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Abstract. The purpose of this paper is to introduce the class of (a, b, c)-modified enriched Kannan pair
of mappings (T,S) in the setting of Banach space that includes enriched Kannan mappings, contraction
and nonexpansive mappings and some other mappings. Some examples are presented to support the
concepts introduced herein. We establish the existence of common fixed point of the such pair. We also
show that the common fixed point problem studied herein is well posed. A convergence theorem for the
Krasnoselskij iteration is used to approximate fixed points of the (a, b, c)-modified enriched Kannan pair.
As an application of the results proved in this paper, the existence of a solution of integral equations is
established. The presented results improve, unify and generalize many known results in the literature.

1. Introduction and Preliminaries

Let (X, d) be a metric space and T : X→ X. An element x ∈ X is called a fixed point of T if x = Tx.
Kannan [9] proved the following result.

Theorem 1.1. Let (X, d) be a complete metric space. If T : X→ X is a mapping such that

d(Tx,Ty) ≤ α{d(x,Tx) + d(y,Ty)}, (1)

holds for all x, y ∈ X, where α ∈ [0, 1
2 ). Then T has a unique fixed point.

Reich [10] proved the following result:

Theorem 1.2. Let (X, d) be a complete metric space. If T : X→ X satisfies:

d(Tx,Ty) ≤ ad(x,Tx) + bd(y,Ty) + cd(x, y), (2)

for all x, y ∈ X, where a, b, c are nonnegative and a + b + c < 1. Then T has a unique fixed point.
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If in the above Theorem, we take a = b and c = 0, then we obtain Theorem 1.1.

Browder and Petryshyn [6] introduced the notion of asymptotic regularity of a self-mapping on a metric
space.

Definition 1.3. [6] A self mapping T on a metric space (X, d) is said to be asymptotically regular if

lim
n→∞

d(Tnx,Tn+1x) = 0, ∀ x ∈ X.

Górnicki [7] has obtained the following generalization of the Theorem 1.2.

Theorem 1.4. Let (X, d) be a complete metric space and T is a continuous asymptotically regular self mapping on X
such that the following condition holds:

d(Tx,Ty) ≤ cd(x, y) + a{d(x,Tx) + d(y,Ty)}, ∀ x, y ∈ X, (3)

where c ∈ [0, 1) and a ∈ [0,∞). Then T has a unique fixed point p ∈ X and Tnx→ p for each x ∈ X.

We now recall some weaker forms of continuity of a self mapping on a metric space:

Definition 1.5. [8] If T is a self mapping on a metric space (X, d), then the set

O(T, x) = {Tnx : n = 0, 1, 2, 3, ...}

is called the orbit of T at x ∈ X.
A mapping T is called orbitally continuous at a point z ∈ X if for any sequence {xn} ⊂ O(T, x) for some x ∈ X,
lim
n→∞

xn = z implies that lim
n→∞

Txn = Tz.

Definition 1.6. [8] A self mapping T on a metric space (X, d) is called k-continuous if lim
n→∞

Tk−1xn = z implies that

limn→∞ Tkxn = Tz, where k ∈ {1, 2, ....}.

Bisht [4] improved Theorem 1.4 as follows:

Theorem 1.7. Suppose that (X, d) is a complete metric space and T : X → X is an asymptotically regular mapping
satisfying (3). Then T has a unique fixed point p ∈ X provided T is either k-continuous for some k ≥ 1 or orbitally
continuous. Moreover, Tnx→ p for each x ∈ X.

Recently, Berinde and Păcurar [2] introduced the concept of a Kannan enriched contraction as follows.

