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Abstract. In this paper, notions of L-topological derived internal relation space, L-topological derived
interior operator space, L-topological derived enclosed relation space and L-topological derived closure
operator space are introduced. It is proved that all of these spaces are categorically isomorphic to L-
topological space, L-topological internal relation space and L-topological enclosed relation space.

1. Introduction

Since Zadeh introduce the concept of fuzzy set [38], fuzzy set theory has been combined with many
mathematical branches, such as fuzzy topology [1, 11, 36, 37, 39], fuzzy convergence [5, 7-9, 12, 13, 17, 35],
fuzzy matroid [4, 21, 22] and fuzzy convexities [10, 14-20, 27-31, 33, 34] and so on.

Derived operator is an important tool to characterized many mathematical structures such as topological
spaces, M-fuzzifying matroids and M-fuzzifying convex spaces [2, 6, 18, 32, 40]. Among many characteri-
zations of L-topological spaces [3, 23], Shi et al characterized L-topological spaces by L-topological enclosed
relation spaces and L-topological internal relation spaces [26]. Then a natural question arises: is there any
topological derived internal relation or topological derived enclosed relation which can be used to char-
acterize topologies? That is, is there any topological derived internal relation or any topological derived
enclosed relation such that the following diagrams communicate? Do them hold in L-fuzzy setting?

126] Topological [26] Topological
internal relation enclosed relation

?1 } | |

Topology Topology

Topological derived > Topological derived Topological derived > Topological derived
interior operator internal relation? closure operator enclosed relation?
Problem 1. Problem 2.
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The aim of this paper is to accomplish the above diagrams in L-fuzzy setting. The arrangement of this
paper is as follows. In Section 2, we recall some basic concepts, denotations and results. In Section 3,
we introduce L-topological derived internal relation spaces and L-topological derived interior spaces by
which we obtain two characterizations of L-topological spaces. In Section 4, we introduce L-topological
derived enclosed relation spaces and L-topological derived closure spaces by which we obtain two other
characterizations of L-topological spaces.

2. Preliminaries

In this paper, X and Y are nonempty sets. The power set of X is denoted by 2X. L is a completely
distributive lattice with an inverse involution . The smallest (resp. largest) element in L is denoted by L
(resp. T). An elementa € L is called a co-prime, if forall b,c € L,a < bV c implies a < b or a < c. The set of
all co-primes in L\{} is denoted by J(L). For any a € L, there is an L; € J(L) such thata = \/;; b. A binary
relation < on L is defined by a < b iff for each L; € L, b < \/ L; implies some d € L; such thata < d. The
mapping B : L — 2L, defined by B(a) = {b : b < a}, satisfies B(\Vc; @) = Uie; f(a:) for any {a;}ie; € L. For any
a €L, B(a)and B*(a) = f(a) N J(L) satisfies a =/ B(a) = \/ B*(a) [23].

An L-fuzzy set on X is a mapping A : X — L. The set of all L-fuzzy sets on X is denoted by LX. The
smallest (resp, largest) element in L* is denoted by L (resp. T). For a mapping f : X — Y, the L-fuzzy
mapping f;” : LX — LY is defined by f,”(A)(y) = V{A() : f(x) = y} for A € LX and y € Y, and the mapping
fi=: LY — L* is defined by f;~(B)(x) = B(f(x)) for B € L' and x € X [23].

Definition 2.1. ([23]) A subset 7 C LX is called an L-topology on X and (X,7) is called an L-topological
space if

CTH T, LeT;

(LT2) Ve  Ai € T for any subset {A;}ie1 ST ;

(LT3)AVvBeT forallA,BeT.

Theorem 2.2. ([23]) Let (X, T") be an L-topological space.

(1) The L-topological closure operator Cly : LX — LX of T is defined by Cly-(A) = N{B€ LX: A<B,B €T}
for any A € LX. It satisfies

(LCI1) Clr (L) = L;

(LCI2) A < Clyr(A);

(LCI3) Cly-(Cly(A)) = Cly-(A);

(LCI4) Cly-(A V B) = Cly(A) v Cly(B).

Conversely, if an operator Cl : LX — LX satisfies (LCI1)—(LCI4), then the set Tc; = {A € LX : CI(A’) = A’} is an
L-topology satisfying Cly, = CL

(2) The L-topological interior operator Int : LX — LX of T is defined by Intg-(A) = \/{B € T : B < A} for any
A € LX. It satisfies

(LInt1) Intq-(T) = T,

(LInt2) Intq-(A) < A;

(LInt3) Intg-(Ints-(A)) = Ints-(A);

(LInt4) Intg-(A A B) = Intq-(A) A Intg(B).

Conversely, if an operator Int : LX — LX satisfies (LInt1)—(LInt4), then the set Tp,y = {A € LX : Int(A) = A} is
an L-topology satisfying Inty,, = Int.

Let (X,7x) and (Y, 7y) be L-topological spaces. A mapping f : X — Y is an L-continuous mapping,
if f(A) € Tx for any A € Ty. Itis proved that a mapping f : X — Y is an L-continuous mapping iff
[ (Cly (A)) < Cly (7 (A)) for any A € L%, or alternatively, f;~(Intr, (B)) < Intr, (f;~(B)) for any B € LY. The
category of L-topological spaces and L-continuous mappings is denoted by L-TOP [23].

Definition 2.3. ([26]) A binary relation < on L* is called an L-topological enclosed relation and the pair
(X, <) is called an L-topological enclosed relation space, if < satisfies
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(LTER1) L < L;

(LTER2) A < B implies A < B;

(LTER3) A < A, Bi iff A < B; foralli € I;

(LTER4) A < B implies some C € LX with A < C < B;
(LTER5) AV B < Ciff A < Cand B < C.

Let (X, <x) and (Y, <y) be L-topological enclosed relation spaces. A mapping f : X — Y is called an
L-topological enclosed relation preserving mapping, if f;~(A) <x f;"(B) for all A,B € LY with A <y B. The
category of L-topological enclosed relation spaces and L-topological enclosed relation preserving mappings
is denoted by L-TERS [26].

Theorem 2.4. ([26]) (1) For an L-topological enclosed relation space (X, <), the operator Cl. : LX — LX, defined by
Cl.(A) = \{B € LX : A < B} for any A € L%, is an L-topological closure operator of some L-topology T .

(2) For an L-topological space (X, T), the binary operator <, defined by A <7 B iff Cl-(A) < B forall A, B € LX,
is an L-topological enclosed relation.

(3) L-TOP is isomorphic to L-TERS.

Definition 2.5. ([26]) A binary relation < on L¥ is called an L-topological internal relation and the pair (X, <)
is called an L-topological internal relation space, if < satisfies

(LTIR1) T < T;

(LTIR2) A < B implies A < B;

(LTIR3) V, Ai < Biff A; < Bforallie [;

(LTIR4) A < B implies some C € LX with A < C< B;

(LTIR5) A< BACiff A<Band A<C.

Let (X,<x) and (Y,<y) be L-topological internal relation spaces. A mapping f : X — Y is called an
L-topological internal relation preserving mapping, if f,"(A) <x f;"(B) for all A,B € LY with A <y B. The
category of L-topological internal relation spaces and L-topological internal relation preserving mappings
is denoted by L-TIRS [26].

Theorem 2.6. ([26]) (1) For an L-topological internal relation space (X, <), the operator Int< : LX — LX, defined by
Int<(A) = \/{B € LX : B < A} for any A € L%, is an L-topological interior operator of some L-topology T <.

(2) For an L-topological space (X, T"), the binary operator <, defined by A <g- Biff A < Inty(B) forall A,B € LX,
is an L-topological internal relation.

(3) L-TOP is isomorphic to L-TIRS.

Definition 2.7. ([24]) (1) A mapping ¢ : J(LX) — L% is called a remote-neighborhood mapping, if x4 £ ¢(x,)
for any x; € J(LX). The set of all remote-neighborhood mappings is denoted by R(LX). For ¢, ¢ € R(LX),
¢ O € R(L¥) is defined by ¢ © (xa) = Alp(yy) : yu £ P(xa)} for any x; € J(LX).

