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Abstract. In this paper, notions of L-topological derived internal relation space, L-topological derived
interior operator space, L-topological derived enclosed relation space and L-topological derived closure
operator space are introduced. It is proved that all of these spaces are categorically isomorphic to L-
topological space, L-topological internal relation space and L-topological enclosed relation space.

1. Introduction

Since Zadeh introduce the concept of fuzzy set [38], fuzzy set theory has been combined with many
mathematical branches, such as fuzzy topology [1, 11, 36, 37, 39], fuzzy convergence [5, 7–9, 12, 13, 17, 35],
fuzzy matroid [4, 21, 22] and fuzzy convexities [10, 14–20, 27–31, 33, 34] and so on.

Derived operator is an important tool to characterized many mathematical structures such as topological
spaces, M-fuzzifying matroids and M-fuzzifying convex spaces [2, 6, 18, 32, 40]. Among many characteri-
zations of L-topological spaces [3, 23], Shi et al characterized L-topological spaces by L-topological enclosed
relation spaces and L-topological internal relation spaces [26]. Then a natural question arises: is there any
topological derived internal relation or topological derived enclosed relation which can be used to char-
acterize topologies? That is, is there any topological derived internal relation or any topological derived
enclosed relation such that the following diagrams communicate? Do them hold in L-fuzzy setting?

Topology oo [26] // Topological
internal relation

Topological derived
interior operator

��
?

OO

oo ? // Topological derived
internal relation?

��
?

OO

Problem 1.

Topology oo [26] // Topological
enclosed relation

Topological derived
closure operator

��
[6]

OO

oo ? // Topological derived
enclosed relation?

��
?

OO

Problem 2.
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The aim of this paper is to accomplish the above diagrams in L-fuzzy setting. The arrangement of this
paper is as follows. In Section 2, we recall some basic concepts, denotations and results. In Section 3,
we introduce L-topological derived internal relation spaces and L-topological derived interior spaces by
which we obtain two characterizations of L-topological spaces. In Section 4, we introduce L-topological
derived enclosed relation spaces and L-topological derived closure spaces by which we obtain two other
characterizations of L-topological spaces.

2. Preliminaries

In this paper, X and Y are nonempty sets. The power set of X is denoted by 2X. L is a completely
distributive lattice with an inverse involution ’. The smallest (resp. largest) element in L is denoted by ⊥
(resp. >). An element a ∈ L is called a co-prime, if for all b, c ∈ L, a ≤ b ∨ c implies a ≤ b or a ≤ c. The set of
all co-primes in L\{⊥} is denoted by J(L). For any a ∈ L, there is an L1 ∈ J(L) such that a =

∨
b∈L1

b. A binary
relation ≺ on L is defined by a ≺ b iff for each L1 ⊆ L, b ≤

∨
L1 implies some d ∈ L1 such that a ≤ d. The

mapping β : L → 2L, defined by β(a) = {b : b ≺ a}, satisfies β(
∨

i∈I ai) =
⋃

i∈I β(ai) for any {ai}i∈I ⊆ L. For any
a ∈ L, β(a) and β∗(a) = β(a) ∩ J(L) satisfies a =

∨
β(a) =

∨
β∗(a) [23].

An L-fuzzy set on X is a mapping A : X → L. The set of all L-fuzzy sets on X is denoted by LX. The
smallest (resp, largest) element in LX is denoted by ⊥ (resp. >). For a mapping f : X → Y, the L-fuzzy
mapping f→L : LX

→ LY is defined by f→L (A)(y) =
∨
{A(x) : f (x) = y} for A ∈ LX and y ∈ Y, and the mapping

f←L : LY
→ LX is defined by f←L (B)(x) = B( f (x)) for B ∈ LY and x ∈ X [23].

Definition 2.1. ([23]) A subset T ⊆ LX is called an L-topology on X and (X,T ) is called an L-topological
space if

(LT1) >,⊥ ∈ T ;
(LT2)

∨
i∈I Ai ∈ T for any subset {Ai}i∈I ⊆ T ;

(LT3) A ∨ B ∈ T for all A,B ∈ T .

Theorem 2.2. ([23]) Let (X,T ) be an L-topological space.
(1) The L-topological closure operator ClT : LX

→ LX of T is defined by ClT (A) =
∧
{B ∈ LX : A ≤ B,B′ ∈ T }

for any A ∈ LX. It satisfies
(LCl1) ClT (⊥) = ⊥;
(LCl2) A ≤ ClT (A);
(LCl3) ClT (ClT (A)) = ClT (A);
(LCl4) ClT (A ∨ B) = ClT (A) ∨ ClT (B).
Conversely, if an operator Cl : LX

→ LX satisfies (LCl1)–(LCl4), then the set TCl = {A ∈ LX : Cl(A′) = A′} is an
L-topology satisfying ClTCl = Cl.

(2) The L-topological interior operator IntT : LX
→ LX of T is defined by IntT (A) =

∨
{B ∈ T : B ≤ A} for any

A ∈ LX. It satisfies
(LInt1) IntT (>) = >;
(LInt2) IntT (A) ≤ A;
(LInt3) IntT (IntT (A)) = IntT (A);
(LInt4) IntT (A ∧ B) = IntT (A) ∧ IntT (B).
Conversely, if an operator Int : LX

→ LX satisfies (LInt1)–(LInt4), then the set TInt = {A ∈ LX : Int(A) = A} is
an L-topology satisfying IntTInt = Int.

Let (X,TX) and (Y,TY) be L-topological spaces. A mapping f : X → Y is an L-continuous mapping,
if f←L (A) ∈ TX for any A ∈ TY. It is proved that a mapping f : X → Y is an L-continuous mapping iff
f→L (ClTX (A)) ≤ ClTY ( f→L (A)) for any A ∈ LX, or alternatively, f←L (IntTY (B)) ≤ IntTX ( f←L (B)) for any B ∈ LY. The
category of L-topological spaces and L-continuous mappings is denoted by L-TOP [23].

Definition 2.3. ([26]) A binary relation 2 on LX is called an L-topological enclosed relation and the pair
(X,2) is called an L-topological enclosed relation space, if 2 satisfies



X.Y. Wu et al. / Filomat 35:8 (2021), 2497–2516 2499

(LTER1) ⊥ 2 ⊥;
(LTER2) A 2 B implies A ≤ B;
(LTER3) A 2

∧
i∈I Bi iff A 2 Bi for all i ∈ I;

(LTER4) A 2 B implies some C ∈ LX with A 2 C 2 B;
(LTER5) A ∨ B 2 C iff A 2 C and B 2 C.

Let (X,2X) and (Y,2Y) be L-topological enclosed relation spaces. A mapping f : X → Y is called an
L-topological enclosed relation preserving mapping, if f←L (A) 2X f←L (B) for all A,B ∈ LY with A 2Y B. The
category of L-topological enclosed relation spaces and L-topological enclosed relation preserving mappings
is denoted by L-TERS [26].

Theorem 2.4. ([26]) (1) For an L-topological enclosed relation space (X,2), the operator Cl2 : LX
→ LX, defined by

Cl2(A) =
∧
{B ∈ LX : A 2 B} for any A ∈ LX, is an L-topological closure operator of some L-topology T2.

(2) For an L-topological space (X,T ), the binary operator 2T , defined by A 2T B iff ClT (A) ≤ B for all A,B ∈ LX,
is an L-topological enclosed relation.

(3) L-TOP is isomorphic to L-TERS.

Definition 2.5. ([26]) A binary relation4 on LX is called an L-topological internal relation and the pair (X,4)
is called an L-topological internal relation space, if 4 satisfies

(LTIR1) > 4 >;
(LTIR2) A 4 B implies A ≤ B;
(LTIR3)

∨
i∈I Ai 4 B iff Ai 4 B for all i ∈ I;

(LTIR4) A 4 B implies some C ∈ LX with A 4 C 4 B;
(LTIR5) A 4 B ∧ C iff A 4 B and A 4 C.

Let (X,4X) and (Y,4Y) be L-topological internal relation spaces. A mapping f : X → Y is called an
L-topological internal relation preserving mapping, if f←L (A) 4X f←L (B) for all A,B ∈ LY with A 4Y B. The
category of L-topological internal relation spaces and L-topological internal relation preserving mappings
is denoted by L-TIRS [26].

Theorem 2.6. ([26]) (1) For an L-topological internal relation space (X,4), the operator Int4 : LX
→ LX, defined by

Int4(A) =
∨
{B ∈ LX : B 4 A} for any A ∈ LX, is an L-topological interior operator of some L-topology T4.

(2) For an L-topological space (X,T ), the binary operator4T , defined by A 4T B iff A ≤ IntT (B) for all A,B ∈ LX,
is an L-topological internal relation.

(3) L-TOP is isomorphic to L-TIRS.

Definition 2.7. ([24]) (1) A mappingϕ : J(LX)→ LX is called a remote-neighborhood mapping, if xλ � ϕ(xλ)
for any xλ ∈ J(LX). The set of all remote-neighborhood mappings is denoted by R(LX). For ϕ,ψ ∈ R(LX),
ϕ � ψ ∈ R(LX) is defined by ϕ � ψ(xλ) =

∧
{ϕ(yµ) : yµ � ψ(xλ)} for any xλ ∈ J(LX).

(2) A pointwise L-quasi-uniformity on X is a subsetU ⊆ R(LX) satisfying the following conditions:
(LU1) ϕ ∈ R(LX), ψ ∈ U and ϕ ≤ ψ implies ϕ ∈ U;
(LU2) ϕ,ψ ∈ U implies ϕ ∨ ψ ∈ U;
(LU3) ϕ ∈ U implies an ψ ∈ U such that ϕ ≤ ψ � ψ.

Theorem 2.8. ([26]) LetU be a pointwise L-quasi-uniform on X.
(1) Define a binary relation 4U on X by A 4U B iff there is ϕ ∈ U such that B′ ≤

∧
xλ�A′ ϕ(xλ) for all A,B ∈ LX.

Then (X,4U) is an L-topological internal relation space.
(2) Define an another binary relation 2U on X by A 2U B iff there is ϕ ∈ U such that A ≤

∧
yµ�B ϕ(yµ) for all

A,B ∈ LX. Then (X,2U) is an L-topological enclosed relation space.