Definition 1.8. Let (X, ‖·‖) be a linear normed space. A mapping T : X → X is said to be an enriched Kannan
mapping if there exist a ∈ [0, 1

2 ) and b ∈ [0,∞) such that∥∥∥b(x − y) + Tx − Ty
∥∥∥ ≤ a{‖x − Tx‖ +

∥∥∥y − Ty
∥∥∥}, (4)

for all x, y ∈ X,

An enriched Kannan contraction mapping in a Banach space has a unique fixed point which can be
approximated by means of the Krasnoselskij iterative scheme [3].
In this paper, we introduce the pair (T,S) of self mappings on a metric space called (a, b, c)-modified
enriched Kannan pair. The notion of modified enriched Kannan mappings is also introduced. The class of
such mappings incudes the classes of Banach contraction mappings, nonexpansive mappings, Lipschitzian
mappings, Kannan contraction, enriched Kannan contraction and mappings satisfying (3). We prove
common fixed point result and establish well posedness of a common fixed point problem. Consequently,
a fixed point result is obtained which is also new in the known literature on metric fixed point theory.
These results extend and strengthen various known results in the literature. As an application of our result,
integral equations are solved.
We introduce the following.
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Definition 1.9. Let (X, ‖·‖) be a linear normed space and T,S : X → X. If there exist a, b ∈ [0,∞) and c ∈ [0, 1)
such that∥∥∥b(x − y) + Tx − Sy

∥∥∥ ≤ c
∥∥∥x − y

∥∥∥ + a
{
‖x − Tx‖ +

∥∥∥y − Sy
∥∥∥ }
, (5)

holds for all x, y ∈ X. Then (T,S) is called (a, b, c)-modified enriched Kannan pair.

Example 1.10. Let X = [−1, 1] be endowed with the usual norm. Suppose that T,S : X → X are mappings defined
by:

Tx =

 2x
3 if x ≥ 0

1 if x < 0
Sx =

0 if x ≤ 0
−1 if x > 0.

Then for all b ∈ [0,∞) such that c = b + 1
6 < 1, (T,S) is (1, b, b + 1

6 )-modified enriched Kannan pair. Indeed, for all
x, y ∈ X it is easy to verify that

|b(x − y) + Tx − Sy| ≤ b|x − y| + |Tx − Sy| ≤
(
b +

1
6

)
|x − y| + |x − Tx| + |y − Sy|

If we take S = T in the above definition, we obtain the following concept which is also new and first of
its kind in the known literature on fixed point theory.

Definition 1.11. Let (X, ‖·‖) be a linear normed space and T : X→ X. If there exist a, b ∈ [0,∞) and c ∈ [0, 1) such
that

||b(x − y) + Tx − Ty|| ≤ c||x − y|| + a
{
||x − Tx|| + ||y − Ty||

}
, (6)

holds for all x, y ∈ X. Then the mapping T is said to be (a, b, c)- modified enriched Kannan mapping.

Remark 1.12. A Banach contraction mapping is a (0, 0, c)-modified enriched Kannan mapping.

Remark 1.13. If we take c = 0 in (6), then we obtain the definition of enriched Kannan mapping.

Remark 1.14. A class of (a, 0, c)-modified enriched Kannan mappings coincides with the class of mappings satisfying
(3).

Example 1.15. Let X = R be endowed with the usual norm. Define T : X→ X by

Tx = 100 − 2x.

Note that T is (a, 2, c)-modified enriched Kannan mapping for all c ∈ [0, 1) and a ∈ [0,∞).
Indeed, for all x, y ∈ X, we have

||2(x − y) + Tx − Ty|| = 0 ≤ c||x − y|| + a{||x − Tx|| + ||y − Ty||}.

Example 1.16. Let X = R be endowed with the usual norm and T : X→ X be the mapping defined by Tx = −x for
all x ∈ X. Then T is (a, 1, c)-modified enriched Kannan mapping. However, T is not enriched Kannan mapping.
Indeed, if we take b = 2 and a = 1

4 , then the inequality (4) is not satisfied for x = 0 and y = 1.

Let us recall the following property.

Remark 1.17. Let M be a convex subset of a linear space X and T : M → M. Then for any λ ∈ (0, 1), the set of all
fixed points of a mapping Tλ : M→M given by Tλ(x) = (1 − λ)x + λTx coincides with Fix(T).

We need the following technical result in the sequel.

Lemma 1.18. [12] Let {an} be sequence of non-negative real numbers satisfying

an+1 ≤ (1 − αn)an + αnβn, n ≥ 0

where αn ∈ (0, 1) and {βn} ⊆ R such that
(i)

∑
∞

n=0 αn = ∞ (ii) lim supn→∞ βn ≤ 0 or
∑
∞

n=0 |αnβn| = ∞.
Then {an} converges to zero as n→∞.
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2. Main Results

We start with the following common fixed point result.