(2) A pointwise L-quasi-uniformity on X is a subset U C R(L¥) satisfying the following conditions:

(LU1) ¢ € R(LX), Y € U and ¢ < ¢ implies ¢ € U;

(LU2) @, ¢ € U implies ¢ V ¢ € U;

(LU3) ¢ € U implies an ¢ € U such that p <P O 1.

Theorem 2.8. ([26]) Let U be a pointwise L-quasi-uniform on X.

(1) Define a binary relation <qs on X by A <q Biff there is ¢ € U such that B' < A\, ¢4 @(x2) for all A, B € L*.
Then (X, <q) is an L-topological internal relation space.

(2) Define an another binary relation <q on X by A <y B iff there is ¢ € U such that A < N\, 4 (y,) for all

A,B € LX. Then (X, =) is an L-topological enclosed relation space.

Definition 2.9. ([25]) A pointwise S-proximate on X is a mapping 6 : J(LX) X LX — {1, T} satisfying
(SP1) 8(xy, L) = L for any x, € J(LX);
(SP2) 6(x;, B) = L implies x; £ B;
(SP3) 6(x1, AV B) = 6(xp,A) V 6(xy, B);
(SP4) 6(x,, B) = L implies some C € LX such that 6(x,,C) = L and O(yu,C) = Lforany y, £ C.
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Theorem 2.10. ([26]) Let 6 be a pointwise S-proximate on X.

(1) Define a binary relation <s on LX by A <5 B iff (x»,B’) = L forall A,B € LX and x, € J(L*) with xy £ A".
Then (X, <5) is an L-topological internal relation space.

(2) Define an another binary relation <5 on LX by A <5 Biff (y,, A) = L forall A,B € L* and y, € J(L*) with
x1 & B. Then (X, <) is an L-topological enclosed relation space.

3. L-Topological Derived Internal Relation Spaces

In this section, we introduce notions of L-topological derived internal relation space and L-topological
derived interior space by which we characterize L-topological internal relation spaces and the category of
L-topological spaces.

Definition 3.1. A binary operator < on L* is called an L-topological derived internal relation and the pair
(X, <) is called an L-topological derived internal relation space, if for all A, B,C € LXand x, € g (M),
(LTDIR1) T < T;
(LTDIR2) A < Biffx; < BV x, for any x, € *(A);
(LTDIR3) Vs Ai < Bifand only if A; < Bforany i€ [;
(LTDIR4) A < B implies A A B < C < B for some C € LX with AAB < C;
(LTDIRS) A< BACifandonlyif A<Band A < C.

It directly follows from (LTDIR3) and (LTDIR5) that A < B forall A,B,C,D € LX with A< C< D <B.
Let (X, <x) and (Y, <y) be L-topological derived internal relation spaces. A mapping f : X — Y is called
an L-topological derived internal relation preserving mapping, if for all A,B € LY,

A<y B implies f(AAB)<x f; (B).

The category of L-topological derived interval relation spaces and L-topological derived interval relation
preserving mappings is denoted by L-TDIRS. Next, we discuss the relations between L-topological derived
internal relation spaces and L-topological internal relation spaces.

Theorem 3.2. Let (X, <) be an L-topological derived internal relation space. Define a binary relation << on LX by
YA,BelX, A<<B  3CelX, C<B, A=BAC
Then (X, <<) is an L-topological internal relation space.

Proof. We check that <¢ satisfies (LTIR1)—(LTIR5).

(LTIR1). We have T < T and T A T = T by (LTDIR1). Thus T << T.

(LTIR2). It directly follows from the definition.

(LTIR3). Let \/;; Ai << B. Then there is C € L¥ such that C < Band V,;;A; = BAC. Forany i € I, we
have A; <V, Ai < B. Thus A; < Band A; = BA A;. Hence A; << Bforanyiel

Conversely, assume that A; << B for any i € I. For any i € I, thereisa C; € LX such that C; < B and
A; = BAC;. Thus V¢ Ci < B by (LTDIR3). Further, we have

\Ai=\/Brcy=Br\/C:
iel iel i€l
Hence V,q Ai << B.

(LTIR4). Let A << B. Then there is a D € LX such that D < Band A = BA D. By D < B and (LTDIR4),
thereisa C € LXsuchthat A=DAB<C<BandA<C. LetE=BAC. ThenE <Band A < E < B. Thus
E << B. Further, by A < C < B, we have A < B. Thus A < BA C = E by (LTDERS5). Hence A << E. Therefore
we conclude that A << E <¢ Band A A B < E as desired.

(LTIR5). Let A << BAC. Then thereisa D € LX suchthat D<K BACand A= (BAC)AD. LetE=CAD.
Then E <D< BAC<B. ThusE < Band A = BAE. Hence A <¢ B. Similarly, let F = BA D. Then
F<D<BACEZC.ThusF<Cand A=CAF. Hence A << C.
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Conversely, assume that A << B and A <¢ C. Then there are D,E € LX such that D < B, E < C and
A=BAD=CAE. ThusDANE<Band DAE<C. Hence A= (BAC)A(DAE)yand DAE < BACby
(LTDIRS5). Therefore A<< BAC. O

Theorem 3.3. Let (X, <x) and (Y, <y) be L-topological derived internal relation spaces. If f : X — Y is an L-
topological derived internal relation preserving mapping, then f : (X, <<,) — (Y, <<,) is an L-topological internal
relation preserving mapping.

Proof. If A <<, B, then there is a C € L* such that C <y Band A = BA C. Thus f;,(C) A f;(B) <x f;(B)
and f(A) = f7(C) A f7(B). Hence f(A) <<, f (B). Therefore f is an L-topological internal relation
preserving mapping. O

Theorem 3.4. Let (X, <) be an L-topological internal relation space. Define a binary operator << on LX by
VA,BeLX, A<<B & Vx)€p(A), xa <BVx,.
Then (X, <<) is an L-topological derived internal relation space.

Proof. It is clear that A << B for any A,B,C,D € LX¥ with A < C << D < B. Next, we check that << satisfies
(LTDIR1)—(LTDIRS5).
(LTDIR1). If x) € B*(T), thenx) < T < I TV x, by (LTIR1). Thusx) < T. Hence T << T.

(LTDIR2). Let A << B and let x, € *(A). To prove that x; << BV x;, let x;, € $*(xa). Then x,, € f*(A). By
A << B, we have

<KBVx, <(BVxy)Vux,.

Thus x;, < (BV xa) V x;,. Hence x) << BV x,.

Conversely, assume that x; << B V x, for any x, € '(A). Let x, € f*(A). We check that x; < BV x,.

By x) << BV x), wehave x, <BVx, Vx, =BVx, forany x, € °(x)). Thus x; = \/x”eﬁ*(x,\) < BVux, by
(LTIR3). Hence A << B

(LTDIR3). Let \/;; Ai << B. Itis clear that A; << B for any i € I. Conversely, assume that A; << B for any
i € I. To prove that \/,; Ai << B, let x) € B*(\V/ ;1 Ai). Then there is an i € I such that x; € §*(A;). By A; << B,
we have x; < BV x,. Therefore \,; A; << B.

(LTDIR4). Let A << B. We need to find some E € LX such that AAB<<E<<Band AAB<E.

If AA B = L, thenitis easy to check that E = A satisfies the requirement. Assume that AA B # L. Let

D:\/{FGLX:FsgB}

and let E = D A B. Then A A B < E. In addition, D << B by (LTDIR3). Thus E < D << Band so E << B. To
prove that A A B << E, we check that y, < E V y, for any y, € (A A B).

Let y, € B'(AAB). By A << B,wehavey, < BVy, = B. By (LTIR4), thereisa C € L* such that y, < C < B.
Thus y, < C < Bby (LTIR2). For any zg € °(C), we have zg < C < B < BV zg which implies that zg < BV zg.
Hence C << Band so C < D. Further, we have y, < D and y, < D by y, < C. Notice that y, < Band y, < D
By (LTIR5), we have y, < E = E V y,. By the arbitrariness of v, € (A A B), we have A A B << E. Therefore
AANB<<E<<Band A A B <E as desired.

(LTDIRS). Let A << B A C. For any x, € °(A), we have

XA <(BAC)Vxy=(BVxy)A(CVxy,).