Definition 2.9. ([25]) A pointwise S-proximate on X is a mapping δ : J(LX) × LX
→ {⊥,>} satisfying

(SP1) δ(xλ,⊥) = ⊥ for any xλ ∈ J(LX);
(SP2) δ(xλ,B) = ⊥ implies xλ � B;
(SP3) δ(xλ,A ∨ B) = δ(xλ,A) ∨ δ(xλ,B);
(SP4) δ(xλ,B) = ⊥ implies some C ∈ LX such that δ(xλ,C) = ⊥ and δ(yµ,C) = ⊥ for any yµ � C.



X.Y. Wu et al. / Filomat 35:8 (2021), 2497–2516 2500

Theorem 2.10. ([26]) Let δ be a pointwise S-proximate on X.
(1) Define a binary relation 4δ on LX by A 4δ B iff δ(xλ,B′) = ⊥ for all A,B ∈ LX and xλ ∈ J(LX) with xλ � A′.

Then (X,4δ) is an L-topological internal relation space.
(2) Define an another binary relation 2δ on LX by A 2δ B iff δ(yµ,A) = ⊥ for all A,B ∈ LX and yµ ∈ J(LX) with

xλ � B. Then (X,2δ) is an L-topological enclosed relation space.

3. L-Topological Derived Internal Relation Spaces

In this section, we introduce notions of L-topological derived internal relation space and L-topological
derived interior space by which we characterize L-topological internal relation spaces and the category of
L-topological spaces.

Definition 3.1. A binary operator 6 on LX is called an L-topological derived internal relation and the pair
(X,6) is called an L-topological derived internal relation space, if for all A,B,C ∈ LX and xλ ∈ β∗(>),

(LTDIR1) > 6 >;
(LTDIR2) A 6 B iff xλ 6 B ∨ xλ for any xλ ∈ β∗(A);
(LTDIR3)

∨
i∈I Ai 6 B if and only if Ai 6 B for any i ∈ I;

(LTDIR4) A 6 B implies A ∧ B 6 C 6 B for some C ∈ LX with A ∧ B ≤ C;
(LTDIR5) A 6 B ∧ C if and only if A 6 B and A 6 C.

It directly follows from (LTDIR3) and (LTDIR5) that A 6 B for all A,B,C,D ∈ LX with A ≤ C 6 D ≤ B.
Let (X,6X) and (Y,6Y) be L-topological derived internal relation spaces. A mapping f : X→ Y is called

an L-topological derived internal relation preserving mapping, if for all A,B ∈ LY,

A 6Y B implies f←L (A ∧ B) 6X f←L (B).

The category of L-topological derived interval relation spaces and L-topological derived interval relation
preserving mappings is denoted by L-TDIRS. Next, we discuss the relations between L-topological derived
internal relation spaces and L-topological internal relation spaces.

Theorem 3.2. Let (X,6) be an L-topological derived internal relation space. Define a binary relation 46 on LX by

∀A,B ∈ LX, A 46 B ⇔ ∃C ∈ LX, C 6 B, A = B ∧ C.

Then (X,46) is an L-topological internal relation space.

Proof. We check that 46 satisfies (LTIR1)–(LTIR5).
(LTIR1). We have > 6 > and > ∧ > = > by (LTDIR1). Thus > 46 >.
(LTIR2). It directly follows from the definition.
(LTIR3). Let

∨
i∈I Ai 46 B. Then there is C ∈ LX such that C 6 B and

∨
i∈I Ai = B ∧ C. For any i ∈ I, we

have Ai ≤
∨

i∈I Ai 6 B. Thus Ai 6 B and Ai = B ∧ Ai. Hence Ai 46 B for any i ∈ I.
Conversely, assume that Ai 46 B for any i ∈ I. For any i ∈ I, there is a Ci ∈ LX such that Ci 6 B and

Ai = B ∧ Ci. Thus
∨

i∈I Ci 6 B by (LTDIR3). Further, we have∨
i∈I

Ai =
∨
i∈I

(B ∧ Ci) = B ∧
∨
i∈I

Ci.

Hence
∨

i∈I Ai 46 B.
(LTIR4). Let A 46 B. Then there is a D ∈ LX such that D 6 B and A = B ∧ D. By D 6 B and (LTDIR4),

there is a C ∈ LX such that A = D ∧ B 6 C 6 B and A ≤ C. Let E = B ∧ C. Then E 6 B and A ≤ E ≤ B. Thus
E 46 B. Further, by A ≤ C 6 B, we have A 6 B. Thus A 6 B∧C = E by (LTDER5). Hence A 46 E. Therefore
we conclude that A 46 E 46 B and A ∧ B ≤ E as desired.

(LTIR5). Let A 46 B∧C. Then there is a D ∈ LX such that D 6 B∧C and A = (B∧C)∧D. Let E = C∧D.
Then E ≤ D 6 B ∧ C ≤ B. Thus E 6 B and A = B ∧ E. Hence A 46 B. Similarly, let F = B ∧ D. Then
F ≤ D 6 B ∧ C ≤ C. Thus F 6 C and A = C ∧ F. Hence A 46 C.
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Conversely, assume that A 46 B and A 46 C. Then there are D,E ∈ LX such that D 6 B, E 6 C and
A = B ∧ D = C ∧ E. Thus D ∧ E 6 B and D ∧ E 6 C. Hence A = (B ∧ C) ∧ (D ∧ E) and D ∧ E 6 B ∧ C by
(LTDIR5). Therefore A 46 B ∧ C.

Theorem 3.3. Let (X,6X) and (Y,6Y) be L-topological derived internal relation spaces. If f : X → Y is an L-
topological derived internal relation preserving mapping, then f : (X,46X ) → (Y,46Y ) is an L-topological internal
relation preserving mapping.

Proof. If A 46Y B, then there is a C ∈ LY such that C 6Y B and A = B ∧ C. Thus f←L (C) ∧ f←L (B) 6X f←L (B)
and f←L (A) = f←L (C) ∧ f←L (B). Hence f←L (A) 46X f←L (B). Therefore f is an L-topological internal relation
preserving mapping.

Theorem 3.4. Let (X,4) be an L-topological internal relation space. Define a binary operator 64 on LX by

∀A,B ∈ LX, A 64 B ⇔ ∀xλ ∈ β∗(A), xλ 4 B ∨ xλ.

Then (X,64) is an L-topological derived internal relation space.

Proof. It is clear that A 64 B for any A,B,C,D ∈ LX with A ≤ C 64 D ≤ B. Next, we check that 64 satisfies
(LTDIR1)–(LTDIR5).

(LTDIR1). If xλ ∈ β∗(>), then xλ ≤ > 4 > = > ∨ xλ by (LTIR1). Thus xλ 4 >. Hence > 64 >.
(LTDIR2). Let A 64 B and let xλ ∈ β∗(A). To prove that xλ 64 B ∨ xλ, let xη ∈ β∗(xλ). Then xη ∈ β∗(A). By

A 64 B, we have

xη 4 B ∨ xη ≤ (B ∨ xλ) ∨ xη.

Thus xη 4 (B ∨ xλ) ∨ xη. Hence xλ 64 B ∨ xλ.
Conversely, assume that xλ 64 B ∨ xλ for any xλ ∈ β∗(A). Let xλ ∈ β∗(A). We check that xλ 4 B ∨ xλ.
By xλ 64 B ∨ xλ, we have xη 4 B ∨ xλ ∨ xη = B ∨ xλ for any xη ∈ β∗(xλ). Thus xλ =

∨
xη∈β∗(xλ) 4 B ∨ xλ by

(LTIR3). Hence A 64 B.
(LTDIR3). Let

∨
i∈I Ai 64 B. It is clear that Ai 64 B for any i ∈ I. Conversely, assume that Ai 64 B for any

i ∈ I. To prove that
∨

i∈I Ai 64 B, let xλ ∈ β∗(
∨

i∈I Ai). Then there is an i ∈ I such that xλ ∈ β∗(Ai). By Ai 64 B,
we have xλ 4 B ∨ xλ. Therefore

∨
i∈I Ai 64 B.

(LTDIR4). Let A 64 B. We need to find some E ∈ LX such that A ∧ B 64 E 64 B and A ∧ B ≤ E.
If A ∧ B = ⊥, then it is easy to check that E = A satisfies the requirement. Assume that A ∧ B , ⊥. Let

D =
∨
{F ∈ LX : F 64 B}

and let E = D ∧ B. Then A ∧ B ≤ E. In addition, D 64 B by (LTDIR3). Thus E ≤ D 64 B and so E 64 B. To
prove that A ∧ B 64 E, we check that yη 4 E ∨ yη for any yη ∈ β∗(A ∧ B).

Let yη ∈ β∗(A∧B). By A 64 B, we have yη 4 B∨ yη = B. By (LTIR4), there is a C ∈ LX such that yη 4 C 4 B.
Thus yη ≤ C ≤ B by (LTIR2). For any zθ ∈ β∗(C), we have zθ ≤ C 4 B ≤ B∨ zθ which implies that zθ 4 B∨ zθ.
Hence C 64 B and so C ≤ D. Further, we have yη 4 D and yη ≤ D by yη 4 C. Notice that yη 4 B and yη 4 D.
By (LTIR5), we have yη 4 E = E ∨ yη. By the arbitrariness of yη ∈ β∗(A ∧ B), we have A ∧ B 64 E. Therefore
A ∧ B 64 E 64 B and A ∧ B ≤ E as desired.

(LTDIR5). Let A 64 B ∧ C. For any xλ ∈ β∗(A), we have

xλ 4 (B ∧ C) ∨ xλ = (B ∨ xλ) ∧ (C ∨ xλ).

Thus xλ 4 B ∨ xλ and xλ 4 C ∨ xλ by (LTIR5). Hence A 64 B and A 64 C.
Conversely, let A 64 B and A 64 C. Ifxλ ∈ β∗(A), then xλ 4 B ∨ xλ and xλ 4 C ∨ xλ. By (LTIR5), we have

xλ 4 (B ∨ xλ) ∧ (C ∨ xλ) = (B ∧ C) ∨ xλ.

Therefore A 64 B ∧ C.
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Theorem 3.5. Let (X,4X) and (Y,4Y) be L-topological internal relation spaces. If f : X → Y is an L-topological
internal relation preserving mapping, then f : (X,64X ) → (Y,64Y ) is an L-topological derived internal relation
preserving mapping.