Theorem 2.1. Suppose that (X, ||.||) is a Banach space and (T,S) is (a, b, c)-modified enriched Kannan pair. Then T
and S have a unique common fixed point p. Moreover, limn→∞ Tn

λx = p = limn→∞ Sn
λx for any x ∈ X, provided that

Tλ and Sλ are asymptotically regular and Tλ and Sλ are either k-continuous for some k ≥ 1 or orbitally continuous,
where λ = 1

b+1 .

Proof. We divide the proof into the following two cases.
Case 1. Suppose that b > 0. Clearly, 0 < λ < 1. In this case, (5) becomes

||Tλx − Sλy|| ≤ d||x − y|| + a{||x − Tλx|| + ||y − Sλy||}, (7)

where d = λc.Note that d ∈ [0, 1).We now show that limn→∞ ||Tn
λx− Sn

λx|| = 0 holds for any x ∈ X. For S = T,
the result is trivial. Suppose S , T and c = 0. Then (7) becomes

||Tλx − Sλy|| ≤ a{||x − Tλx|| + ||y − Sλy||}.

For any x ∈ X, let x1 = Tn
λx and y1 = Sn

λx. Then

||Tn+1
λ x − Sn+1

λ y|| ≤ a{||Tn
λx − Tn+1

λ x|| + ||Sn
λx − Sn+1

λ x||}.

Using the fact that Tλ and Sλ are asymptotically regular, we obtain that limn→∞ ||Tn+1
λ x−Sn+1

λ y|| = 0.Moreover,

||Tn
λx − Sn

λy|| ≤ ||Tn
λx − Tn+1

λ y|| + ||Tn+1
λ x − Sn+1

λ y|| + ||Sn+1
λ x − Sn

λy||. (8)

Using asymptotically regularity of Tλ and Sλ and (8), we have

lim
n→∞
||Tn

λx − Sn
λx|| = 0.

Next, suppose that S , T and c , 0. Define x1 = Tn
λx and y1 = Sn

λx for any x ∈ X. Then (7) becomes

||Tn+1
λ x − Sn+1

λ y|| ≤ d||Tn
λx − Sn

λx|| + a{||Tn
λx − Tn+1

λ x|| + ||Sn
λx − Sn+1

λ x||}.

Let

an = ||Tn
λx − Sn

λx||, and αn = 1 − d

βn =
a

1 − d
||Tn

λx − Tn+1
λ x|| +

a
1 − d

||Sn
λx − Sn+1

λ x||.

By asymptotically regularity of Tλ and Sλ, we have limn→∞ βn = 0. Moreover,
∑
∞

n=1 αn = ∞. Hence by
Lemma 1.18, we have that

lim
n→∞
||Tn

λx − Sn
λx|| = 0, (9)

for any x ∈ X. Let xn = Tn
λx for any x ∈ X. We now show that {xn} is Cauchy sequence. Suppose on contrary

that {xn} is not Cauchy sequence. Then there exists an ε > 0 and sequences of integers {m(k)} and {n(k)}with
m(k) > n(k) ≥ k such that for k = 1, 2, ..., we obtain that

||Tm(k)
λ x − Tn(k)

λ x|| ≥ ε. (10)

Choosing m(k), the smallest number exceeding n(k) for which (10) holds, we have

||Tm(k)−1
λ x − Tn(k)

λ x|| < ε.
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Note that

ε ≤ ||Tm(k)
λ x − Tn(k)

λ x|| ≤ ||Tm(k)
λ x − Tm(k)−1

λ x|| + ||Tm(k)−1
λ x − Tn(k)

λ x|| < ||Tm(k)
λ x − Tm(k)−1

λ x|| + ε

On taking limit as k→∞ on the both sides of the above inequality, we have

lim
n→∞
||Tm(k)

λ x − Tn(k)
λ x|| = ε. (11)

Moreover, it follows from asymptotic regularity of Tλ and the inequality

||Tm(k)−1
λ x − Tn(k)−1

λ x|| ≤ ||Tm(k)−1
λ x − Tm(k)