Thus xy < BV x) and x3 < CV x; by (LTIR5). Hence A << Band A << C
Conversely, let A << Band A << C. Ifx, € *(A), thenx) < BV x; and x) < C V x,. By (LTIR5), we have

XA <BVx))A(CVx)=BAC)Vx,.
Therefore A<<BAC. O
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Theorem 3.5. Let (X, <x) and (Y,<y) be L-topological internal relation spaces. If f : X — Y is an L-topological
internal relation preserving mapping, then f : (X, <<,) — (Y, <«,) is an L-topological derived internal relation
preserving mapping.

Proof. Let A <<, B. If f7 (A AB) = L, then f (A A B) <<, f (B) is trivial. Assume that f (A AB) # L. If
x) € B'(f, (A A B)), then f~(x;) € B*(A A B). Thus f,”(xa) <y BV f"(x)) and

0 < fi U e)) <x fr B)V i (f” () < fi B) V f (A AB) = fi7(B).

Hence x, <x f;~(B) and so f;~(A A B) <x f;~(B) by (LTIR3). Therefore f is an L-topological derived internal
relation preserving mapping. [

Theorem 3.6. We have <¢_=< for any L-topological interval relation space (X, <) and <<_=< for any L-topological
derived internal relation space (X, <).

Proof. Let (X, <) be an L-topological internal relation space. If A <<
thereis a C € LX such that C << Band A = BA C. Thus A << B. By
x) € B'(A). By (LTIR3), we have A =V, g4y X2 < B.

Conversely, if A < Bthen A < Bby (LTIR2). Forany x, € '(A), wehavex, < A <B. Thusx; < B = BVx;.
Hence A << B. Since AA B = A, we have A <¢_ B.

In conclusion, for all A, B € LX, we have A << Biff A < B. Thatis, <¢_=<x.

Let (X, <) be an L-topological derived internal relation space. Let A <<_ Band letx, € §"(A). By A <<_ B,
we have x, << BVx,. Thus thereisa C** € LX such that C"* < Band x, = (BVx,) AC*. Hence, by (LTDIR3),

A=\ u=\/ (Bvayarcs \/ [(BvAAaCi =Bvar \/ cv< \/ cv<B.

XAEﬁ*(A) X,\Eﬁ*(A) X/\Eﬁ"(A) X,\Eﬁ*(A) X Eﬁ*(A)

. B, then A < B by (LTIR2). In addition,
<< B, wehave x; < BV x, = B for any

From this result, we conclude that A < B.

Conversely, assume that A < B. If x; € §°(A), thenx) <A< B <BVux,. Thusx) < BV x,. By this result
and x, =x); A (BVx,), wehave x; << BV x,. Hence A <<_B.

In conclusion, for all A, B € LX, we have A <<_ Biff A < B. Thatis, <<.=<. O

Based on Theorems 3.2 and 3.3, we obtain a functor U : L-TIERS— L-TIRS defined by
U(X,9)) = (X,<9), U(f)= /.

Based on Theorems 3.2-3.6, U is an isomorphic functor. Thus we have the following conclusion.
Theorem 3.7. The category L-TDIRS is isomorphic to the category L-TIRS.
To simply characterize L-TDIRS, we introduce L-topological derived interior space as follows.

Definition 3.8. A subset 7 C L* is called an L-topological derived interior operator on X and the pair (X, )
is called an L-topological derived interior space if for all A, B € LX and any x, € g(T),

(LTDInt1) 7(T) = T;

(LTDInt2) A < 7(B) if and only if xy < 7(B V x,) for any x, € *(A);

(LTDInt3) A A T(A) < I(1(A));

(LTDInt4) Z(A A B) = 1(A) A I(B).

Let (X, I'x) and (Y, Iy) be L-topological derived interior spaces. A mapping f : X — Y is called an
L-topological derived interior preserving mapping, if f;(Zv(B) A B) < Ix(f;(B)) forany B € LY.

The category of L-topological derived interior spaces and L-topological derived interior preserving
mappings is denoted by L-TDINTS.
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Theorem 3.9. Let (X, I') be an L-topological derived internal space. Define a binary operator <7 on LX by
VA,BelX, A<;B & A<I(B).
Then (X, <y) is an L-topological derived internal relation space.

Proof. We check that < satisfies (LTDIR1)—(LTDIRS).

(LTDIR1). We have 7(T) = T by (LTDInt1). Thus T <y T.

(LTDIR?2). It directly follows from (LTDInt2).

(LTDIR3). If \/;q; A; < Bthen A; < \/;;A; < I(B) for any j € I. Thus A; <7 B for any j € I. Conversely,
assume that A; <y Bforanyi € I. Then A; < 7(B) forany i € I. Hence V;; A; < I(B). Therefore \/;; A; <7 B.

(LTDIR4). Let A <7 B and let E = B A I(B). We have E <y E by (LTDInt3) and (LTDInt4). Also, we have
A<IB)byA<;B. Thus AAB < E < I(E). Hence A A B <7 E. Further, we have E <7 B by E < I(B).
Therefore AAB <y E <y Band A A B < E as desired.

(LTDIRS). By (LTDInt4), we have (A A B) = I(A) A I(B). Thus the desired result is clear. [J

Theorem 3.10. Let (X, I'x) and (Y, I'y) be L-topological derived interior spaces. If f : X — Y is an L-topological
derived interior preserving mapping, then f : (X,<r,) — (Y,<gz,) is an L-topological derived internal relation
preserving mapping.

Proof. 1f A <z, B then A < Iy(B). Thus f~(A) < f;(Iy(B)) and

i (AAB) = f (A A f(B) < f (Iv(B) A f (B) = f7 (Lv(B) A B) < Tx(f (B)).
So f7(A A B) <z, f{(B). Hence f is an L-topological derived internal relation preserving mapping. [J

Theorem 3.11. Let (X, <) be an L-topological derived internal relation space. Define an operator I : LX — LX by
VAeLX, T(A)= \/{B eX:B<A).
Then (X, I <) is an L-topological derived interior space.

Proof. (LTDIntl). We have T < 7((T) by (LTDIR1). Thus 7(T) = T.

(LTDInt2). Let A < I<(B). If x) € B*(A), then x; < Z<(B). Thus there is a D € LX such that x; < D and
D < B. Hence x; <D < B < BV x, followed by x) < BV x,. Therefore x, < 7<(BV x,).

Conversely, let x; < 7<(B V x,) for any x, € *(A). To prove that A < T(B), let x, € "(A). Then
xy < I<«(BV x,). For any x,; € f°(x;), we have x;, < (B V x;). Thus there is a D € LX such that
x; <D < BV x,. Hence x; < BV x; followed by x) < BV x,. By (LTDIR2), we have A < B. So A < I <(B).

(LTDInt3). Let x, € B*(A A I<(A)). By (LTDIR3), we have 7<(A) < A. By x) < T<(A), thereisa D € LX
such thatxy < D < A. By D < A, thereisa C € LXsuchthat DAA < C< Aandx), <DAA <C. Further,
since C < A, wehave C < 7<(A). Thus DAA < I<(A) which implies thatxy, < DAA < IT(I<(A)). Therefore
ANT(A) < T<(T<(A)).

(LTDInt4). Clearly, 7 <(A AB) < T<(A) A Z<(B). Conversely, let x, € B*(Z<(A) A IT<(B)). By x) € (I <(A)),
there is a C € LX such that x, < C < A. Similarly, by x, € 8*(Z<(B)), there is a D € LX such that x; < D < B.
Thus x4 < C A D. By (LTDIR5), we have x; < CAD < A A B. Hence x, < CAD < T((A A B). Therefore
TA(ANIB)<IJ(AAB). O

Theorem 3.12. Let (X, <x) and (Y, <y) be L-topological derived internal relation spaces. If f : X — Y is an L-
topological derived internal relation preserving mapping, then f : (X, I<,) — (Y, 1<) is an L-topological derived
interior preserving mapping.
Proof. Let B € LY. To prove that f7 @« (B) AB) < I, (f(B)), letxy € B°(f, ({<,(B) A B)). Then f,”(x)) <
I, (B) AB. By f(x)) < I<,(B), thereisa D € LX such that f;"(x1) <D <y B. Thus

x1 < (D) A f7(B) = f (D A B) <x fi (B).

