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Abstract. A space X is submaximal if any dense subset of X is open. In this paper, we prove that every
submaximal topological gyrogroup of non-measurable cardinality is strongly σ-discrete. Moreover, we
prove that every submaximal strongly topological gyrogroup of non-measurable cardinality is hereditarily
paracompact.

1. Introduction

In the 1940s, E. Hewitt in [14] introduced the concepts of maximality and submaximality of general
topological spaces, which are important tools to deal with extreme cases when studying the family of
topologies without isolated points. At the same time, E. Hewitt found a general way to construct maximal
and submaximal topologies. He constructed maximal and submaximal topologies by transfinite induction
and by the method that any chain of topologies on the same set has an upper bound with the same separation
axioms. Then, A.V. Arhangel’ skiı̌ and P.J. Collins [2] began to study the class of submaximal spaces
systematically in 1995 and give some necessary and sufficient conditions for a space to be submaximal. In
1998, O. Alas, I. Protasov, M. Tkachenko, etc. [1] studied the maximal and submaximal groups and proved
that every submaximal topological group of non-measurable cardinality is strongly σ-discrete, and every
submaximal strongly topological group of non-measurable cardinality is hereditarily paracompact.

The gyrogroup was first introduced by A.A. Ungar in [21] when he researched c-ball of relativistically
admissible velocities with Einstein velocity addition. The Einstein velocity addition ⊕E is given as follows:

u ⊕E v =
1

1 + u·v
c2

(u +
1
γu

v +
1
c2

γu

1 + γu
(u · v)u),

where u,v ∈ R3
c = {v ∈ R3 : ||v|| < c} and γu is given by

γu =
1√

1 − u·u
c2

.
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From [22], we know that the gyrogroup has a weaker algebraic structure than a group. In 2017, W.
Atiponrat [4] gave the concept of topological gyrogroups. Then Z. Cai, S. Lin and W. He in [8] proved that
every topological gyrogroup is a rectifiable space. In 2019, the authors [5] defined the concept of strongly
topological gyrogroups, and proved that every feathered strongly topological gyrogroup is paracompact.
Moreover, the authors proved that every strongly topological gyrogroup with a countable pseudocharacter
is submetrizable and every locally paracompact strongly topological gyrogroup is paracompact, see [6, 7].

In this paper, we generalize some well known results in the class of submaximal topological groups to
submaximal topological gyrogroups. In particular, we prove that every submaximal topological gyrogroup
of non-measurable cardinality is strongly σ-discrete and every submaximal strongly topological gyrogroup
of non-measurable cardinality is hereditarily paracompact, which generalizes some results in [1].

2. Preliminaries

Throughout this paper, all topological spaces are assumed to be Hausdorff and dense in themselves,
unless otherwise is explicitly stated. LetN be the set of all positive integers and ω the first infinite ordinal.
Let X be a topological space and A ⊆ X be a subset of X. The closure of A in X is denoted by A and the
interior of A in X is denoted by Int(A). A cardinal number m is called non-measurable [10] provided that the
only countably additive two-valued measure defined on the family of all subsets of a set X of cardinality
m which vanishes on all one-point sets is the trivial measure, identically equal to zero. The readers may
consult [3, 10, 18] for notation and terminology not explicitly given here.

Definition 2.1. ([4]) Let G be a nonempty set, and let ⊕ : G × G → G be a binary operation on G. Then
the pair (G,⊕) is called a groupoid. A function f from a groupoid (G1,⊕1) to a groupoid (G2,⊕2) is called a
groupoid homomorphism if f (x⊕1 y) = f (x)⊕2 f (y) for all elements x, y ∈ G1. Furthermore, a bijective groupoid
homomorphism from a groupoid (G,⊕) to itself will be called a groupoid automorphism. We write Aut(G,⊕)
for the set of all automorphisms of a groupoid (G,⊕).

Definition 2.2. ([23]) Let (G,⊕) be a groupoid. The system (G,⊕) is called a gyrogroup, if its binary operation
satisfies the following conditions:

(G1) There exists a unique identity element 0 ∈ G such that 0 ⊕ a = a = a ⊕ 0 for all a ∈ G.

(G2) For each x ∈ G, there exists a unique inverse element 	x ∈ G such that 	x ⊕ x = 0 = x ⊕ (	x).

(G3) For all x, y ∈ G, there exists gyr[x, y] ∈ Aut(G,⊕) with the property that x⊕(y⊕z) = (x⊕y)⊕gyr[x, y](z)
for all z ∈ G.

(G4) For any x, y ∈ G, gyr[x ⊕ y, y] = gyr[x, y].

Lemma 2.3. ([23]) Let (G,⊕) be a gyrogroup. Then for any x, y, z ∈ G, we obtain the following:

1. (	x) ⊕ (x ⊕ y) = y. (left cancellation law)

2. (x ⊕ (	y)) ⊕ 1yr[x,	y](y) = x. (right cancellation law)

3. (x ⊕ 1yr[x, y](	y)) ⊕ y = x.