λ x|| + ||Tm(k)
λ x − Tn(k)

λ x|| + ||Tn(k)
λ x − Tn(k)−1

λ x||,

that

lim
n→∞
||Tm(k)−1

λ x − Tn(k)−1
λ x|| = ε. (12)

Now, (7) implies that

||Tm(k)
λ x − Tn(k)

λ x|| ≤ ||Tm(k)
λ x − Sn(k)

λ x|| + ||Sn(k)
λ x − Tn(k)

λ x||

≤ ||Sn(k)
λ x − Tn(k)

λ x|| + d||Tm(k)−1
λ x − Tn(k)−1

λ x||

+ a{||Tm(k)−1
λ x − Tm(k)

λ x|| + ||Sn(k)−1
λ x − Sn(k)

λ x||.

+ d||Sn(k)−1
λ x − Tn(k)−1

λ x||.

Taking limit as k → ∞ on the both sides of the above inequality, and using (11), (12) and asymptotic
regularity of Tλ and Sλ, we obtain that ε ≤ dε, a contradiction. Hence {xn} is a Cauchy sequence. Assume
that there exists a point p ∈ X such that {xn} converges to p. Note that

||Sn
λx − p|| ≤ ||Sn

λx − Tn
λx|| + ||Tn

λx − p||.

From (9), we have limn→∞ ||Sn
λx − p|| = 0. Suppose that Tλ is k-continuous. Since limn→∞ Tk−1

λ xn = p, k-
continuity of Tλ implies that limn→∞ Tk

λxn = Tλp. By the uniqueness of limit, we have Tλp = p. On the
other hand, if Tλ is orbitally continuous. Then, limn→∞ xn = p, and orbital continuity of Tλ implies that
limn→∞ Tλxn = Tλp. Thus, Tλp = p, that is, Tp = p. Similarly, we have Sλp = Sp = p. Let q ∈ X be such that
Tλq = q = Sλq and q , p . Taking x = p and y = q in (7), we have ||p − q|| ≤ d||p − q|| < ||p − q||, a contradiction
and hence p is the unique common fixed point of Tλ and Sλ.
Case 2. b = 0. In this case λ = 1. Following arguments similar to those given in the Case 1 with T = T1 and
S = S1, the result follows. Indeed, the Krasnoselskij iteration reduces, in fact, to the simple Picard iteration
associated with T and S.

If we take b = 0 in the Theorem 2.1, we obtain Theorem 2.2 of [8] in the setting of Banach space

Corollary 2.2. [8] Suppose that (X, ||.||) is a Banach space and (T,S) is (a, 0, c)-modified enriched Kannan pair. Then
T and S have a unique fixed point p. Moreover, limn→∞ Tnx = p = limn→∞ Snx for any x ∈ X, provided that T and S
are asymptotically regular and T and S are either k-continuous for some k ≥ 1 or orbitally continuous.

Example 2.3. Let X = [0, 1] be endowed with the usual norm and mappings T,S : X→ X be defined by Sx = 1
2 , and

Tx =

1 − x if x > 0
1
2 if x = 0

If a = 1
6 and c = 1

2 . Then (T,S) is not (a, 0, c)-modified enriched Kannan pair. Indeed, x = 1 and y = 1
2 give that

||Tx − Sy|| =
1
2
> 0.42 =

1
2
||x − y|| +

1
6
{||x − Tx|| + ||y − Sy||}
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On the other hand, for b = 1, c = 1
2 and a = 1, the pair (T,S) is (1, 1, 1

2 )-modified enriched Kannan mapping.
Moreover, for λ = 1

2 , we have

T 1
2
x =

 1
2 if x > 0
1
4 if x = 0

and S 1
2
x = 1

4 +
x
2 , for all x ∈ [0, 1]. Clearly, S 1

2
and T 1

2
are asymptotically regular, and orbitally continuous. All

the assumptions of Theorem 2.1 are satisfied. Moreover, x = 1
2 is the unique common fixed point of T and S. Also,

limn→∞ Tn
1
2
x = 1

2 = limn→∞ Sn
1
2
x for any x ∈ X.