Hence x) < Ix(f;(B)) and so f(Z<,(B) A B) < I, (f;”(B)). Therefore f is an L-topological derived interior
preserving mapping. O
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Theorem 3.13. We have I, = 1 for any L-topological derived interior space (X, I') and <r_=< for any L-topological
derived internal relation space (X, <).

Proof. Let (X, Z) be an L-topological derived interior space and A € LX. For any D € LX with D <7 A, we
have D < I(A). Thus

T, (A) = \/{D e LX: D <7 A} < I(A).

Conversely, 7(A) <y Aby I(A) < I(A). Thus I (A) < I¢,(A). Hence I¢,(A) = 7(A) followed by I, = 1.

Let (X, <) be an L-topological derived internal relation space. If A < B then A < 7<(B). Thus A <7_ B.
Conversely, if A <7_ B, then A < 7<(B). For any x, € (A), we have x, < 7<(B). Thus there is an E € LX
such that x, < E < B. Hence x, < BV x,. By (LTDIR2), we have A < B.

In conclusion, we have A < B if and only if A <;_ B. Thatis, <;.=<. O

Based on Theorems 3.11 and 3.12, we obtain a functor W : L-TDIRS— L-TDINTS by
WX Q) =X Iq), W(f)=f.
Based on Theorems 3.9-3.13, W is an isomorphic functor. Thus we have the following result.
Theorem 3.14. The category L-TDIRS is isomorphic to the category L-TDINTS.
Now, we characterize L-topological spaces by L-topological derived internal relation spaces.
Theorem 3.15. Let (X, 7") be an L-topological space. Define a binary relation <g- on LX by
VA,BeL*, A<r B & Vx; € (A), xo <Inty(BV xy).
Then (X, <g) is an L-topological derived internal relation space.

Proof. By definition, it is clear that A <5 B forall A,B,C,D € LX¥ with A < C <7 D < B. Next, we check that
< satisfies (LTDIR1)—(LTDIR5).

(LTDIR1). For any x, € (T), we have x) < T = Intg(T V x,) by (LIntl). Thus T <4 T.

(LTDIR2). Let A <7 B and x, € °(A). To prove that xy <7 BV x,, let x, € f*(x,). Then x,, € °(A). By
A <4 B, we have

xy < Inty(BV xp) < Intr-((BV xp) V xy).

Thus x) <5 BV x,. Conversely, let x, <¢ BV x, for any x, € *(A). If x; € *(A), then x); <5 BV x,. Hence

Xy = \/ X, < \/ Intr-((BV x3) V x) = Intg(B V x,).
xp€B*(x2) X €B*(xa)
Therefore A <4 B.

(LTDIR3). Let \/,; Ai <7 B. Itis clear that A; <s B. Conversely, assume that A; <y B for any i € I. For
any y, € (Ve Ai) = Ve B7(Ai), there is an i € I such that x; € $(A;). Hence x, < Intr(BV xa) by A; <7 B.
Therefore \/,¢; A;i <7 B.

(LTDIR4). Let A <5 B and let C = Intg(B). For any x, € *(C), we have x; < C < Inty(B V x,). Thus
C <7 B. For any y,, € 8*(A A B), we have y,, € f"(A). By A <5 B, we have

Yy < Intg(BV y,) = Inty(B) = Intg(Intg(B)) = Inty(C) < Intr-(C V y,).

Hence A A B <7 C <7 B. In addition, since y, < Ints(C) < C for any y, € (A A B), we have AAB < C.
Therefore C = Ints(B) satisfies the requirement.

(LTDERS). If A <5 B A C, then it is clear that A <¢ B and A <¢ C. Conversely, assume that A <¢ B and
A < C. For any x, € *(A), we have

x) < Inte-(BV x)) A Int-(CV xp) = Inte-((BV x1) A (CV xy)) = Intg-((B A C) V x,).
Thus A<+ BAC. O
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Theorem 3.16. Let (X, Tx) and (Y, Ty) be L-topological spaces. If f : X — Y is an L-continuous mapping, then
f (X, <7) = (Y, <7,) is an L-topological derived internal relation preserving mapping.

Proof. Let A <7, B. To prove that f"(A A B) <7 f(B), let xy € °(f, (A A B)). Then f,”(x,) € "(A A B). By
A <7, B,wehave f7(x;) < Inty,(BV f”(x3)) < Ints, (B). Thus

xy < f (Intg,(B)) < Intg (f(B)) = Intr, (ff (B) V x2).

Hence f"(A A B) <7y f(B). So f is an L-topological derived internal relation preserving mapping. [

Theorem 3.17. Let (X, <) be an L-topological derived internal relation space. Define an operator Int< : LX — LX by
VA € 2%, Into(A) = A A \/{B e LX:B<AJ.

Then Int is an L-topological interior operator which induces an L-topology denoted by T <.

Proof. We check that Int< satisfies (LInt1)—(LInt4).

(LIntl). We have T < T by (LTDIR1). Thus T A T = T < Int<(T) which shows that Int<(T) = T.

(LInt2). It is clear that Int<(A) < A.

(LInt3). Clearly, Int<(Int<(A)) < Int<(A). To prove that Int(A) < Int<(Int<(A)), let xy € p*(Int<(A)).
Then x, € B*(A) and there is a B € LX such that x;, < B < A. By (LTDIR4), there is a C € LX such that
AANB<C<Aand AAB<C. Thus AAC < Intc(A). Further,by AAB < C <A, wehave A A B < A. Hence
AAB<AAC<IntA) by (LTDIR5). So A A B < Int<(A) followed by

xy < A A B < Int(Int<(A)).

This shows that Int<(A) < Int<(Int<(A)). Therefore Int(Int<(A)) = Int<(A).

(LInt4). It is clear that Int<(A A B) < Int<(A) A Int<(B). Conversely, let x, < Int<(A) A Int<(B). By
x) < Int<(A)), there is a C € L such that x, < C < A. Similarly, by x; < Int<(B), there isa D € L* such that
X3 <D< B. ThusCAD<Aand CAD < B. Hence C A D <A A Bby (LTDIR5). Hence

xp SAANCAD<Int(AAB).
Therefore Int<(A) A Int<(B) < Int<(AAB). O

Theorem 3.18. Let (X, <x) and (Y, <y) be L-topological derived internal relation spaces. If f : X — Y is an L-
topological derived internal relation preserving mapping, then f : (X, T<,) — (Y, T<,) is an L-continuous mapping.

Proof. If B € T, then B = Int<, (B). To prove the desired result, we verify that f~(B) = Int<, (f;~(B)).

It is clear that Int<, (f/~(B)) < f,(B). To prove that f~(B) < Int<,(f,"(B)), let x; € B°(f;"(B)). Then
f7(x2) < B = Int¢,(B). Thus there is a D € L* such that f,”(xa) < D <y B. Hence x, < f;(D A B) <x f;(B)
which implies that x) < Intg,(f,”(B)). Thus f;~(B) < Intr, (f~(B)) and so f;~(B) = Ints, (f;~(B)). This implies
that f7(B) € 7. Therefore f is an L-continuous mapping. [

Theorem 3.19. We have T<, = T for any L-topological space (X,7") and <q_.=< for any L-topological derived
internal relation space (X, <).

Proof. Let (X,7") be an L-topological space. If A € T, then A = Int, (A). Let
D=\/{BeLX:B<r Al

Then A = Int,(A) = AAD and A < D <7 A by (LTDIR3). For any x, € p*(A), we have x, € (D). In
addition, x; < Intg(AV x,) = Intg(A) by D <5 A. Thus A < Intg(A) which implies that A = Ints(A). Hence
A €T . Therefore T, C 7.

Conversely, let A € 7. If xj € f7(A), then x) < A = Inty(A) = Int7(A V x,). Thus A <7 A followed by
A<AA \/{B € LX: B <y A} = Inte, (A).
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Hence A = Int¢,(A) which shows that A € 7. Therefore 7 C 7, . In conclusion, we have T, = 7.
Let (X, <) be an L-topological derived internal relation space. Let A <7, B. For any x, € *(A), we have

) < Intr.(BV ) =Inte(BVx,) < \ /(D€L : D< BV xy).

