 0 0 0 . 0 6 6 9 0 .1835 0 . 0 1 5 4 0 . 1 0 9 3 0 .2185 0 .0658
0 . 0 2 8 9 0 .5536 0 . 4 4 1 1 0 .9574 0 .2003 0 . 2 5 0 1 0 .2004 0 .1453 0 . 6 5 4 6 0 . 2 3 5 7

P =

0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
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0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

4. Conclusion

In this study, using difference operators, two generalized sequential banded matrices have been in-
troduced and adaptive formulas for their inversion has been formulated. As a result, a new algorithm
for matrix inversion has been proposed which is based on LU factorizations and individual inverse of
sequential banded matrices L and U. In the present algorithm, we have evaluated explicitly the elements
of the inverse matrix without taking any recursive calculations. We have basically designed the algorithm
involving three steps such as LU factorizations with or without pivoting, computation of permutation
matrix and new inversion formulas for triangular matrices including evaluation of determinant of certain
matrices called Hessenberg matrices.
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[4] B. Altay, F. Başar, On the fine spectrum of the generalized difference operator B(r, s) over the sequence space c0 and c, Int. Math.

Math. Sci. 18(2005) 3005–3013.
[5] P. Baliarsingh, S. Dutta, On an explicit formula for inverse of triangular matrices, J. Egypt. Math. Soc., 23 (2015) 297-302.
[6] P. Baliarsingh, L. Nayak, V. Kumar, On matrix inversions through difference operators, Iran. J. Sci. Technol. Trans. A Sci DOI

10.1007/s40995-017-0161-9.
[7] P. Baliarsingh, S. Dutta, On certain Toeplitz matrices via difference operator and their applications, Afrika Mat. 27 (2016) 781-793.
[8] P. Baliarsingh, S. Dutta, On a spectral classification of the operator ∆r

ν over the Sequence Space c0, Proc. Natl. Acad. Sci., India,
Sect. A Phys. Sci. 84(4) (2014) 555-561.

[9] P. Baliarsingh, On a fractional difference operator, Alexandria Eng. J., 55(2) (2016) 1811-1816.
[10] P. Baliarsingh, Some new difference sequence spaces of fractional order and their dual spaces, Appl. Math. Comput. 219(18)

(2013) 9737–9742.
[11] P. Baliarsingh, S. Dutta, On the classes of fractional order difference sequence spaces and their matrix transformations, Appl.

Math. Comput. 250 (2015) 665–674.
[12] P. Baliarsingh, L. Nayak, A note on fractional difference operators, Alexandria Eng. J. 57(2) (2018) 1051-1054.
[13] P. Baliarsingh, U. Kadak, M. Mursaleen, On statistical convergence of difference sequences of fractional order and related

Korovkin type approximation theorems, Quaes. Math, 41(8) 1117–1133.
[14] P. Baliarsingh, On certain dynamic properties of difference sequences and the fractional derivatives, Math. Method Appl. Sci.

(2020) doi:10.1002/mma.6417.
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