Proof. Let A 64Y B. If f←L (A ∧ B) = ⊥, then f←L (A ∧ B) 64X f←L (B) is trivial. Assume that f←L (A ∧ B) , ⊥. If
xλ ∈ β∗( f←L (A ∧ B)), then f→L (xλ) ∈ β∗(A ∧ B). Thus f→L (xλ) 4Y B ∨ f→L (xλ) and

xλ ≤ f←L ( f→L (xλ)) 4X f←L (B) ∨ f←L ( f→L (xλ)) ≤ f←L (B) ∨ f←L (A ∧ B) = f←L (B).

Hence xλ 4X f←L (B) and so f←L (A∧ B) 4X f←L (B) by (LTIR3). Therefore f is an L-topological derived internal
relation preserving mapping.

Theorem 3.6. We have 464=4 for any L-topological interval relation space (X,4) and 646=6 for any L-topological
derived internal relation space (X,6).

Proof. Let (X,4) be an L-topological internal relation space. If A 464 B, then A ≤ B by (LTIR2). In addition,
there is a C ∈ LX such that C 64 B and A = B∧C. Thus A 64 B. By A 64 B, we have xλ 4 B∨ xλ = B for any
xλ ∈ β∗(A). By (LTIR3), we have A =

∨
xλ∈β∗(A) xλ 4 B.

Conversely, if A 4 B then A ≤ B by (LTIR2). For any xλ ∈ β∗(A), we have xλ ≤ A 4 B. Thus xλ 4 B = B∨xλ.
Hence A 64 B. Since A ∧ B = A, we have A 464 B.

In conclusion, for all A,B ∈ LX, we have A 464 B iff A 4 B. That is, 464=4.
Let (X,6) be an L-topological derived internal relation space. Let A 646 B and let xλ ∈ β∗(A). By A 646 B,

we have xλ 46 B∨xλ. Thus there is a Cxλ ∈ LX such that Cxλ 6 B and xλ = (B∨xλ)∧Cxλ . Hence, by (LTDIR3),

A =
∨

xλ∈β∗(A)

xλ =
∨

xλ∈β∗(A)

[(B ∨ xλ) ∧ Cxλ ] ≤
∨

xλ∈β∗(A)

[(B ∨ A) ∧ Cxλ ] = (B ∨ A) ∧
∨

xλ∈β∗(A)

Cxλ ≤
∨

xλ∈β∗(A)

Cxλ 6 B.

From this result, we conclude that A 6 B.
Conversely, assume that A 6 B. If xλ ∈ β∗(A), then xλ ≤ A 6 B ≤ B ∨ xλ. Thus xλ 6 B ∨ xλ. By this result

and xλ = xλ ∧ (B ∨ xλ), we have xλ 46 B ∨ xλ. Hence A 646 B.
In conclusion, for all A,B ∈ LX, we have A 646 B iff A 6 B. That is, 646=6.

Based on Theorems 3.2 and 3.3, we obtain a functor U : L-TIERS→ L-TIRS defined by

U((X,6)) = (X,46), U( f ) = f .

Based on Theorems 3.2–3.6, U is an isomorphic functor. Thus we have the following conclusion.

Theorem 3.7. The category L-TDIRS is isomorphic to the category L-TIRS.

To simply characterize L-TDIRS, we introduce L-topological derived interior space as follows.

Definition 3.8. A subset I ⊆ LX is called an L-topological derived interior operator on X and the pair (X,I)
is called an L-topological derived interior space if for all A,B ∈ LX and any xλ ∈ β∗(>),

(LTDInt1) I(>) = >;
(LTDInt2) A ≤ I(B) if and only if xλ ≤ I(B ∨ xλ) for any xλ ∈ β∗(A);
(LTDInt3) A ∧ I(A) ≤ I(I(A));
(LTDInt4) I(A ∧ B) = I(A) ∧ I(B).

Let (X,IX) and (Y,IY) be L-topological derived interior spaces. A mapping f : X → Y is called an
L-topological derived interior preserving mapping, if f←L (IY(B) ∧ B) ≤ IX( f←L (B)) for any B ∈ LY.

The category of L-topological derived interior spaces and L-topological derived interior preserving
mappings is denoted by L-TDINTS.
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Theorem 3.9. Let (X,I) be an L-topological derived internal space. Define a binary operator 6I on LX by

∀A,B ∈ LX, A 6I B ⇔ A ≤ I(B).

Then (X,6I) is an L-topological derived internal relation space.

Proof. We check that 6I satisfies (LTDIR1)–(LTDIR5).
(LTDIR1). We have I(>) = > by (LTDInt1). Thus > 6I >.
(LTDIR2). It directly follows from (LTDInt2).
(LTDIR3). If

∨
i∈I Ai 6I B then A j ≤

∨
i∈I Ai ≤ I(B) for any j ∈ I. Thus A j 6I B for any j ∈ I. Conversely,

assume that Ai 6I B for any i ∈ I. Then Ai ≤ I(B) for any i ∈ I. Hence
∨

i∈I Ai ≤ I(B). Therefore
∨

i∈I Ai 6I B.
(LTDIR4). Let A 6I B and let E = B ∧ I(B). We have E 6I E by (LTDInt3) and (LTDInt4). Also, we have

A ≤ I(B) by A 6I B. Thus A ∧ B ≤ E ≤ I(E). Hence A ∧ B 6I E. Further, we have E 6I B by E ≤ I(B).
Therefore A ∧ B 6I E 6I B and A ∧ B ≤ E as desired.

(LTDIR5). By (LTDInt4), we have I(A ∧ B) = I(A) ∧ I(B). Thus the desired result is clear.

Theorem 3.10. Let (X,IX) and (Y,IY) be L-topological derived interior spaces. If f : X → Y is an L-topological
derived interior preserving mapping, then f : (X,6IX ) → (Y,6IY ) is an L-topological derived internal relation
preserving mapping.

Proof. If A 6IY B then A ≤ IY(B). Thus f←L (A) ≤ f←L (IY(B)) and

f←L (A ∧ B) = f←L (A) ∧ f←L (B) ≤ f←L (IY(B)) ∧ f←L (B) = f←L (IY(B) ∧ B) ≤ IX( f←L (B)).

So f←L (A ∧ B) 6IX f←L (B). Hence f is an L-topological derived internal relation preserving mapping.

Theorem 3.11. Let (X,6) be an L-topological derived internal relation space. Define an operator I6 : LX
→ LX by

∀A ∈ LX, I6(A) =
∨
{B ∈ LX : B 6 A}.

Then (X,I6) is an L-topological derived interior space.

Proof. (LTDInt1). We have > ≤ I6(>) by (LTDIR1). Thus I6(>) = >.
(LTDInt2). Let A ≤ I6(B). If xλ ∈ β∗(A), then xλ ≺ I6(B). Thus there is a D ∈ LX such that xλ ≤ D and

D 6 B. Hence xλ ≤ D 6 B ≤ B ∨ xλ followed by xλ 6 B ∨ xλ. Therefore xλ ≤ I6(B ∨ xλ).
Conversely, let xλ ≤ I6(B ∨ xλ) for any xλ ∈ β∗(A). To prove that A ≤ I6(B), let xλ ∈ β∗(A). Then

xλ ≤ I6(B ∨ xλ). For any xη ∈ β∗(xλ), we have xη ≺ I6(B ∨ xλ). Thus there is a D ∈ LX such that
xη ≺ D 6 B ∨ xλ. Hence xη 6 B ∨ xλ followed by xλ 6 B ∨ xλ. By (LTDIR2), we have A 6 B. So A ≤ I6(B).

(LTDInt3). Let xλ ∈ β∗(A ∧ I6(A)). By (LTDIR3), we have I6(A) 6 A. By xλ ≺ I6(A), there is a D ∈ LX

such that xλ ≤ D 6 A. By D 6 A, there is a C ∈ LX such that D ∧ A 6 C 6 A and xλ ≤ D ∧ A ≤ C. Further,
since C 6 A, we have C ≤ I6(A). Thus D∧A 6 I6(A) which implies that xλ ≤ D∧A ≤ I6(I6(A)). Therefore
A ∧ I6(A) ≤ I6(I6(A)).

(LTDInt4). Clearly, I6(A∧B) ≤ I6(A)∧I6(B). Conversely, let xλ ∈ β∗(I6(A)∧I6(B)). By xλ ∈ β∗(I6(A)),
there is a C ∈ LX such that xλ ≤ C 6 A. Similarly, by xλ ∈ β∗(I6(B)), there is a D ∈ LX such that xλ ≤ D 6 B.
Thus xλ ≤ C ∧ D. By (LTDIR5), we have xλ ≤ C ∧ D 6 A ∧ B. Hence xλ ≤ C ∧ D ≤ I6(A ∧ B). Therefore
I6(A) ∧ I6(B) ≤ I6(A ∧ B).

Theorem 3.12. Let (X,6X) and (Y,6Y) be L-topological derived internal relation spaces. If f : X → Y is an L-
topological derived internal relation preserving mapping, then f : (X,I6X ) → (Y,I6Y ) is an L-topological derived
interior preserving mapping.

Proof. Let B ∈ LY. To prove that f←L (I6Y (B) ∧ B) ≤ I6X ( f←L (B)), let xλ ∈ β∗( f←L (I6Y (B) ∧ B)). Then f→L (xλ) ≺
I6Y (B) ∧ B. By f→L (xλ) ≺ I6Y (B), there is a D ∈ LX such that f→L (xλ) ≤ D 6Y B. Thus

xλ ≤ f←L (D) ∧ f←L (B) = f←L (D ∧ B) 6X f←L (B).

Hence xλ ≤ IX( f←L (B)) and so f←L (I6Y (B)∧B) ≤ I6X ( f←L (B)). Therefore f is an L-topological derived interior
preserving mapping.
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Theorem 3.13. We haveI6I = I for any L-topological derived interior space (X,I) and6I6=6 for any L-topological
derived internal relation space (X,6).

Proof. Let (X,I) be an L-topological derived interior space and A ∈ LX. For any D ∈ LX with D 6I A, we
have D ≤ I(A). Thus

I6I (A) =
∨
{D ∈ LX : D 6I A} ≤ I(A).