For any x,, € f*(x)), thereis D € LX such that x; <D <BVx). Hencex, < BVx)and x; = \/xneﬁ”(n) X; S BVx,
by (LTDIR3). Therefore A < B by (LTDIR?2).
Conversely, let A < B. For any x € $°(A), wehavexy <A< B <BVx,. Thusx); <BVx, and

x)p < (BVxy)A € :D<<BVx)=Int(BVx,)=Intyr_(BV x3).
(B (DelX:D<BVx,}=Int(B Ints_(B

Hence A <7_ B.
In conclusion, for any A, B € LX, we have A <7, Biff A < B. Thatis, <7.=<. O

Based on Theorems 3.17 and 3.18, we obtain a functor V : L-TDIRS— L-TOP defined by
VX, ) = (X, 7<), V(f)=f.
Based on Theorems 3.15-3.19, V is an isomorphic functor. Thus we have the following conclusion.
Theorem 3.20. The category L-TDIRS is isomorphic to the category L-TOP.

Based on Theorems 3.9-3.19, relations between L-topological derived interior spaces and L-topological
spaces can be presented as follows.

Corollary 3.21. (1) Let (X, I') be an L-topological derived interior space. Define an operator Inty : LX — LX by
VA e LX, Inty(A) = A A I(A).

Then Inty is an L-topological interior operator of an L-topological space (X, T 1);
(2) Let (X, T") be an L-concave space. Define an operator I : LX — LX by

YAeLX, I(A) = \/{B e LX : Vx) € B(B), x) < Intr (A V x))}.

Then (X, 1) is an L-topological derived interior space;
(3) The category L-TDINTS is isomorphic to the category L-TOP.

At the end of this section, by Theorem 3.4, we present two examples to show that an L-quasi-uniform
space or an L-S-quasi-proximate space generates an L-topological derived internal relation space.

Example 3.22. Let (X, U) be an L-quasi-uniform space. Define a binary relation <¢; on LX by

VABE2X, A<y B & Vxyef(A), pel, BVx) < [\ plx,).
UgEA

For all A, B € L, it is easy to check that
A<y Be Vxyef(A), xa<yBvxy o A<, B
Thus <¢=<<,. Hence (X, <¢) is an L-topological derived internal relation space.

Example 3.23. Let (X, 6) be a S-quasi-proximate space. Define a binary relation <; on L* by

VABeLX, A<sB & VYx,€p'(A), v 5(xy, (BV 1)) = L.
UgEA

For all A, B € L, it is easy to check that
A<sBo Vxyeff(A), xy<s BVxy © A< B.

Thus <5=<,. Hence (X, <;5) is an L-topological derived internal relation space.
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4. L-Topological Derived Enclosed Relation Spaces

In this section, we introduce the notion of L-topological derived enclosed relations by which we char-
acterize the category of L-topological enclosed relation spaces and the category L-topological spaces. For
this, we introduce the following notions.

For A € LX and x, € f*(T), we denote A,, = V{y, € B (A) : xa £ yutand B(L) = {u € B(T) : A € B (W)}
For convenience, we denote y, £* A for any y, € °(T) with y, £ A. We have the following results.

Proposition 4.1. Forall x,y, € *(T), A € L* and {A;}ie; € L*, we have
(1) xp £ A implies Ay, = A;
(2) A < B implies Ay, < By,;
(3) (Ax/\ )x,\ = Ax,\;
(4) u € By (L) implies Ay, < Ay, and (Ax,)x, = (Ax))x, = Axy/
(5) yn £ T, iff x =y and n € B;(L);
(6)A=NygaT,;
(7) (\/iel Ai)x). = \/ieI(Ai)x/\'

Proof. (1) and (2) are direct.

(3) We have (Ay,)r, < Ay, by (2). Conversely, for any z, € f°(T) with z, < A,,, there is a z, € (A)
such that x, £ z, and z, < z,. Thus z, < z, < Ay, which implies that z, € *(A,,). By xi £ z,, we have
zy < (Ayx,)x,- Hence Ay, < (Ay))x,. Therefore (Ay,)x, = Ax,.

(4) For any u € (L), it is clear that A, < Ay,. Further, by (2) and (3), we have

Ax\ = (AXA)JCA < (Ax,\)xp < AX).'

Thus (Ay,)x, = Ay,. Similarly, we have Ay, = (Ay))y, < (Ax,)x, < Ay, Therefore (Ay,)x, = Ay,

(5) Assume that v, £ T . Then thereisa v € (1) such that Yy £ T, . Thus x) < y,. Hence x = y and
A < v < 1. Therefore n € L) Conversely, assume that 11 € (L) and X = y. Suppose that y, < T . Then
0 <T,. . Thus there is an xg € §*(T) such that x; £ xg and x; < xg. Itis a contradiction. Therefore 1 y” £T,

(6) For any z, € g*(T) withz, £ A\, ¢4 T, ,wehavez, £ T, for some x) £* A. Sincez, £ T, v We have
z=xand u € B;(L). Thus z, £ A. Hence A < /\méAT

Conversely, suppose that A, 4.4 T, £ A. Then thereisa Z, € [3 (D suchthatz, £* Aandz, < Ay pa T, -
By z, £ A, thereis a 8 € p*(n)) such that zg £ A. Thuszg <z, < A\ o T, < T_. Itisa contradiction.
Therefore A\, 44 T, <A.

(7) We have (Vie Ay, = Viye € Ui B(A) - 31 £ 1) = Via(Ads,. O

Definition 4.2. A binary operator < on L¥ is called an L-topological derived enclosed relation and the pair

(X, ) is called an L-topological derived enclosed relation space, if for all A, B,C € LXand x, € g (M),
(LTDER1) L 2 L;

LTDER2) A 2 Biff Ay, < T, and Ay, < T  forany x; £° B and any u € §(L);

LTDER3) A € A\ Biiff A < B foranyi e I

LTDER4) A 2 Bimplies A € C 2 AV B for some C < AV B;

LTDER5) AV B < Ciff A< Cand B < C.

PRy

It directly follows from (LTDER3) and (LTDERS5) that C € D forall A,B,C,D € LX withC< A< B < D.
Let (X, 2x) and (Y, €y) be L-topological derived enclosed relation spaces. A mapping f : X — Y is called
an L-topological derived enclosed relation preserving mapping if

A 2y B implies f(A) <x f; (B)V f(A)

The category of L-topological derived enclosed relation spaces and L-topological derived enclosed relation
preserving mappings is denoted by L-TDERS.
Now, we consider the relations between L-TDERS and L-TERS.
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Theorem 4.3. Let (X, <) be an L-topological derived enclosed relation space. Define a binary relation <. on LX by
VA,BelX, A<.B & 3ACelX, A<C AVC=B.
Then (X, <<) is an L-topological enclosed relation space.

Proof. We check that <. satisfies (LTER1)—(LTERS).

(LTER1). Wehave L € Land LV L = L. Thus L <. L.

(LTER?2). It directly 7 follows from the definition.

(LTER3). If A 2. A, B;, then thereisa C € LX such that A< Cand AV C = A;Bi. Then AV C < B;
foranyi €l Thus A € B;and AV B; = B;. Thatis, A <. B;foranyi € L. Conversely, assume that A <. B
for any i € I. Then there is a C; € L¥ such that A € C;and A Vv C; = B; for any i € I. By (LTDER3), we have
A Z N Ci. In addition, we have

AV /\ci = /\(AvCl-) = /\B,-.
i€l i€l i€l
Thus A << /\j¢ Bi

(LTER4). Let A <. B. Then there is a D € LX such that A € D and A vV D = B. By (LTDER4), there is
aC<AVDsuchthat A2C<Z2AVD. LetE=AVC. ThenA € Eand AV E = E. Thus A <. E. Further,
fromA<2AvVDandC< AV D,wehaveE £ AV D by (LTDER5). In addition, EVAV D = B. Thus E <. B.
Therefore E satisfies the requirement.

(LTER5). Let AV B <. C. Then thereisa D € LX such that AVB € D and (AV B) v D = C. Thus
A<Z2BvDand AV BV D =C. Hence A << C. Similarly, we have B€ AV D and BV AV D = C. Therefore
B <. C. Conversely, assume that A <. C and B <. C. Then there are D,E € LX such that A € D, B 2 E,
AvVD=Cand BVE =C. Thus(AVB)V(DVE) =C. Inaddition, wehave A € DV Eand B € DV E. Hence
AV B 2DV Eby (LTDERS5). Therefore AVB <. C. O

Theorem 4.4. Let (X, <x) and (Y, Zy) be L-topological derived enclosed relation spaces. If f : X — Y is an L-
topological derived enclosed relation preserving mapping, then f : (X, <<,) = (Y,<Z<,) is an L-topological enclosed
relation preserving mapping.