As a special case of Theorem 2.1, we have the following generalization of Corollary 2.3. of [8].

Corollary 2.4. Suppose that (X, ||.||) is a Banach space. If for some positive integers m and q such that (Tm,Sq) is
(a, b, c)-modified enriched Kannan pair. Then T and S have a unique common fixed point p, provided that Tm

λ and
Sq
λ are asymptotically regular and Tm

λ and Sq
λ are either k-continuous for some k ≥ 1 or orbitally continuous, where

λ = 1
b+1 .

Proof. Take µ = Tm
λ and ν = Sq

λ. Then (µ, ν) is (a, b, c)-modified enriched Kannan pair. By Theorem 2.1, µ
and ν have a unique common fixed point p. This gives µ(Tp) = Tp and ν(Tp) = Tp. By the uniqueness of the
common fixed point of µ and ν, it follows that Tp = Sp = p.

If we take S = T in the Theorem 2.1, then we have the following result.

Corollary 2.5. Let (X, ||.||) be Banach space and T : X→ X. If there exists a, b ∈ [0,∞) and c ∈ [0, 1) such that T is
(a, b, c)-modified enriched Kannan mapping. Then T has a unique fixed point p ∈ X provided that Tλ is asymptotically
regular and Tλ is either k-continuous for k ≥ 1 or orbitally continuous, where λ = 1

b+1 .

Example 2.6. Let X = R be endowed with the usual norm and T : X → X be defined by Tx = 1 − 10x. Note that,
for c = 0.1 and a = 1

11 , a mapping T does not satisfy the inequality (3). Indeed, for x = 0 and y = 1, we have

||T0 − T1|| = 10 > 1.5 = 0.1||0 − 1|| +
1
4

(1 + 10).

On the other hand, for b = 10, c = 0.1 and a = 1
11 , T satisfies all the conditions of Theorem 2.5.

Indeed, for all x, y ∈ X, we have

||10(x − y) + Tx − Ty|| = 0 ≤ c||x − y|| + a{||x − Tx|| + ||y − Ty||}.

Moreover, for λ = 1
11 , Tλ is orbitally continuous.

If we take b = 0 in Corollary 2.5, then we obtain Theorem 1.7 in the setting of a Banach space.

Corollary 2.7. [4] Suppose that (X, ||.||) is a Banach space and T : X→ X is (a, 0, c)-asymptotically regular mapping.
Then T has a unique fixed point p ∈ X provided T is either k-continuous for some k ≥ 1 or orbitally continuous.
Moreover, limn→∞ Tnx = p for each x ∈ X.

The following fixed point result can be established following arguments similar to those given in the
proof of Corollary 2.4.

Corollary 2.8. Suppose that (X, ||.||) is a Banach space and T : X → X. If for some positive integers m such that Tm

is (a, b, c)-modified enriched Kannan mapping. Then T has a unique fixed point p, provided that Tm
λ is asymptotically

regular and Tm
λ is either k-continuous for some k ≥ 1 or orbitally continuous, where λ = 1

b+1 .

Now we consider the mappings that are not necessarily k-continuous or orbitally continuous.
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Theorem 2.9. Let (X, ‖·‖) be Banach space. If there exists a, b ∈ [0,∞) and c ∈ [0, 1) such that T : X → X is
(a, b, c)-modified enriched Kannan mapping. Then

1. Fix(T) = {p};
2. for λ = 1

b+1 ; an iterative sequence {xn}
∞

n=0 given by

xn+1 = (1 − λ)xn + λTxn, n ≥ 0, (13)

converges to the point p, for any initial guess x0 in X provided that Tλ is a continuous asymptotically regular
mapping.