Conversely,I(A) 6I A byI(A) ≤ I(A). ThusI(A) ≤ I6I (A). HenceI6I (A) = I(A) followed byI6I = I.
Let (X,6) be an L-topological derived internal relation space. If A 6 B then A ≤ I6(B). Thus A 6I6 B.

Conversely, if A 6I6 B, then A ≤ I6(B). For any xλ ∈ β∗(A), we have xλ ≺ I6(B). Thus there is an E ∈ LX

such that xλ ≤ E 6 B. Hence xλ 6 B ∨ xλ. By (LTDIR2), we have A 6 B.
In conclusion, we have A 6 B if and only if A 6I6 B. That is, 6I6=6.

Based on Theorems 3.11 and 3.12, we obtain a functor W : L-TDIRS→ L-TDINTS by

W((X,6)) = (X,I6), W( f ) = f .

Based on Theorems 3.9–3.13, W is an isomorphic functor. Thus we have the following result.

Theorem 3.14. The category L-TDIRS is isomorphic to the category L-TDINTS.

Now, we characterize L-topological spaces by L-topological derived internal relation spaces.

Theorem 3.15. Let (X,T ) be an L-topological space. Define a binary relation 6T on LX by

∀A,B ∈ LX, A 6T B ⇔ ∀xλ ∈ β∗(A), xλ ≤ IntT (B ∨ xλ).

Then (X,6T ) is an L-topological derived internal relation space.

Proof. By definition, it is clear that A 6T B for all A,B,C,D ∈ LX with A ≤ C 6T D ≤ B. Next, we check that
6T satisfies (LTDIR1)–(LTDIR5).

(LTDIR1). For any xλ ∈ β∗(>), we have xλ ≤ > = IntT (> ∨ xλ) by (LInt1). Thus > 6T >.
(LTDIR2). Let A 6T B and xλ ∈ β∗(A). To prove that xλ 6T B ∨ xλ, let xη ∈ β∗(xλ). Then xη ∈ β∗(A). By

A 6T B, we have

xη ≤ IntT (B ∨ xη) ≤ IntT ((B ∨ xλ) ∨ xη).

Thus xλ 6T B ∨ xλ. Conversely, let xλ 6T B ∨ xλ for any xλ ∈ β∗(A). If xλ ∈ β∗(A), then xλ 6T B ∨ xλ. Hence

xλ =
∨

xη∈β∗(xλ)

xη ≤
∨

xη∈β∗(xλ)

IntT ((B ∨ xλ) ∨ xη) = IntT (B ∨ xλ).

Therefore A 6T B.
(LTDIR3). Let

∨
i∈I Ai 6T B. It is clear that Ai 6T B. Conversely, assume that Ai 6T B for any i ∈ I. For

any yµ ∈ β∗(
∨

i∈I Ai) =
∨

i∈I β
∗(Ai), there is an i ∈ I such that xλ ∈ β∗(Ai). Hence xλ ≤ IntT (B ∨ xλ) by Ai 6T B.

Therefore
∨

i∈I Ai 6T B.
(LTDIR4). Let A 6T B and let C = IntT (B). For any xλ ∈ β∗(C), we have xλ ≤ C ≤ IntT (B ∨ xλ). Thus

C 6T B. For any yµ ∈ β∗(A ∧ B), we have yµ ∈ β∗(A). By A 6T B, we have

yµ ≤ IntT (B ∨ yµ) = IntT (B) = IntT (IntT (B)) = IntT (C) ≤ IntT (C ∨ yµ).

Hence A ∧ B 6T C 6T B. In addition, since yµ ≤ IntT (C) ≤ C for any yµ ∈ β∗(A ∧ B), we have A ∧ B ≤ C.
Therefore C = IntT (B) satisfies the requirement.

(LTDER5). If A 6T B ∧ C, then it is clear that A 6T B and A 6T C. Conversely, assume that A 6T B and
A 6T C. For any xλ ∈ β∗(A), we have

xλ ≤ IntT (B ∨ xλ) ∧ IntT (C ∨ xλ) = IntT ((B ∨ xλ) ∧ (C ∨ xλ)) = IntT ((B ∧ C) ∨ xλ).

Thus A 6T B ∧ C.
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Theorem 3.16. Let (X,TX) and (Y,TY) be L-topological spaces. If f : X → Y is an L-continuous mapping, then
f : (X,6TX )→ (Y,6TY ) is an L-topological derived internal relation preserving mapping.

Proof. Let A 6TY B. To prove that f←L (A ∧ B) 6TX f←L (B), let xλ ∈ β∗( f←L (A ∧ B)). Then f→L (xλ) ∈ β∗(A ∧ B). By
A 6TY B, we have f→L (xλ) ≤ IntTY (B ∨ f→L (xλ)) ≤ IntTY (B). Thus

xλ ≤ f←L (IntTY (B)) ≤ IntTX ( f←L (B)) = IntTX ( f←L (B) ∨ xλ).

Hence f←L (A ∧ B) 6TX f←L (B). So f is an L-topological derived internal relation preserving mapping.

Theorem 3.17. Let (X,6) be an L-topological derived internal relation space. Define an operator Int6 : LX
→ LX by

∀A ∈ 2X, Int6(A) = A ∧
∨
{B ∈ LX : B 6 A}.

Then Int6 is an L-topological interior operator which induces an L-topology denoted by T6.

Proof. We check that Int6 satisfies (LInt1)–(LInt4).
(LInt1). We have > 6 > by (LTDIR1). Thus > ∧ > = > ≤ Int6(>) which shows that Int6(>) = >.
(LInt2). It is clear that Int6(A) ≤ A.
(LInt3). Clearly, Int6(Int6(A)) ≤ Int6(A). To prove that Int6(A) ≤ Int6(Int6(A)), let xλ ∈ β∗(Int6(A)).

Then xλ ∈ β∗(A) and there is a B ∈ LX such that xλ ≺ B 6 A. By (LTDIR4), there is a C ∈ LX such that
A∧ B 6 C 6 A and A∧ B ≤ C. Thus A∧C ≤ Int6(A). Further, by A∧ B ≤ C 6 A, we have A∧ B 6 A. Hence
A ∧ B 6 A ∧ C ≤ Int6(A) by (LTDIR5). So A ∧ B 6 Int6(A) followed by

xλ ≤ A ∧ B ≤ Int6(Int6(A)).

This shows that Int6(A) ≤ Int6(Int6(A)). Therefore Int6(Int6(A)) = Int6(A).
(LInt4). It is clear that Int6(A ∧ B) ≤ Int6(A) ∧ Int6(B). Conversely, let xλ ≺ Int6(A) ∧ Int6(B). By

xλ ≺ Int6(A)), there is a C ∈ LX such that xλ ≤ C 6 A. Similarly, by xλ ≤ Int6(B), there is a D ∈ LX such that
xλ ≤ D 6 B. Thus C ∧D 6 A and C ∧D 6 B. Hence C ∧D 6 A ∧ B by (LTDIR5). Hence

xλ ≤ A ∧ C ∧D ≤ Int6(A ∧ B).

Therefore Int6(A) ∧ Int6(B) ≤ Int6(A ∧ B).

Theorem 3.18. Let (X,6X) and (Y,6Y) be L-topological derived internal relation spaces. If f : X → Y is an L-
topological derived internal relation preserving mapping, then f : (X,T6X )→ (Y,T6Y ) is an L-continuous mapping.

Proof. If B ∈ T6Y then B = Int6Y (B). To prove the desired result, we verify that f←L (B) = Int6Y ( f←L (B)).
It is clear that Int6Y ( f←L (B)) ≤ f←L (B). To prove that f←L (B) ≤ Int6Y ( f←L (B)), let xλ ∈ β∗( f←L (B)). Then

f→L (xλ) ≺ B = Int6Y (B). Thus there is a D ∈ LX such that f→L (xλ) ≺ D 6Y B. Hence xλ ≤ f←L (D ∧ B) 6X f←L (B)
which implies that xλ ≤ IntTX ( f←L (B)). Thus f←L (B) ≤ IntTX ( f←L (B)) and so f←L (B) = IntTX ( f←L (B)). This implies
that f←L (B) ∈ TTX . Therefore f is an L-continuous mapping.

Theorem 3.19. We have T6T = T for any L-topological space (X,T ) and 6T6=6 for any L-topological derived
internal relation space (X,6).

Proof. Let (X,T ) be an L-topological space. If A ∈ T6T then A = Int6T (A). Let

D =
∨
{B ∈ LX : B 6T A}.

Then A = Int6T (A) = A ∧ D and A ≤ D 6T A by (LTDIR3). For any xλ ∈ β∗(A), we have xλ ∈ β∗(D). In
addition, xλ ≤ IntT (A∨ xλ) = IntT (A) by D 6T A. Thus A ≤ IntT (A) which implies that A = IntT (A). Hence
A ∈ T . Therefore T6T ⊆ T .

Conversely, let A ∈ T . If xλ ∈ β∗(A), then xλ ≤ A = IntT (A) = IntT (A ∨ xλ). Thus A 6T A followed by

A ≤ A ∧
∨
{B ∈ LX : B 6T A} = Int6T (A).
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Hence A = Int6T (A) which shows that A ∈ T6T . Therefore T ⊆ T6T . In conclusion, we have T6T = T .
Let (X,6) be an L-topological derived internal relation space. Let A 6T6 B. For any xλ ∈ β∗(A), we have

xλ ≤ IntT6 (B ∨ xλ) = Int6(B ∨ xλ) ≤
∨
{D ∈ LX : D 6 B ∨ xλ}.

For any xη ∈ β∗(xλ), there is D ∈ LX such that xη ≺ D 6 B∨xλ. Hence xη 6 B∨xλ and xλ =
∨

xη∈β∗(xλ) xη 6 B∨xλ
by (LTDIR3). Therefore A 6 B by (LTDIR2).

Conversely, let A 6 B. For any x ∈ β∗(A), we have xλ ≤ A 6 B ≤ B ∨ xλ. Thus xλ 6 B ∨ xλ and

xλ ≤ (B ∨ xλ) ∧
∨
{D ∈ LX : D 6 B ∨ xλ} = Int6(B ∨ xλ) = IntT6 (B ∨ xλ).