Proof. Let A <., B. Then thereisa C € LY such that A <y Cand A Vv C = B. Thus f(A) 2x f(AvC)and

oAV fi(AVO) = f(AVB) = f(O).
Hence f,~(A) <<, f;~(B). Therefore f is an L-topological enclosed relation preserving mapping. [J

Theorem 4.5. Let (X, <) be an L-topological enclosed relation space. Define a binary relation < on LX by
VA,BeLX, A<.B & Vxy &' BYuep(L), Ay, < T,,
where x) £* B implies that x) € B*(T) and x) £ B. Then (X, 2<) is an L-topological derived enclosed relation space.

Proof. It is easy to check that A €. B forany A,B,C,D € LXwithA<C<2.D<B. To prove the result, we
need to check that €. satisfies (LTDER1)-(LTDERS5).

(LTDER1). It directly follows from (LTER1) of <

(LTDER2). Let A << B, xj) £* Band u € B;(L). We have B < le‘ by xa £ B. Thus A, <A< B<T
which implies that Ay, << T, . Further, by A <. B, wehave A, < T . Hence A, <T by (LTER2).

Conversely, assume that A v, €< T, and Ay, < T for any x; ,{_ Band any u € ﬁ (L). Suppose that
A #. B. Thentherearex) £ Band y € A(L) such that Ax“ £ T, . Since u € B (L), we have xp £ T, . Further,
by Ay, << T, ,wehave Ay, = (Ay )y, < (T, )x, = T, o .Itisa contradlctlon Therefore A 2. B

(LTDER3) If A 2. A B, then it is clear that A 2. B; for any i € I. Conversely, assume that A €. B; for
any i € I. For any x; £ A Bi, there is an i € I such that x; £* B;. By A €. B;, we have Ay, Z T, for any
p € B3 (L). Therefore A << \¢; B

(LTDERA4). Let A 2. B. We need to find some E € LX such that A €. E<. (AVB)and E < AV B.
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LetD = A\{FeELX:A<.FlandletE=AVD. ThenE <AV Band A <. D by (LTDER3). This further
implies that A << E. To prove that E << AV B, letx) £* AV B. We prove that E, < T forany u € g (L).

By A 2. B, wehave Ay, < T By (LTER4), thereisa C € LX such that Ay, 2C< T Thus Ay, £C< T
by (LTER2). For any z, £ C and any 6 € f;(L), we have

A29:A<C=CZUST

—Zq *
Hence AZ.Cand D <C< T followed by D < T,,- By (LTER5), we have
o = Ay, VD, <A, VDT,

—X
This implies that E,, < T, . Therefore E 2. A V B. That is, we have E satisfies the requirement.

(LTDER5). If AV B <. C then A 2. Cand B Z. C are clear. Conversely, assume that A €. Cand B 2. C.
Letxy £" Cand p € B(L). By A< Cand B << C,wehave A, < T /\ and By, < T . - BY (LTERD), we have

AVBy, =Ax, VBy, =(AVB),, <T, .
Hence AVB<.C. O

Theorem 4.6. Let (X, <x) and (Y, <y) be L-topological enclosed relation spaces. If f : X — Y is an L-topological
enclosed relation preserving mapping, then f : (X, 2<,) — (Y, €<,) is an L-topological derived enclosed relation
preserving mapping.

Proof. LetA Z, B. Toprovethat f~(A) Z<, f(AVB),letx) £* f(AVB)and u € B;(L). Then f(x), £* AVB.
By A 2., B, wehave A = Ag), <y T i Thus

Ji A, = fi (A) =2x fi @Tp,) < Ty
Hence f7(A) 2« f7(AV B). So f is an L-topological derived enclosed relation preserving mapping. []

Theorem 4.7. We have 2. =< for any L-topological derived enclosed relation space (X, <) and <., =< for any
L-topological enclosed relation space (X, <).

Proof. Let (X, <) be an L-topological enclosed relation space. If A <., B, then there is a C € L* such that
A<Z.Cand AV C=B. ThusA<.Band A <B. By A <. B, wehave A=A, <T_foranyx, £ Band
p € By(L). Hence A < A, 45 T, = Bby (LTER3). Thatis, A < B holds.

Conversely, if A < B then A'<B by (LTER2). For any x, £* Band p € (L), we have A,, = A < B<T,
Thus Ay, < T, . Hence A << B by (LTDER?2). Further, by A << Band A V B = B, we have A Z.. B

In conclusion, for all A, B € LX, we have A <._ B if and only if A < B. That is, <. ,=<.

Let (X, €) be an L-topological derived enclosed relation space. Let A 2. B. If x, £" Band u € (L),
we have A, <. T . Thus thereis a C € L* such that A, € Cand A,, vV C = T, Hence A, < T and
Ay, <T, Therefore A 2 B by (LTDER?2).

Conversely, let A < B. Toprovethat A 2. B, letx) £" Band i € B (L). Weneed to prove that A,, < < T,

Actually,byA<B<T ,wehaveA, <T andA, <T by (LTDERZ) Inaddition, by A, VT, =T,
we have Ay, << T Therefore A 2., B

In conclusion, for all A, B € 2%, we have A 2._ Biff A € B. Thatis, €._=<. [

Based on Theorems 4.3 and 4.4, we obtain a functor [F : L-TDERS— L-TERS defined by
F((X, <) =(X,2<), F(f)=f.

Based on Theorems 4.3—4.7, we find that IF is an isomorphic functor. Thus we have the following conclusion.
Theorem 4.8. The category L-TDERS is isomorphic to the category L-TERS.

To simply characterize L-topological derived enclosed relation spaces, we introduce the following notion.
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Definition 4.9. An operator D : LX — LX is called an L-topological derived closure operator on X and the
pair (X, D) is called an L-topological derived closure space if for all A, B € LX and any x, € 8*(T),

(LTDCI1) D(L) = L

(LTDCI2) D(A) < Biff yEﬁ}(L)(D(Axu) VA <T, for any x, £* B;

(LTDCI3) D(D(A)) < D(A) V A;

(LTDCl4) D(A Vv B) = D(A) vV D(B).

Let (X, Dx) and (Y, Dy) be L-topological derived closure spaces. A mapping f : X — Y is called an
L-topological derived closure preserving mapping, if f;>(Dx(A)) < Dy(f;”(A)) V f;(A) for any A € LX.

The category of L-topological derived closure spaces and L-topological derived closure preserving
mappings is denoted by L-TDCLS.

Theorem 4.10. Let (X, D) be an L-topological derived closure operator space. Define a binary operator ¢ on X by
VA,BelX, A2pB & D(A)<B.
Then (X, Zp) is an L-topological derived enclosed relation space.

Proof. (LTDER1). We have D(L1) = L by (LTDCI1). Thus L €¢ L.

(LTDER?). It directly follows from (LTDCI2).

(LTDER3). If A 29 /\;¢; Bi then D(A) < A\;g; B; < Bj forany j € I. Thus A €p Bj for any j € I. Conversely,
if A 2p B; for any i € I, then D(A) < B;. Thus D(A) < A Bi which implies that A €p ;¢ Bi

(LTDER4). Let A €5 B and let E = D(A) V A. We have E € E by (LTDCI3) and (LTDCl4). Also, we
have D(A) < Band E < AV Bby A €9 B. In addition, A €9 E by D(A) < E. Therefore A € E € AV B
and E < AV B as desired.

(LTDERS). By (LTDCl4), we have D(A V B) = D(A) vV D(B). Thus (LTDERS5) holds trivially for €. O

Theorem 4.11. Let (X, Dx) and (Y, Dy) be L-topological derived closure spaces. If f : X — Y is an L-topological
derived preserving mapping, then f : (X,€p,) — (Y, €p,) is an L-topological derived enclosed relation preserving

mapping.
Proof. 1If A 29, B then Dy(A) < B. Thus

JiOx(f(A) < f7 (T (A) V Dy(fi7(f (A) <AV Dy(A) < AVB.