Proof. We divide the proof into the following two cases.
Case 1. Suppose that b > 0. Clearly, 0 < λ < 1. In this case, an inequality (6) becomes∥∥∥Tλx − Tλy

∥∥∥ ≤ d
∥∥∥x − y

∥∥∥ + a{||x − Tλx|| + ||y − Tλy||}, (14)

where d = λc. Obviously d ∈ [0, 1) and xn+1 = Tλxn, n = 0, 1, 2, .... By asymptotic regularity of Tλ and (14),
we have for any n and k > 0

||xn+k − xn|| ≤ ||xn+k − xn+k+1|| + ||xn+k+1 − xn+1|| + ||xn+1 − xn||

= ||xn+k − xn+k+1|| + ||xn+1 − xn|| + ||Tλxn+k − Tλxn||

≤ ||xn+k − xn+k+1|| + ||xn+1 − xn|| + d||xn+k − xn||

+ a{||xn+k − Tλxn+k|| + ||xn − Tλxn||}

= d||xn+k − xn|| + (a + 1){||xn+k − xn+k+1|| + ||xn+1 − xn||}.

That is,

(1 − d)||xn+k − xn|| ≤ (a + 1){||xn+k − xn+k+1|| + ||xn+1 − xn||}

On taking limit as n→∞ on both sides of the above inequality, a sequence {‖xn+k − xn‖} converges to 0.
This shows that {xn} is a Cauchy sequence in X. Next, we assume that there exists an element p ∈ X such

that limn→∞ xn = p. As Tλ is continuous and xn+1 = Tλxn, we obtain that Tλp = p. Suppose that q is a fixed
point of Tλ and q , p. Then, we have

0 < ||p − q|| = ||Tλp − Tλq|| ≤ d||p − q|| < ||p − q||,

a contradiction. Hence Fix(Tλ) = Fix(T) = {p}. Because

||xn+1 − p|| = ||Tn
λx0 − Tn

λp||

≤ ||Tn
λx0 − Tn+1

λ x0|| + ||Tn+1
λ x0 − Tn+1

λ p||

≤ ||Tn
λx0 − Tn+1

λ x0|| + d||Tn
λx0 − Tn

λp|| + a||Tn
λx0 − Tn+1

λ x0||,

so (1− d)||xn+1 − p|| ≤ (1+ a)||Tn
λx0 −Tn+1

λ x0|| → 0 as n→∞. This shows that Tn
λx converges to p for any x ∈ X.

Case 2. b = 0. In this case λ = 1. We proceed on the similar lines as in the Case 1 but with T(= T1) instead
of Tλ, when the Krasnoselskij iteration (13) reduces, in fact, to the simple Picard iteration associated with
T.

Example 2.10. Let X = [0, 1] be equipped with the usual norm and T : X→ X be defined by Tx = 1 − x. Note that,
for c = 0.1 and a = 1

4 , a mapping T does not satisfy (3). Indeed, for x = 0 and y = 1, we have

||T0 − T1|| = 1 > 0.6 = 0.1||0 − 1|| +
1
4

(1 + 1).
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On the other hand, T is ( 1
4 , 0.1, 1)-modified enriched Kannan mapping.

Indeed, for all x, y ∈ [0, 1], we have

||x − y + (1 − x) − (1 − y)|| = 0 ≤ 0.1||x − y|| +
1
4
{||2x − 1|| + ||2y − 1||.

As, T is an isometry and X = [0, 1] is bounded closed and convex set, T 1
2

is continuous asymptotically regular ([7]).

Thus all the condition of Theorem 2.9 are satisfied. Moreover, Fix(T) =
{

1
2

}
.

If we take b = 0 in Theorem 2.9, we obtain Theorem 1.4 in the setting of a Banach space.

Corollary 2.11. [7] Suppose that (X, ||.||) is a Banach space and T is (a, 0, c)-modified enriched Kannan continuous
asymptotically regular mapping. Then T has a unique fixed point p ∈ X and Tnx→ p for each x ∈ X.

The concept of well-posedness of a fixed point problem has attracted the attention of several mathe-
maticians, see for example, ([5],[11]) and references mentioned therein.

We now study the well-posedness of a common fixed point problem of mappings in Theorems 2.1 and
2.9.

Definition 2.12. [11] A common fixed point problem of a selfmappings T and S on a metric space (X, d) is called
well-posed if the set of common fixed point of S and T is singleton, that is, Sx∗ = x∗ = Tx∗ and for any sequence {xn}

in X satisfying

lim
n→∞

d(Txn, xn) = 0 or lim
n→∞

d(Sxn, xn) = 0

implies that limn→∞ xn = x∗.
A fixed point problem of self-map T on X is called well-posed if T has unique fixed point x∗(say) and for any sequence
{xn} in X such that limn→∞ d(Txn, xn) = 0, we have limn→∞ xn = x∗.