Hence A 6T6 B.
In conclusion, for any A,B ∈ LX, we have A 6T6 B iff A 6 B. That is, 6T6=6.

Based on Theorems 3.17 and 3.18, we obtain a functor V : L-TDIRS→ L-TOP defined by

V((X,6)) = (X,T6), V( f ) = f .

Based on Theorems 3.15–3.19, V is an isomorphic functor. Thus we have the following conclusion.

Theorem 3.20. The category L-TDIRS is isomorphic to the category L-TOP.

Based on Theorems 3.9–3.19, relations between L-topological derived interior spaces and L-topological
spaces can be presented as follows.

Corollary 3.21. (1) Let (X,I) be an L-topological derived interior space. Define an operator IntI : LX
→ LX by

∀A ∈ LX, IntI(A) = A ∧ I(A).

Then IntI is an L-topological interior operator of an L-topological space (X,TI);
(2) Let (X,T ) be an L-concave space. Define an operator IT : LX

→ LX by

∀A ∈ LX, IT (A) =
∨
{B ∈ LX : ∀xλ ∈ β∗(B), xλ ≤ IntT (A ∨ xλ)}.

Then (X,IT ) is an L-topological derived interior space;
(3) The category L-TDINTS is isomorphic to the category L-TOP.

At the end of this section, by Theorem 3.4, we present two examples to show that an L-quasi-uniform
space or an L-S-quasi-proximate space generates an L-topological derived internal relation space.

Example 3.22. Let (X,U) be an L-quasi-uniform space. Define a binary relation 6U on LX by

∀A,B ∈ 2X, A 6U B ⇔ ∀xλ ∈ β∗(A), ∃ϕ ∈ U, (B ∨ xλ)′ ≤
∧
µ�λ′

ϕ(xµ).

For all A,B ∈ LX, it is easy to check that

A 6U B⇔ ∀xλ ∈ β∗(A), xλ 4U B ∨ xλ ⇔ A 64U B.

Thus 6U=64U . Hence (X,6U) is an L-topological derived internal relation space.

Example 3.23. Let (X, δ) be a S-quasi-proximate space. Define a binary relation 6δ on LX by

∀A,B ∈ LX, A 6δ B ⇔ ∀xλ ∈ β∗(A),
∨
µ�λ′

δ(xµ, (B ∨ xλ)′) = ⊥.

For all A,B ∈ LX, it is easy to check that

A 6δ B⇔ ∀xλ ∈ β∗(A), xλ 4δ B ∨ xλ ⇔ A 64δ B.

Thus 6δ=64δ . Hence (X,6δ) is an L-topological derived internal relation space.
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4. L-Topological Derived Enclosed Relation Spaces

In this section, we introduce the notion of L-topological derived enclosed relations by which we char-
acterize the category of L-topological enclosed relation spaces and the category L-topological spaces. For
this, we introduce the following notions.

For A ∈ LX and xλ ∈ β∗(>), we denote Axλ =
∨
{yµ ∈ β∗(A) : xλ � yµ} and β∗λ(L) = {µ ∈ β∗(>) : λ ∈ β∗(µ)}.

For convenience, we denote yη �∗ A for any yη ∈ β∗(>) with yη � A. We have the following results.

Proposition 4.1. For all xλ, yη ∈ β∗(>), A ∈ LX and {Ai}i∈I ⊆ LX, we have
(1) xλ �∗ A implies Axλ = A;
(2) A ≤ B implies Axλ ≤ Bxλ ;
(3) (Axλ )xλ = Axλ ;
(4) µ ∈ β∗λ(L) implies Axλ ≤ Axµ and (Axµ )xλ = (Axλ )xµ = Axλ ;
(5) yη � >xλ

iff x = y and η ∈ β∗λ(L);
(6) A =

∧
xλ�∗A>xλ

;
(7) (
∨

i∈I Ai)xλ =
∨

i∈I(Ai)xλ .

Proof. (1) and (2) are direct.
(3) We have (Axλ )xλ ≤ Axλ by (2). Conversely, for any zν ∈ β∗(>) with zν ≺ Axλ , there is a zµ ∈ β∗(A)

such that xλ � zµ and zν ≺ zµ. Thus zν ≺ zµ ≤ Axλ which implies that zν ∈ β∗(Axλ ). By xλ � zν, we have
zν ≤ (Axλ )xλ . Hence Axλ ≤ (Axλ )xλ . Therefore (Axλ )xλ = Axλ .

(4) For any µ ∈ β∗λ(L), it is clear that Axλ ≤ Axµ . Further, by (2) and (3), we have

Axλ = (Axλ )xλ ≤ (Axλ )xµ ≤ Axλ .

Thus (Axλ )xµ = Axλ . Similarly, we have Axλ = (Axλ )xλ ≤ (Axµ )xλ ≤ Axλ . Therefore (Axµ )xλ = Axλ .
(5) Assume that yη � >xλ

. Then there is a ν ∈ β∗(η) such that yν � >xλ
. Thus xλ ≤ yν. Hence x = y and

λ ≤ ν ≺ η. Therefore η ∈ β∗λ(L). Conversely, assume that η ∈ β∗λ(L) and x = y. Suppose that yη ≤ >xλ
. Then

xλ ≺ >xλ
. Thus there is an xθ ∈ β∗(>) such that xλ � xθ and xλ ≺ xθ. It is a contradiction. Therefore yη � >xλ

.
(6) For any zµ ∈ β∗(>) with zµ �

∧
xλ�∗A>xλ

, we have zµ � >xλ
for some xλ �∗ A. Since zµ � >xλ

, we have
z = x and µ ∈ β∗λ(L). Thus zµ � A. Hence A ≤

∧
xλ�∗A>xλ

.
Conversely, suppose that

∧
xλ�∗A>xλ

� A. Then there is a zν ∈ β∗(>) such that zν �∗ A and zν ≤
∧

xλ�∗A>xλ
.

By zν � A, there is a θ ∈ β∗(η) such that zθ �∗ A. Thus zθ ≺ zν ≤
∧

xλ�∗A>xλ
≤ >zθ

. It is a contradiction.
Therefore

∧
xλ�∗A>xλ

≤ A.
(7) We have (

∨
i∈I Ai)xλ =

∨
{yµ ∈

⋃
i∈I β

∗(Ai) : xλ � yµ} =
∨

i∈I(Ai)xλ .

Definition 4.2. A binary operator 0 on LX is called an L-topological derived enclosed relation and the pair
(X,0) is called an L-topological derived enclosed relation space, if for all A,B,C ∈ LX and xλ ∈ β∗(>),

(LTDER1) ⊥ 0 ⊥;
(LTDER2) A 0 B iff Axµ 0 >xλ

and Axµ ≤ >xλ
for any xλ �∗ B and any µ ∈ β∗λ(L);

(LTDER3) A 0
∧

i∈I Bi iff A 0 Bi for any i ∈ I;
(LTDER4) A 0 B implies A 0 C 0 A ∨ B for some C ≤ A ∨ B;
(LTDER5) A ∨ B 0 C iff A 0 C and B 0 C.

It directly follows from (LTDER3) and (LTDER5) that C 0 D for all A,B,C,D ∈ LX with C ≤ A 0 B ≤ D.
Let (X,0X) and (Y,0Y) be L-topological derived enclosed relation spaces. A mapping f : X→ Y is called

an L-topological derived enclosed relation preserving mapping if

A 0Y B implies f←L (A) 0X f←L (B) ∨ f←L (A)

The category of L-topological derived enclosed relation spaces and L-topological derived enclosed relation
preserving mappings is denoted by L-TDERS.

Now, we consider the relations between L-TDERS and L-TERS.
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Theorem 4.3. Let (X,0) be an L-topological derived enclosed relation space. Define a binary relation 20 on LX by

∀A,B ∈ LX, A 20 B ⇔ ∃C ∈ LX, A 0 C, A ∨ C = B.

Then (X,20) is an L-topological enclosed relation space.

Proof. We check that 20 satisfies (LTER1)–(LTER5).
(LTER1). We have ⊥ 0 ⊥ and ⊥ ∨ ⊥ = ⊥. Thus ⊥ 20 ⊥.
(LTER2). It directly follows from the definition.
(LTER3). If A 20

∧
i∈I Bi, then there is a C ∈ LX such that A 0 C and A ∨ C =

∧
i∈I Bi. Then A ∨ C ≤ Bi

for any i ∈ I. Thus A 0 Bi and A ∨ Bi = Bi. That is, A 20 Bi for any i ∈ I. Conversely, assume that A 20 B
for any i ∈ I. Then there is a Ci ∈ LX such that A 0 Ci and A ∨ Ci = Bi for any i ∈ I. By (LTDER3), we have
A 0
∧

i∈I Ci. In addition, we have

A ∨
∧
i∈I

Ci =
∧
i∈I

(A ∨ Ci) =
∧
i∈I

Bi.

Thus A 20
∧

i∈I Bi.
(LTER4). Let A 20 B. Then there is a D ∈ LX such that A 0 D and A ∨ D = B. By (LTDER4), there is

a C ≤ A ∨ D such that A 0 C 0 A ∨ D. Let E = A ∨ C. Then A 0 E and A ∨ E = E. Thus A 20 E. Further,
from A 0 A∨D and C 0 A∨D, we have E 0 A∨D by (LTDER5). In addition, E∨A∨D = B. Thus E 20 B.
Therefore E satisfies the requirement.

(LTER5). Let A ∨ B 20 C. Then there is a D ∈ LX such that A ∨ B 0 D and (A ∨ B) ∨ D = C. Thus
A 0 B ∨D and A ∨ B ∨D = C. Hence A 20 C. Similarly, we have B 0 A ∨D and B ∨ A ∨D = C. Therefore
B 20 C. Conversely, assume that A 20 C and B 20 C. Then there are D,E ∈ LX such that A 0 D, B 0 E,
A∨D = C and B∨E = C. Thus (A∨B)∨ (D∨E) = C. In addition, we have A 0 D∨E and B 0 D∨E. Hence
A ∨ B 0 D ∨ E by (LTDER5). Therefore A ∨ B 20 C.

Theorem 4.4. Let (X,0X) and (Y,0Y) be L-topological derived enclosed relation spaces. If f : X → Y is an L-
topological derived enclosed relation preserving mapping, then f : (X,20X ) → (Y,20Y ) is an L-topological enclosed
relation preserving mapping.