Hence Dx(f"(A)) < f(AV B) = f7(A) V f7(B) followed by f~(A) <p, f(A) V f7(B). Therefore f is an
L-topological derived enclosed relation preserving mapping. [

Theorem 4.12. Let (X, €) be an L-topological derived enclosed relation space. Define an operator D : LX — LX by
VAeLX, D(A)= /\{B eLX:A<Bl.
Then (X, D<) is an L-topological derived closure space.

Proof. (LTDCI1). We have D.(L) < L by (LTDER1). Thus D.(L1) = L

(LTDCI12). If D.(A) < Bthen A € D.(A) < Bwhich implies A € B. By (LTDERZ), we have A,, < I and
Ay, € T, forany x; £ Band any u € B (L). Thus V ep1)(D<(Ax,) V Ay,) < !

Conversely, assume that \/ g1)(D=<(Ax,) V Ay,) < T for any x, ,;<_ B. By (LTDER3), we have A,, <
D(Ay,) forall xy £° Band u € ﬁ (L). Thus Ay, T and Ay, <T, . Hence AT, o by (LTDER2) and (5)
of Proposition 4.1. Therefore D<(A) < AxgB I _B by (6) of Proposmon 4.1.

(LTDCI3). Let x; € g*(T) with xy £ D(A) vV "A. Then xy £ Aand x) £ D(A). By xj3 £ D(A), there is
B € L¥ such that x, £ Band A < B. By (LTDER4), there is E € LX such that A< E< BV A. By A € E and
(LTDER3), we have D.(A) € E. By (LTDERS), we have D.(A) V A € E. Thus

D(D(A)VA)<E<(AVB)#x,.
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Hence x) £ D(D-(A) V A). Therefore, D(D-(A) V A) < D.(A) V A.

(LTDCl4). Clearly, D-(A) V D<(B) < D(A V B). Conversely, let x, € J(LX) with x, £ D-(A) V D<(B).
By x1 £ D.(A), there is C € LX such that x; £ Cand A < C. Similarly, by x, £ D-(B), there is D € L* such
thatxy £ Dand B < D. Thusxy £ CvDand AV B € CV D by (LTDER5). Hence D.(AV B) <CV D and
Xy £ D<(AV B). Therefore D(AV B) < D(A)V D(B). O

Theorem 4.13. Let (X, €x) and (Y, €y) be L-topological derived enclosed relation spaces. If f : X — Y is an L-
topological derived enclosed relation preserving mapping, then f : (X, D<) — (Y, Dz, ) is an L-topological derived
closure preserving mapping.

Proof. Let A € LX and let x, € J(LX) with x, £ 1O (f AV f(f(A). Then f~(xa) £ De, (f"(A) V
f (A). By f7(A) £ D (f(A)), thereis B € LX such that fi'(x2) £ Band f;"(A) <y B. Thus x; £ f~(B) and
A < f(f7(A) 2x f{(B). Hence A <x f;~(B) and x) £ D<,(A). Therefore

D (A) < fi D, (f (AN V f (f7(A))
and f;7 (D, (A)) < D, (f(A)) V f(A). So f is an L-topological derived closure preserving mapping. [J

Theorem 4.14. We have D.,, = D for any L-topological derived closure space (X, D) and Z¢p.=< for any L-
topological derived enclosed relation space (X, €).

Proof. Let (X, D) be an L-topological derived closure space and A € LX. We have
D(A) < \[BeL¥: A <p B} = D, (A).

Conversely, for any x; € J(LX) with x; £ D(A), we have D(A) < T, ThusA<p T and D.,(A)<T, .So
Dy (A) < Axizow T,, = D(A). Hence D¢, (A) = D(A) which shows that D, = D.

Let (X, €) be an L-topological derived enclosed relation space. If A € B then D.(A) < Band so A €p_ B.
Conversely, if A €9, B, then D-(A) < Band A € D.(A) by (LTDER3). Thus A £ B. In conclusion, we have
A2 Biff A 2p_ B. Thatis, €p.=<2. O

Based on Theorems 4.12 and 4.13, we obtain a functor G : L-TDERS— L-TDCLS by
G((X,9) = (X, Dq), G(f) = f.
Based on Theorems 4.10-4.14, G is an isomorphic functor. Thus we have the following result.
Theorem 4.15. The category L-TDERS is isomorphic to the category L-TDCLS.
Now, we characterize L-topological spaces by L-topological derived enclosed relation spaces

Theorem 4.16. Let (X,7") be an L-topological space. Define a binary operator 27 on X by
VA,BeLX, A<y B & Vxy £ B,Yuepi(L), Clr(A,)< T, .
Then (X, Zg) is an L-topological derived enclosed relation space.

Proof. Clearly, we have A €4 B for any A,B,C,D € LX with A < C €4 D < B. Next, we check that €4
satisfies (LTDER1)—(LTDERS5).
(LTDER1). If x; € g*(T) and u € B;(L), then Cl‘i’(ix“) =Clr(L)=L< I by (LCL1). Thus L €+ L.
(LTDER2). Let A 25 B. We have A,, < Clr(Ay,) < T for all x; £ B and u € {(L). To prove that
Ax, <7 T, lety, £ T and 0 € B3(L). By (5) of Proposition 4.1, we have y = x and 1 € §;(L). Thus

CZ‘T((AxH)xO) < CZT(AXH) < Ix,\ <T .

—Xy

Hence Ay, <7 T .
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Conversely, assume that Ay, <7 T, and A,, < T forallx; £" Band u € g;(L). To prove that A <7 B,
let xo £° Band p € B3 (L). We have to prove that Clq—(A JS<T,

Since x, £° B and u € B;(L), we have A, <r T - and A <T,. Forany y, £ T , we have
Yy £ Ay,. In addition, x = y and n € By(L) by (5) of Proposition 41. Further, since Ay, <7 T , we have
Cly(Ay, ) = Clr (A )x) < T, for any 0 € f,(L). Thus Cly(Ay,) = /\quT T, =1, ThereforeA Z5 B.

(LTDER3) Let A €7 /\161 B;. Then itis clear that A <4 B; forany i € 1. Conversely, assume that A €4 B;
foranyi €l Letxy £° A Bi. Then thereisi € I such that x; £° B;. By A €5 B;, we have Clr(Ay,) < T, for
any u € §;(L). From this result, we conclude that A <7 A B;

(LTDER4). If A 27 B, then Cly-(Ay,) < T, forallx, £ Band u € §;(L). Let C = Clr-(A). Wehave A <7 C
since Cly-(Ay,) <C < T, forall y,; £ Cand 0 € B (L). Next, we prove that C <5 AVBand C< AV B.

Let yo £* (A V B) and u € §;(L). By A €7 B, we have

Cly(Cy,) < Clr(C) = C = Clr(A) = Clr(Ay,) < T,

Thus C<y (AVB)andC<T, . Hence C < /\yefAvBIyH =AVB.SoAZr C<r AVBand C<AVB.

(LTDERS). If AV B €7 C, then it is clear that A €7 C and B €7 C. Conversely, let A € C and B €+ C.
For any x; £* Cand any u € (L), we have

Clr((AV B)xu) = CZT(Ax“ v B.Xy) = CZT(Ax#) v CZT(BXH) < Ix/"
Therefore AV B <24+ C. O

Theorem 4.17. Let (X, Tx) and (Y, Ty) be L-topological spaces. If f : X — Y is an L-continuous mapping, then
f (X, 25y) = (Y, Z7,) is an L-topological derived enclosed relation preserving mapping.

Proof. Let A <7, B. To prove that f(A) <7, f(AV B), let x, £ f7(AV B)and p € B;(L). Then
f(xw) £ AV Band x, £° f7 (A V B). Further, by A <7, B, we have

fo €y (f (A),)) = fi7 Clr(f(A) < Cly (f7(f(A) < Clyy(A) = Clyy (Af= ) S Tpoy-
Thus Clz, (f (A),) < T, which implies that f~(A) €7, f"(A V B). Therefore f is an L-topological derived
enclosed relation preserving mapping. O
Theorem 4.18. Let (X, <) be an L-topological derived enclosed relation space. Define an operator Cle : LX — LX by
VAeLX, Cl.(A)=AV /\{B eLX:A<B).
Then Cl. is an L-topological closure operator which induces an L-topology denoted by 7 <.