From the Remark 1.17, we conclude that the fixed point problem of T is called well-posed if and only if
fixed point problem of Tλ well-posed.

Theorem 2.13. Let (X, ‖.‖) be Banach space. Suppose (T,S) is (a, b, c)-modified enriched Kannan pair as in Theorem
2.1. Then the common fixed point problem of the pair (T,S) is well-posed.

Proof. It follows from Theorems 2.1 that x∗ is the unique common fixed point of T and S. Suppose
limn→∞ ‖Tλxn − xn‖ = 0. Using (7) we have,

‖xn − x∗‖ ≤ ‖xn − Tλxn‖ + ‖Tλxn − Sλx∗‖
≤ ‖xn − Tλxn‖ + d ‖xn − x∗‖ + a{‖xn − Tλxn‖ + ‖x∗ − Sλx∗‖ ,

that is,

(1 − d) ‖xn − x∗‖ ≤ (1 + a) ‖xn − Tλxn‖ . (15)

Similarly, if we assume limn→∞ ‖Sλxn − xn‖ = 0. Then following arguments similar to those given above, we
have

(1 − d) ‖xn − x∗‖ ≤ (1 + a) ‖xn − Sλxn‖ . (16)

It follows from (15) and (16) that limn→∞ xn = x∗ provided that limn→∞ ‖Tλxn − xn‖ = 0 or limn→∞ ‖Sλxn − xn‖ =
0. This complete the proof.

Corollary 2.14. Let (X, ‖.‖) be Banach space. Suppose that T is a selfmapping on X as in the Corollary 2.5. Then the
fixed point problem is well-posed.

Corollary 2.15. Let (X, ‖.‖) be Banach space and T a selfmapping on X as in Theorem 2.9 . Then the fixed point
problem is well-posed.
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3. Application

As an application of the result proved in the previous section, we establish the existence of solution of
Urysohn integral equations.
For, d, e ∈ R, we denote X = C([d, e]) the set of all continuous functions on the interval [d, e]. We endow X
with the norm

||x|| = max
t∈[d,e]

|x(t)|. (17)

It is evident that (X, ||.||) is a Banach space.
Consider the Urysohn integral equations

x(t) =
∫ e

d
K1(t, s, x(s))ds + 1(t), (18)

x(t) =
∫ e

d
K2(t, s, x(s))ds + h(t), (19)

where t ∈ [d, e], and x, 1, h ∈ X.
Suppose that K1,K2 : [d, e] × [d, e] ×R→ R are such that Ax,Bx ∈ X for each x ∈ X, where

Ax(t) =

∫ e

d
K1(t, s, x(s))ds, and

Bx(t) =

∫ e

d
K2(t, s, x(s))ds for all t ∈ [d, e].

Theorem 3.1. Suppose that thre following conditions hold.

1. There exists a ∈ [0,∞) such that for every x, y ∈ X, we have

|Ax(t) − By(t) + 1(t) − h(t)| ≤ aC(x, y)

where

C(x, y) = |x(t) − Ax(t) − 1(t)| + |y(t) − By(t) − h(t)|.

2. For all x, y ∈ X, we have,

|Ax − Ay| ≤
1
2
|x − y| and

|Bx − By| ≤
1
2
|x − y|.

Then the Urysohn integral equations (18) and (19) have a unique common solution.

Proof. Define T,S : X→ X by

Tx = Ax + 1, and Sx = Bx + h.

Then for fixed 0 < b < 1, we have

|b(x − y) + Tx − Sy| ≤ |b(x − y)| + |Tx − Sy|.