Proof. Let A 20Y B. Then there is a C ∈ LY such that A 0Y C and A ∨ C = B. Thus f←L (A) 0X f←L (A ∨ C) and

f←L (A) ∨ f←L (A ∨ C) = f←L (A ∨ B) = f←L (C).

Hence f←L (A) 20Y f←L (B). Therefore f is an L-topological enclosed relation preserving mapping.

Theorem 4.5. Let (X,2) be an L-topological enclosed relation space. Define a binary relation 02 on LX by

∀A,B ∈ LX, A 02 B ⇔ ∀xλ �∗ B,∀µ ∈ β∗λ(L), Axµ 2 >xλ
,

where xλ �∗ B implies that xλ ∈ β∗(>) and xλ � B. Then (X,02) is an L-topological derived enclosed relation space.

Proof. It is easy to check that A 02 B for any A,B,C,D ∈ LX with A ≤ C 02 D ≤ B. To prove the result, we
need to check that 02 satisfies (LTDER1)–(LTDER5).

(LTDER1). It directly follows from (LTER1) of 2.
(LTDER2). Let A 02 B, xλ �∗ B and µ ∈ β∗λ(L). We have B ≤ >xλ

by xλ � B. Thus Axµ ≤ A 02 B ≤ >xλ
which implies that Axµ 02 >xλ

. Further, by A 02 B, we have Axµ 2 >xλ
. Hence Axµ ≤ >xλ

by (LTER2).
Conversely, assume that Axµ 02 >xλ

and Axµ ≤ >xλ
for any xλ � B and any µ ∈ β∗λ(L). Suppose that

A 602 B. Then there are xλ � B and µ ∈ β∗λ(L) such that Axµ 62 >xλ
. Since µ ∈ β∗λ(L), we have xµ � >xλ

. Further,
by Axµ 02 >xλ

, we have Axµ = (Axµ )xµ 2 (>xλ
)xµ = >xλ

. It is a contradiction. Therefore A 02 B.
(LTDER3). If A 02

∧
i∈I Bi, then it is clear that A 02 Bi for any i ∈ I. Conversely, assume that A 02 Bi for

any i ∈ I. For any xλ �∗
∧

i∈I Bi, there is an i ∈ I such that xλ �∗ Bi. By A 02 Bi, we have Axµ 2 >xλ
for any

µ ∈ β∗λ(L). Therefore A 02
∧

i∈I Bi.
(LTDER4). Let A 02 B. We need to find some E ∈ LX such that A 02 E 02 (A ∨ B) and E ≤ A ∨ B.
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Let D =
∧
{F ∈ LX : A 02 F} and let E = A ∨D. Then E ≤ A ∨ B and A 02 D by (LTDER3). This further

implies that A 02 E. To prove that E 02 A ∨ B, let xλ �∗ A ∨ B. We prove that Exµ 2 >xλ
for any µ ∈ β∗λ(L).

By A 02 B, we have Axµ 2 >xλ
. By (LTER4), there is a C ∈ LX such that Axµ 2 C 2 >xλ

. Thus Axµ ≤ C ≤ >xλ
by (LTER2). For any zη � C and any θ ∈ β∗η(L), we have

Azθ = A 2 C = Czη ≤ >zη .

Hence A 02 C and D ≤ C 2 >xλ
followed by D 2 >xλ

. By (LTER5), we have

Exµ = Axµ ∨Dxµ ≤ Axµ ∨D 2 >xλ

This implies that Exµ 2 >xλ
. Therefore E 02 A ∨ B. That is, we have E satisfies the requirement.

(LTDER5). If A∨B 02 C then A 02 C and B 02 C are clear. Conversely, assume that A 02 C and B 02 C.
Let xλ �∗ C and µ ∈ β∗λ(L). By A 02 C and B 02 C, we have Axµ 2 >xλ

and Bxµ 2 >xλ
. By (LTER5), we have

A ∨ Bxµ = Axµ ∨ Bxµ = (A ∨ B)xµ 2 >xλ
.

Hence A ∨ B 02 C.

Theorem 4.6. Let (X,2X) and (Y,2Y) be L-topological enclosed relation spaces. If f : X → Y is an L-topological
enclosed relation preserving mapping, then f : (X,02X ) → (Y,02Y ) is an L-topological derived enclosed relation
preserving mapping.

Proof. Let A 02Y B. To prove that f←L (A) 02X f←L (A∨B), let xλ �∗ f←L (A∨B) andµ ∈ β∗λ(L). Then f (x)µ �∗ A∨B.
By A 02Y B, we have A = A f (x)µ 2Y > f (x)λ

. Thus

f←L (A)xµ = f←L (A) 2X f←L (> f (x)λ
) ≤ >xλ

.

Hence f←L (A) 02X f←L (A ∨ B). So f is an L-topological derived enclosed relation preserving mapping.

Theorem 4.7. We have 020=0 for any L-topological derived enclosed relation space (X,0) and 202=2 for any
L-topological enclosed relation space (X,2).

Proof. Let (X,2) be an L-topological enclosed relation space. If A 202 B, then there is a C ∈ LX such that
A 02 C and A ∨ C = B. Thus A 02 B and A ≤ B. By A 02 B, we have A = Axµ 2 >xλ

for any xλ �∗ B and
µ ∈ β∗λ(L). Hence A 2

∧
xλ�∗B>xλ

= B by (LTER3). That is, A 2 B holds.
Conversely, if A 2 B then A ≤ B by (LTER2). For any xλ �∗ B and µ ∈ β∗λ(L), we have Axµ = A 2 B ≤ >xλ

.
Thus Axµ 2 >xλ

. Hence A 02 B by (LTDER2). Further, by A 02 B and A ∨ B = B, we have A 202 B.
In conclusion, for all A,B ∈ LX, we have A 202 B if and only if A 2 B. That is, 202=2.
Let (X,0) be an L-topological derived enclosed relation space. Let A 020 B. If xλ �∗ B and µ ∈ β∗λ(L),

we have Axµ 20 >xλ
. Thus there is a C ∈ LX such that Axµ 0 C and Axµ ∨ C = >xλ

. Hence Axµ 0 >xλ
and

Axµ ≤ >xλ
. Therefore A 0 B by (LTDER2).

Conversely, let A 0 B. To prove that A 020 B, let xλ �∗ B and µ ∈ β∗λ(L). We need to prove that Axµ 20 >xλ
.

Actually, by A 0 B ≤ >xλ
, we have Axµ 0 >xλ

and Axµ ≤ >xλ
by (LTDER2). In addition, by Axµ∨>xλ

= >xλ
,

we have Axµ 20 >xλ
. Therefore A 020 B

In conclusion, for all A,B ∈ 2X, we have A 020 B iff A 0 B. That is, 020=0.

Based on Theorems 4.3 and 4.4, we obtain a functor F : L-TDERS→ L-TERS defined by

F((X,0)) = (X,20), F( f ) = f .

Based on Theorems 4.3–4.7, we find thatF is an isomorphic functor. Thus we have the following conclusion.

Theorem 4.8. The category L-TDERS is isomorphic to the category L-TERS.

To simply characterize L-topological derived enclosed relation spaces, we introduce the following notion.
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Definition 4.9. An operatorD : LX
→ LX is called an L-topological derived closure operator on X and the

pair (X,D) is called an L-topological derived closure space if for all A,B ∈ LX and any xλ ∈ β∗(>),
(LTDCl1)D(⊥) = ⊥;
(LTDCl2)D(A) ≤ B iff

∨
µ∈β∗λ(L)(D(Axµ ) ∨ Axµ ) ≤ >xλ

for any xλ �∗ B;
(LTDCl3)D(D(A)) ≤ D(A) ∨ A;
(LTDCl4)D(A ∨ B) = D(A) ∨D(B).

Let (X,DX) and (Y,DY) be L-topological derived closure spaces. A mapping f : X → Y is called an
L-topological derived closure preserving mapping, if f→L (DX(A)) ≤ DY( f→L (A)) ∨ f→L (A) for any A ∈ LX.

The category of L-topological derived closure spaces and L-topological derived closure preserving
mappings is denoted by L-TDCLS.

Theorem 4.10. Let (X,D) be an L-topological derived closure operator space. Define a binary operator 0D on X by

∀A,B ∈ LX, A 0D B ⇔ D(A) ≤ B.

Then (X,0D) is an L-topological derived enclosed relation space.

Proof. (LTDER1). We haveD(⊥) = ⊥ by (LTDCl1). Thus ⊥ 0D ⊥.
(LTDER2). It directly follows from (LTDCl2).
(LTDER3). If A 0D

∧
i∈I Bi thenD(A) ≤

∧
i∈I Bi ≤ B j for any j ∈ I. Thus A 0D B j for any j ∈ I. Conversely,

if A 0D Bi for any i ∈ I, thenD(A) ≤ Bi. ThusD(A) ≤
∧

i∈I Bi which implies that A 0D
∧

i∈I Bi.
(LTDER4). Let A 0D B and let E = D(A) ∨ A. We have E 0D E by (LTDCl3) and (LTDCl4). Also, we

have D(A) ≤ B and E ≤ A ∨ B by A 0D B. In addition, A 0D E by D(A) ≤ E. Therefore A 0D E 0D A ∨ B
and E ≤ A ∨ B as desired.

(LTDER5). By (LTDCl4), we haveD(A ∨ B) = D(A) ∨D(B). Thus (LTDER5) holds trivially for 0D.

Theorem 4.11. Let (X,DX) and (Y,DY) be L-topological derived closure spaces. If f : X → Y is an L-topological
derived preserving mapping, then f : (X,0DX ) → (Y,0DY ) is an L-topological derived enclosed relation preserving
mapping.

Proof. If A 0DY B thenDY(A) ≤ B. Thus

f→L (DX( f←L (A))) ≤ f→L ( f←L (A)) ∨DY( f→L ( f←L (A))) ≤ A ∨DY(A) ≤ A ∨ B.

HenceDX( f←L (A)) ≤ f←L (A ∨ B) = f←L (A) ∨ f←L (B) followed by f←L (A) 0DX f←L (A) ∨ f←L (B). Therefore f is an
L-topological derived enclosed relation preserving mapping.