Proof. (LCL1) and (LCL2) are direct.

(LCL3). It is clear that Clc(A) < CI:(CI<(A)). Conversely, to prove that Cl.(Cl:(A)) < CIc(A), let
x) % Cl(A). Then x, £ A and there is some B € LX such thatx) £ Band A € B. By (LTDER4), there is C € LX
suchthat A€ C<AVBand C<AVB. ThusCl.(A) <AvCand A< AV B. Since CI.(A) <AVC<ZAVB
by (LTDERS5), we have CI-(A) € AV B and

CI.(CI-(A)) < CI.(A) V (AV B) = AV B # x,.

This implies that x; £ CI-(Cl<(A)). Hence CI-(CI<(A)) < CI<(A). Therefore Cl-(Cl<(A)) = CI(A).

(LCL4). Clearly, we have Cl:(A) vV Cl.(B) < Cl<(A V B). Conversely, let x, £ CI-(A) Vv Clc(B). By
x) % Cl<(A), there is C € LX such that A € C and x; £ C. Similarly, by x; £ Cl<(B), there is D € L* such that
BZDandx) £D. Thusx) £ CvDand (AV B) 2 (CV D) by (LTDER5). Hence CI.(A V B) < CV D which
shows that x, £ CI.(A V B). Therefore CI.(A V B) < Cl.(A) V Cl.(B). O

Theorem 4.19. Let (X, €x) and (Y, Zy) be L-topological derived enclosed relation spaces. If f : X — Y is an L-
topological derived enclosed relation preserving mapping, then f : (X, T<,) = (Y, T<,) is an L-continuous mapping.
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Proof. Let A € L. To prove that f,7(Cl<,(A)) < Clc,(f;”(A)), we prove that Clc, (A)) < f;(Cle, (f; (A))).

For any x) £ f7(Cl,(f;"(A))), we have f~(x)) £ Clc,(f;"(A)). Thus f”(x1) £ f;"(A) and there is
B € LY such that f>(x)) £ B and f,”(A) <y B. Thus A < f(f;’(A)) <x f; (A V B) which shows that
A Zx f7(AVB). Sincex) £ f(AV B), we have x; £ Cl.,(A). Hence Cl.,(A) < f(Clz,(f,"(A))). Therefore
11 (Cley(A)) < Clc,(f;(A)). So f is an L-continuous mapping. [

Theorem 4.20. We have T, = T for any L-topological space (X,7") and Z5_.=2 for any L-topological derived
enclosed relation space (X, €).

Proof. Let (X,7") be an L-topological space. To prove 7, = 7, it is sufficient to prove that Cl., = Cly.
Let A € LX. To check that Cl., (A) < Cly(A), we firstly check that A <4 T, forany x; £ Clg(A).
Actually, for any y, £ T, , we have x = y and n € (L). Forany u € ﬁ,](L) we have x, £ Clr(A) >
Cly(Ayx,). Thus x) £ Cly (A, )and so Clr(Ay,) < T, <T, HenceAzs T

Further, by A<y T, ,wehaveCle (A) <AV I oy Therefore
Co, A<\ @Avr)=Aav A T, =AVCrA)=ClrA).
112" Clr(A) £ Clr(4)

Conversely, to prove that Clr-(A) < Cl., (A), let zg £* Cl.(A). Then zp £ A and there is ) € *(6) such that
z; £* Clg, (A). Thus thereis B € LX such that A 24 B and z; £* B. Hence Cly(A;,) < T, and so

Clr)= N Cra)s N T.< N\ I, =0
204 Cle, (4) 204 Cle (4) 204 Cle, (4)

Therefore Cly-(A) = Cl.,(A) which shows that 7., = 7.
Let (X, €) be an L-topological derived enclosed relation space. Let A € B. To prove that A €7, B, we
firstly check that A <7, T forany x, £* B.
Letx) £ B. To prove that A <. T, lety, £" T, and u € pj(L). We need to prove that Clr_(A,,) < T,
By y, £ T, , wehavex = yand A < 1. Since A € B, we have 4, < T, by (LTDER2). Further, since
Ax, SAKB<T, < T, we have Ay, € T, and
Clr.(Ayx,) = Cle(Ay,) < Ay, V T, =T

—Xy

Hence A <7, T . Therefore A <7, /\; ¢ T, = Bby (LTDER3).
Conversely, let A Z7. B. Toprove A € B, let x; £* Band p € f(L). By A <7. B and (LTDER3), we have

Ay, < J\ID€LX: A, <D} < Cl(Ay,) = Clr(Ay) < T,

Thus Ay, € T, and A, < T . Hence A < B by (LTDER2).
In conclusion, for all A, B € LX, we have A Z7, Biff A € B. Therefore €7,=<. [J

Based on Theorems 4.18 and 4.19, we obtain a functor H : L-TDERS— L-TOP by
H((X, <) = (X, 7<), H(f)=f.
Based on Theorems 4.16-4.20, H is an isomorphic functor. Thus we have the following conclusion.

Theorem 4.21. The category L-DERS is isomorphic to the category L-TOP.

Based on Theorems 4.10—4.20, relations between L-topological derived enclosed relation spaces and
L-topological spaces are presented as follows.
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Corollary 4.22. (1) Let (X, D) be an L-topological derived closure space. Define an operator cop : LX — LX by
VYA e L%, Clp(A) = D(A)V A.

Then Cly is the L-topological closure operator of an L-topological space (X, T p).
(2) Let (X, T") be an L-topological space. Define an operator Dy : LX — LX by

VA e LY, Dr(A)=\/{x1 € (1) : Vi € By (L), x, < Clr(Ay))

Then (X, Dy) is an L-topological derived closure space.
(3) The category L-TDCLS is isomorphic to the category L-TOP.

At the end of this section, by Theorem 4.8, we present two examples to show that an L-quasi-uniform
space or an L-S-quasi-proximate space generates an L-topological derived enclosed relation space.

Example 4.23. Let (X, U) be an L-quasi-uniform space. Define a binary relation €4, on X by

VABELY, A<yB & Vx £ BVuepyl), Ipel, A, < N\ o).
n€p; (L)

For all A, B € L, it is easy to check that
AZyBoVx £ B Vuepi(l), Ay, 2T, © A< B
Thus €¢/=<,,. Hence (X, 2¢) is an L-topological derived enclosed relation space.

Example 4.24. Let (X, 6) be an L-S-quasi-proximate space. Define a binary relation <5 on X by

VABELX, A<, B & Vi ef(A),Vuep D), \/ 00y, Ay)= 1.
nepy (L)

For all A, B € L, it is easy to check that
A<ZsBoe Vx, e f(A)Yuep(L), Ax, <5 T, ©AZ,B

Thus €5=2,. Hence (X, €5) is an L-topological derived enclosed relation space.

5. Conclusions

(1) In this paper, we introduce notions of L-topological derived internal relation spaces, L-topological
derived enclosed relation spaces, L-topological derived interior spaces and L-topological derived closure
spaces. We prove that all these spaces are categorically isomorphic to L-topological spaces. Relations
among categories mentioned in this paper can be showed by the following diagram.

L-TIRS L-TERS
[26] y
L-TDINTS Th37 L-TOP Thas L-TDCLS
\m A \m A
L-TDIRS L-TDERS

(2) The following diagrams give a solution of the problems presented in Introduction in L-fuzzy setting.
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126] L-topological [26] L-topological
internal relation L-topology enclosed relation

Co.3.21
1 ¢Th&7 CO""Zzi $Th.4A8

L-topology

L-topological derived . L-topological derived ~ L-topological derived L-topological derived
interior operator 22 internal relation closure operator 2L enclosed relation
(Definition 3.8) (Definition 3.1) (Definition 4.9) (Definition 4.2)
Solution 1. Solution 2.

(3) Relations among L-topological spaces, L-topological derived internal relations and L-topological de-
rived enclosed relations may provide some alternative ways in discussing separation axioms of L-topological
spaces and relations among L-topological spaces, L-matroids, L-convex spaces and L-convergence spaces.
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