This implies that∥∥∥b(x − y) + Tx − Sy
∥∥∥ ≤ b

∥∥∥x − y
∥∥∥ + ∥∥∥Tx − Sy

∥∥∥ . (20)
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Note that

|Tx − Sy| =
∣∣∣ ∫ e

d
K1(t, s, x(s))ds + 1(t) −

∫ e

d
K2(t, s, y(s))ds − h(t)

∣∣∣
≤ |Ax(t) − By(t) + 1(t) − h(t)|
≤ a{|x(t) − Ax(t) − 1(t)| + |y(t) − By(t) − h(t)|}

= a{
∥∥∥x(t) − Ax(t) − 1(t)

∥∥∥ + ∥∥∥y(t) − By(t) − h(t)
∥∥∥

Then (20) becomes,∥∥∥b(x − y) + Tx − Sy
∥∥∥ ≤ b

∥∥∥x − y
∥∥∥ + a{‖x − Tx‖ +

∥∥∥y − Sy
∥∥∥}.

Thus (T,S) is (a, b, b)-modified enriched Kannan pair. We have

Tλx = (1 − λ)x + λ(Ax + 1) and
Sλx = (1 − λ)x + λ(Bx + h),

where λ = 1
b+1 . Since Ax,Bx ∈ X for each x ∈ X, Tλ and Sλ are continuous maps. We now show that Tλ and

Sλ are asymptotically regular. For all x, y ∈ X, we have

|Tλx(t) − Tλy(t)| = |(1 − λ)x(t) + λAx(t) + λ1(t) − ((1 − λ)y(t) + λAy(t) + λ1(t))|
= |(1 − λ)(x(t) − y(t)) + λ(Ax(t) − Ay(t))|
≤ (1 − λ)|x(t) − y(t)| + λ|Ax(t) − Ay(t)|.

Using condition (2), we have∥∥∥Tλx − Tλy
∥∥∥ ≤ (1 −

λ
2

)
∥∥∥x − y

∥∥∥ .
This shows that Tλ is contraction map on X. Similarly, we can show that Sλ is a contraction map. It follows
from [7], Tλ and Sλ are asymptotically regular mappings. By Theorem 2.1, the Urysohn integral equations
(18) and (19) have a unique common solution.

Theorem 3.2. Let X = C[d, e] be the space of all continuous function on the interval [d, e] equipped with norm (17)
and m < 1

2(e−d) .
Consider the Volterra integral equation

x(t) =
∫ t

d
G(t, s)x(s)ds + 1(t). (21)

Suppose that the kernal G is continuous on [d, e] × [d, e] such that

|G(t, s)| ≤ m, ∀ (t, s) ∈ [d, e] × [d, e].

Then the Volterra integral equation (21) has a unique solution.

Proof. Note that Volterra integral equation (21) can be written Tx = x with T : C[d, e]→ C[d, e] defined by

Tx(t) = 2
∫ t

d
G(t, s)x(s)ds + 21(t) − x(t).

Clearly T is not a contraction map but T is (0, 1, 2m(e − d))-modified enriched Kannan map.
Indeed

||x − y + Tx − Ty|| = ||x − y + 2
∫ t

d
G(t, s)x(s)ds + 21 − x − 2

∫ t

d
G(t, s)y(s)ds − 21 + y||

= 2||
∫ t

d
G(t, s)(x(s) − y(s))ds||,
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implies that

||x − y + Tx − Ty|| = 2||
∫ t

d
G(t, s)(x(s) − y(s))ds||. (22)

|

∫ t

d
G(t, s)(x(s) − y(s))ds| ≤ m(t − d)||x − y||.

Using t− d ≤ e− d on the right-hand side of above inequality and taking the maximum over t ∈ [d, e] on the
left hand side, we obtain that

||

∫ t

d
G(t, s)(x(s) − y(s))ds|| ≤ m(e − d)||x − y||. (23)

Using (23) in (22), we have

||x − y + Tx − Ty|| ≤ 2m(e − d)||x − y|| + 0{||x − Tx|| + ||y − Ty||}.

Since b = 1,

T 1
2
x(t) =

1
2

x(t) +
1
2

Tx(t) =
∫ t

d
G(t, s)x(s)ds + 1(t).

implies that T 1
2

is contraction map on X. It follows from [7], T 1
2

is asymptotically regular mapping. By
Theorem 2.9, the Volterra integral equation (21) has a unique solution.
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