Theorem 4.12. Let (X,0) be an L-topological derived enclosed relation space. Define an operatorD0 : LX
→ LX by

∀A ∈ LX, D0(A) =
∧
{B ∈ LX : A 0 B}.

Then (X,D0) is an L-topological derived closure space.

Proof. (LTDCl1). We haveD0(⊥) ≤ ⊥ by (LTDER1). ThusD0(⊥) = ⊥.
(LTDCl2). IfD0(A) ≤ B then A 0 D0(A) ≤ B which implies A 0 B. By (LTDER2), we have Axµ ≤ >xλ

and
Axµ 0 >xλ

for any xλ �∗ B and any µ ∈ β∗λ(L). Thus
∨
µ∈β∗(L)(D0(Axµ ) ∨ Axµ ) ≤ >xλ

.
Conversely, assume that

∨
µ∈β∗(L)(D0(Axµ ) ∨ Axµ ) ≤ >xλ

for any xλ �∗ B. By (LTDER3), we have Axµ 0
D0(Axµ ) for all xλ �∗ B and µ ∈ β∗λ(L). Thus Axµ 0 >xλ

and Axµ ≤ >xλ
. Hence A 0 >xλ

by (LTDER2) and (5)
of Proposition 4.1. ThereforeD0(A) ≤

∧
xλ�∗B>xλ

= B by (6) of Proposition 4.1.
(LTDCl3). Let xλ ∈ β∗(>) with xλ � D0(A) ∨ A. Then xλ � A and xλ � D0(A). By xλ � D0(A), there is

B ∈ LX such that xλ � B and A 0 B. By (LTDER4), there is E ∈ LX such that A 0 E ≤ B ∨ A. By A 0 E and
(LTDER3), we haveD0(A) 0 E. By (LTDER5), we haveD0(A) ∨ A 0 E. Thus

D0(D0(A) ∨ A) ≤ E ≤ (A ∨ B) � xλ.



X.Y. Wu et al. / Filomat 35:8 (2021), 2497–2516 2511

Hence xλ � D0(D0(A) ∨ A). Therefore,D0(D0(A) ∨ A) ≤ D0(A) ∨ A.
(LTDCl4). Clearly, D0(A) ∨ D0(B) ≤ D0(A ∨ B). Conversely, let xλ ∈ J(LX) with xλ � D0(A) ∨ D0(B).

By xλ � D0(A), there is C ∈ LX such that xλ � C and A 0 C. Similarly, by xλ � D0(B), there is D ∈ LX such
that xλ � D and B 0 D. Thus xλ � C ∨ D and A ∨ B 0 C ∨ D by (LTDER5). Hence D0(A ∨ B) ≤ C ∨ D and
xλ � D0(A ∨ B). ThereforeD0(A ∨ B) ≤ D0(A) ∨D0(B).

Theorem 4.13. Let (X,0X) and (Y,0Y) be L-topological derived enclosed relation spaces. If f : X → Y is an L-
topological derived enclosed relation preserving mapping, then f : (X,D0X ) → (Y,D0Y ) is an L-topological derived
closure preserving mapping.

Proof. Let A ∈ LX and let xλ ∈ J(LX) with xλ � f←L (D0Y ( f→L (A))) ∨ f←L ( f→L (A)). Then f→L (xλ) � D0Y ( f→L (A)) ∨
f→L (A). By f→L (A) � D0Y ( f→L (A)), there is B ∈ LX such that f→L (xλ) � B and f→L (A) 0Y B. Thus xλ � f←L (B) and
A ≤ f←L ( f→L (A)) 0X f←L (B). Hence A 0X f←L (B) and xλ � D0X (A). Therefore

D0X (A) ≤ f←L (D0Y ( f→L (A))) ∨ f←L ( f→L (A))

and f→L (D0X (A)) ≤ D0Y ( f→L (A)) ∨ f→L (A). So f is an L-topological derived closure preserving mapping.

Theorem 4.14. We have D0D = D for any L-topological derived closure space (X,D) and 0D0=0 for any L-
topological derived enclosed relation space (X,0).

Proof. Let (X,D) be an L-topological derived closure space and A ∈ LX. We have

D(A) ≤
∧
{B ∈ LX : A 0D B} = D0D (A).

Conversely, for any xλ ∈ J(LX) with xλ � D(A), we haveD(A) ≤ >xλ
. Thus A 0D >xλ

andD0D (A) ≤ >xλ
. So

D0D (A) ≤
∧

xλ�D(A)>xλ
= D(A). HenceD0D (A) = D(A) which shows thatD0D = D.

Let (X,0) be an L-topological derived enclosed relation space. If A 0 B thenD0(A) ≤ B and so A 0D0 B.
Conversely, if A 0D0 B, thenD0(A) ≤ B and A 0 D0(A) by (LTDER3). Thus A 0 B. In conclusion, we have
A 0 B iff A 0D0 B. That is, 0D0=0.

Based on Theorems 4.12 and 4.13, we obtain a functor G : L-TDERS→ L-TDCLS by

G((X,0)) = (X,D0), G( f ) = f .

Based on Theorems 4.10–4.14, G is an isomorphic functor. Thus we have the following result.

Theorem 4.15. The category L-TDERS is isomorphic to the category L-TDCLS.

Now, we characterize L-topological spaces by L-topological derived enclosed relation spaces

Theorem 4.16. Let (X,T ) be an L-topological space. Define a binary operator 0T on X by

∀A,B ∈ LX, A 0T B ⇔ ∀xλ �∗ B,∀µ ∈ β∗λ(L), ClT (Axµ ) ≤ >xλ
.

Then (X,0T ) is an L-topological derived enclosed relation space.

Proof. Clearly, we have A 0T B for any A,B,C,D ∈ LX with A ≤ C 0T D ≤ B. Next, we check that 0T
satisfies (LTDER1)–(LTDER5).

(LTDER1). If xλ ∈ β∗(>) and µ ∈ β∗λ(L), then ClT (⊥xµ ) = ClT (⊥) = ⊥ ≤ >xλ
by (LCL1). Thus ⊥ 0T ⊥.

(LTDER2). Let A 0T B. We have Axµ ≤ ClT (Axµ ) ≤ >xλ
for all xλ �∗ B and µ ∈ β∗λ(L). To prove that

Axµ 0T >xλ
, let yη �∗ >xλ

and θ ∈ β∗η(L). By (5) of Proposition 4.1, we have y = x and η ∈ β∗λ(L). Thus

ClT ((Axµ )xθ ) ≤ ClT (Axµ ) ≤ >xλ
≤ >xη .

Hence Axµ 0T >xλ
.
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Conversely, assume that Axµ 0T >xλ
and Axµ ≤ >xλ

for all xλ �∗ B and µ ∈ β∗λ(L). To prove that A 0T B,
let xλ �∗ B and µ ∈ β∗λ(L). We have to prove that ClT (Axµ ) ≤ >xλ

.
Since xλ �∗ B and µ ∈ β∗λ(L), we have Axµ 0T >xλ

and Axµ ≤ >xλ
. For any yη �∗ >xλ

, we have
yη � Axµ . In addition, x = y and η ∈ β∗λ(L) by (5) of Proposition 4.1. Further, since Axµ 0T >xλ

, we have
ClT (Axµ ) = ClT ((Axµ )xθ ) ≤ >xη for any θ ∈ β∗η(L). Thus ClT (Axµ ) =

∧
yη�>xλ

>yη = >xλ
. Therefore A 0T B.

(LTDER3). Let A 0T
∧

i∈I Bi. Then it is clear that A 0T Bi for any i ∈ I. Conversely, assume that A 0T Bi
for any i ∈ I. Let xλ �∗

∧
i∈I Bi. Then there is i ∈ I such that xλ �∗ Bi. By A 0T Bi, we have ClT (Axµ ) ≤ >xλ

for
any µ ∈ β∗λ(L). From this result, we conclude that A 0T

∧
i∈I Bi.

(LTDER4). If A 0T B, then ClT (Axµ ) ≤ >xλ
for all xλ �∗ B and µ ∈ β∗λ(L). Let C = ClT (A). We have A 0T C

since ClT (Ayθ ) ≤ C ≤ >yη for all yη �∗ C and θ ∈ β∗η(L). Next, we prove that C 0T A ∨ B and C ≤ A ∨ B.
Let yθ �∗ (A ∨ B) and µ ∈ β∗θ(L). By A 0T B, we have

ClT (Cyµ ) ≤ ClT (C) = C = ClT (A) = ClT (Ayµ ) ≤ >yθ
.

Thus C 0T (A ∨ B) and C ≤ >yθ
. Hence C ≤

∧
yθ�∗A∨B>yθ

= A ∨ B. So A 0T C 0T A ∨ B and C ≤ A ∨ B.
(LTDER5). If A ∨ B 0T C, then it is clear that A 0T C and B 0T C. Conversely, let A 0T C and B 0T C.

For any xλ �∗ C and any µ ∈ β∗(L), we have

ClT ((A ∨ B)xµ ) = ClT (Axµ ∨ Bxµ ) = ClT (Axµ ) ∨ ClT (Bxµ ) ≤ >xλ
.

Therefore A ∨ B 0T C.

Theorem 4.17. Let (X,TX) and (Y,TY) be L-topological spaces. If f : X → Y is an L-continuous mapping, then
f : (X,0TX )→ (Y,0TY ) is an L-topological derived enclosed relation preserving mapping.

Proof. Let A 0TY B. To prove that f←L (A) 0TX f←L (A ∨ B), let xλ �∗ f←L (A ∨ B) and µ ∈ β∗λ(L). Then
f→L (xµ) �∗ A ∨ B and xµ �∗ f←L (A ∨ B). Further, by A 0TY B, we have

f→L (ClTX ( f←L (A)xµ )) = f→L (ClTX ( f←L (A))) ≤ ClTY ( f→L ( f←L (A))) ≤ ClTY (A) = ClTY (A f→L (xµ)) ≤ > f→L (xλ).

Thus ClTX ( f←L (A)xµ ) ≤ >xµ which implies that f←L (A) 0TX f←L (A∨B). Therefore f is an L-topological derived
enclosed relation preserving mapping.

Theorem 4.18. Let (X,0) be an L-topological derived enclosed relation space. Define an operator Cl0 : LX
→ LX by

∀A ∈ LX, Cl0(A) = A ∨
∧
{B ∈ LX : A 0 B}.

Then Cl0 is an L-topological closure operator which induces an L-topology denoted by T0.

Proof. (LCL1) and (LCL2) are direct.
(LCL3). It is clear that Cl0(A) ≤ Cl0(Cl0(A)). Conversely, to prove that Cl0(Cl0(A)) ≤ Cl0(A), let

xλ � Cl0(A). Then xλ � A and there is some B ∈ LX such that xλ � B and A 0 B. By (LTDER4), there is C ∈ LX

such that A 0 C 0 A ∨ B and C ≤ A ∨ B. Thus Cl0(A) ≤ A ∨ C and A 0 A ∨ B. Since Cl0(A) ≤ A ∨ C 0 A ∨ B
by (LTDER5), we have Cl0(A) 0 A ∨ B and

Cl0(Cl0(A)) ≤ Cl0(A) ∨ (A ∨ B) = A ∨ B � xλ.

This implies that xλ � Cl0(Cl0(A)). Hence Cl0(Cl0(A)) ≤ Cl0(A). Therefore Cl0(Cl0(A)) = Cl0(A).
(LCL4). Clearly, we have Cl0(A) ∨ Cl0(B) ≤ Cl0(A ∨ B). Conversely, let xλ � Cl0(A) ∨ Cl0(B). By

xλ � Cl0(A), there is C ∈ LX such that A 0 C and xλ � C. Similarly, by xλ � Cl0(B), there is D ∈ LX such that
B 0 D and xλ � D. Thus xλ � C ∨D and (A ∨ B) 0 (C ∨D) by (LTDER5). Hence Cl0(A ∨ B) ≤ C ∨D which
shows that xλ � Cl0(A ∨ B). Therefore Cl0(A ∨ B) ≤ Cl0(A) ∨ Cl0(B).

Theorem 4.19. Let (X,0X) and (Y,0Y) be L-topological derived enclosed relation spaces. If f : X → Y is an L-
topological derived enclosed relation preserving mapping, then f : (X,T0X )→ (Y,T0Y ) is an L-continuous mapping.
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Proof. Let A ∈ LX. To prove that f→L (Cl0X (A)) ≤ Cl0Y ( f→L (A)), we prove that Cl0X (A)) ≤ f←L (Cl0Y ( f→L (A))).
For any xλ � f←L (Cl0Y ( f→L (A))), we have f→L (xλ) � Cl0Y ( f→L (A)). Thus f→L (xλ) � f→L (A) and there is

B ∈ LY such that f→L (xλ) � B and f→L (A) 0Y B. Thus A ≤ f←L ( f→L (A)) 0X f←L (A ∨ B) which shows that
A 0X f←L (A∨ B). Since xλ � f←L (A∨ B), we have xλ � Cl0X (A). Hence Cl0X (A) ≤ f←L (Cl0Y ( f→L (A))). Therefore
f→L (Cl0X (A)) ≤ Cl0Y ( f→L (A)). So f is an L-continuous mapping.

Theorem 4.20. We have T0T = T for any L-topological space (X,T ) and 0T0=0 for any L-topological derived
enclosed relation space (X,0).

Proof. Let (X,T ) be an L-topological space. To prove T0T = T , it is sufficient to prove that Cl0T = ClT .
Let A ∈ LX. To check that Cl0T (A) ≤ ClT (A), we firstly check that A 0T >xλ

for any xλ �∗ ClT (A).
Actually, for any yη � >xλ

, we have x = y and η ∈ β∗λ(L). For any µ ∈ β∗η(L), we have xλ � ClT (A) ≥
ClT (Axµ ). Thus xλ � ClT (Axµ ) and so ClT (Axµ ) ≤ >xλ

≤ >xµ . Hence A 0T >xλ
.

Further, by A 0T >xλ
, we have Cl0T (A) ≤ A ∨ >xλ

. Therefore

Cl0T (A) ≤
∧

xλ�∗ClT (A)

(A ∨ >xλ
) = A ∨

∧
xλ�∗ClT (A)

>xλ
= A ∨ ClT (A) = ClT (A).

Conversely, to prove that ClT (A) ≤ Cl0T (A), let zθ �∗ Cl0T (A). Then zθ � A and there is η ∈ β∗(θ) such that
zη �∗ Cl0T (A). Thus there is B ∈ LX such that A 0T B and zη �∗ B. Hence ClT (Azθ ) ≤ >zη and so

ClT (A) =
∧

zθ�∗Cl0
T

(A)

ClT (Azθ ) ≤
∧

zθ�∗Cl0
T

(A)

>zη ≤
∧

zθ�∗Cl0
T

(A)

>zθ
= Cl0T (A).

Therefore ClT (A) = Cl0T (A) which shows that T0T = T .
Let (X,0) be an L-topological derived enclosed relation space. Let A 0 B. To prove that A 0T0 B, we

firstly check that A 0T0 >xλ
for any xλ �∗ B.

Let xλ �∗ B. To prove that A 0T0 >xλ
, let yη �∗ >xλ

and µ ∈ β∗η(L). We need to prove that ClT0 (Ayµ ) ≤ >yη .
By yη �∗ >xλ

, we have x = y and λ ≤ η. Since A 0 B, we have Axµ ≤ >xη by (LTDER2). Further, since
Axµ ≤ A 0 B ≤ >xλ

≤ >xη , we have Axµ 0 >xη and

ClT0 (Axµ ) = Cl0(Axµ ) ≤ Axµ ∨ >xη = >xη .

Hence A 0T0 >xλ
. Therefore A 0T0

∧
xλ�∗B>xλ

= B by (LTDER3).
Conversely, let A 0T0 B. To prove A 0 B, let xλ �∗ B and µ ∈ β∗λ(L). By A 0T0 B and (LTDER3), we have

Axµ 0
∧
{D ∈ LX : Axµ 0 D} ≤ Cl0(Axµ ) = ClT0 (Axµ ) ≤ >xλ

.

Thus Axµ 0 >xλ
and Axµ ≤ >xλ

. Hence A 0 B by (LTDER2).
In conclusion, for all A,B ∈ LX, we have A 0T0 B iff A 0 B. Therefore 0T0=0.

Based on Theorems 4.18 and 4.19, we obtain a functor H : L-TDERS→ L-TOP by

H((X,0)) = (X,T0), H( f ) = f .

Based on Theorems 4.16–4.20, H is an isomorphic functor. Thus we have the following conclusion.

Theorem 4.21. The category L-DERS is isomorphic to the category L-TOP.

Based on Theorems 4.10–4.20, relations between L-topological derived enclosed relation spaces and
L-topological spaces are presented as follows.
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Corollary 4.22. (1) Let (X,D) be an L-topological derived closure space. Define an operator coD : LX
→ LX by

∀A ∈ LX, ClD(A) = D(A) ∨ A.

Then ClD is the L-topological closure operator of an L-topological space (X,TD).
(2) Let (X,T ) be an L-topological space. Define an operatorDT : LX

→ LX by

∀A ∈ LX, DT (A) =
∨
{xλ ∈ β∗(>) : ∀µ ∈ β∗λ(L), xµ ≤ ClT (Axµ )}.

Then (X,DT ) is an L-topological derived closure space.
(3) The category L-TDCLS is isomorphic to the category L-TOP.

At the end of this section, by Theorem 4.8, we present two examples to show that an L-quasi-uniform
space or an L-S-quasi-proximate space generates an L-topological derived enclosed relation space.

Example 4.23. Let (X,U) be an L-quasi-uniform space. Define a binary relation 0U on X by

∀A,B ∈ LX, A 0U B ⇔ ∀xλ �∗ B,∀µ ∈ β∗λ(L), ∃ϕ ∈ U, Axµ ≤
∧

η∈β∗λ(L)

ϕ(xη).

For all A,B ∈ LX, it is easy to check that

A 0U B⇔ ∀xλ �∗ B,∀µ ∈ β∗λ(L), Axµ 2U >xλ
⇔ A 02U B.

Thus 0U=02U . Hence (X,0U) is an L-topological derived enclosed relation space.

Example 4.24. Let (X, δ) be an L-S-quasi-proximate space. Define a binary relation 2δ on X by

∀A,B ∈ LX, A 0δ B ⇔ ∀xλ ∈ β∗(A),∀µ ∈ β∗λ(L),
∨

η∈β∗λ(L)

δ(xη,Axµ ) = ⊥.

For all A,B ∈ LX, it is easy to check that

A 2δ B⇔ ∀xλ ∈ β∗(A),∀µ ∈ β∗λ(L), Axµ 2δ >xλ
⇔ A 02δ B.

Thus 0δ=02δ . Hence (X,0δ) is an L-topological derived enclosed relation space.

5. Conclusions

(1) In this paper, we introduce notions of L-topological derived internal relation spaces, L-topological
derived enclosed relation spaces, L-topological derived interior spaces and L-topological derived closure
spaces. We prove that all these spaces are categorically isomorphic to L-topological spaces. Relations
among categories mentioned in this paper can be showed by the following diagram.

L-TIRSff
[26]

&&

L-TERS88
[26]

xx
L-TDINTSgg

Th.3.14 ''

L-TOP88

Th.3.20xx

ff

Th.4.21 &&

L-TDCLS77

Th.4.15ww
L-TDIRS

��

Th.3.7

OO

L-TDERS
��

Th.4.8

OO

(2) The following diagrams give a solution of the problems presented in Introduction in L-fuzzy setting.
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L-topology oo [26] // L-topological
internal relation

L-topological derived
interior operator
(Definition 3.8)

��
Co.3.21

OO

ooTh.3.20//
L-topological derived

internal relation
(Definition 3.1)

�� Th.3.7

OO

Solution 1.

L-topology oo [26] // L-topological
enclosed relation

L-topological derived
closure operator
(Definition 4.9)

��
Co.4.22

OO

ooTh.4.15//
L-topological derived

enclosed relation
(Definition 4.2)

�� Th.4.8

OO

Solution 2.

(3) Relations among L-topological spaces, L-topological derived internal relations and L-topological de-
rived enclosed relations may provide some alternative ways in discussing separation axioms of L-topological
spaces and relations among L-topological spaces, L-matroids, L-convex spaces and L-convergence spaces.
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