4. 1yr[x, y](z) = 	(x ⊕ y) ⊕ (x ⊕ (y ⊕ z)).

The definition of a subgyrogroup is given as follows.

Definition 2.4. ([20]) Let (G,⊕) be a gyrogroup. A nonempty subset H of G is called a subgyrogroup, denoted
by H ≤ G, if H forms a gyrogroup under the operation inherited from G and the restriction of 1yr[a, b] to H
is an automorphism of H for all a, b ∈ H.

Furthermore, a subgyrogroup H of G is said to be an L-subgyrogroup, denoted by H ≤L G, if 1yr[a, h](H) =
H for all a ∈ G and h ∈ H.
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The subgyrogroup criterion is given in [20] (that is, a nonempty subset H of a gyrogroup G is a
subgyrogroup if and only if 	a ∈ H and a ⊕ b ∈ H for all a, b ∈ H) which explains that by the item (4) in
Lemma 2.3 it follows the subgyrogroup criterion.

Definition 2.5. ([4]) A triple (G, τ,⊕) is called a topological gyrogroup if the following statements hold:
(1) (G, τ) is a topological space.
(2) (G,⊕) is a gyrogroup.
(3) The binary operation ⊕ : G × G→ G is jointly continuous while G × G is endowed with the product

topology, and the operation of taking the inverse 	(·) : G→ G, i.e. x→ 	x, is also continuous.

It is clear that each topological group is a topological gyrogroup. However, every topological gyrogroup
whose gyrations are not identically equal to the identity is not a topological group.

Example 2.6. ([4]) The Einstein gyrogroup with the standard topology is a topological gyrogroup but not
a topological group.

The Einstein gyrogroup has been introduced in Introduction. It was proved in [23] that (R3
c ,⊕E) is a

gyrogroup but not a group. Moreover, with the standard topology inherited from R3, it is clear that ⊕E is
continuous. Finally, −u is the inverse of u ∈ R3 and the operation of taking the inverse is also continuous.
Therefore, the Einstein gyrogroup (R3

c ,⊕E) with the standard topology inherited from R3 is a topological
gyrogroup but not a topological group.

Definition 2.7. ([14]) A topological space (X, τ) is called maximal if for any topology µ on X strictly finer
that τ, the space (X, µ) has an isolated point. A space X is submaximal if any dense subset of X is open.

Definition 2.8. ([1]) A non-empty familyD of dense subsets of a space X is called a filter of dense subsets of
X ifD is closed with respect to finite intersections and D ∈ D, D ⊂ D1 ⊂ X implies D1 ∈ D. The familyD is
called an ultrafilter of dense subsets of X if there is no filter of dense subsets of X that properly containsD.

Definition 2.9. ([1]) A space is called irresolvable if it is not the union of two disjoint dense subsets.

Definition 2.10. ([10]) A space X is called collectionwise Hausdorff if for any discrete subset A of X it is
possible to choose an open set Vp containing p for every p ∈ A in such a way that the family {Vp : p ∈ A} is
discrete.

Definition 2.11. ([10]) If X is a space and x ∈ X, then the dispersion character ∆(x,X) of X at the point x is the
minimum of the cardinalities of open subsets of X containing x. The cardinal number ∆(X) = min{∆(x,X) :
x ∈ X} is called the dispersion character of X.

Next, we recall the definition of strongly topological gyrogroups.

Definition 2.12. ([5]) Let G be a topological gyrogroup. We say that G is a strongly topological gyrogroup if
there exists a neighborhood base U of 0 such that, for every U ∈ U , gyr[x, y](U) = U for any x, y ∈ G. For
convenience, we say that G is a strongly topological gyrogroup with neighborhood base U of 0.

For each U ∈ U , we can set V = U ∪ (	U). Then,

1yr[x, y](V) = 1yr[x, y](U ∪ (	U)) = 1yr[x, y](U) ∪ (	1yr[x, y](U)) = U ∪ (	U) = V,

for all x, y ∈ G. Obviously, the family {U ∪ (	U) : U ∈ U } is also a neighborhood base of 0. Therefore, we
may assume that U is symmetric for each U ∈ U in Definition 2.12.

In [5], the authors proved that there is a strongly topological gyrogroup which is not a topological group,
see Example 2.13.
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Example 2.13. ([5]) LetD be the complex open unit disk {z ∈ C : |z| < 1}. We considerD with the standard
topology. In [4, Example 2], define a Möbius addition ⊕M : D ×D→ D to be a function such that

a ⊕M b =
a + b

1 + āb
for all a, b ∈ D.

Then (D,⊕M) is a gyrogroup, and it follows from [4, Example 2] that

1yr[a, b](c) =
1 + ab̄
1 + āb

c for any a, b, c ∈ D.

For any n ∈N, let Un = {x ∈ D : |x| ≤ 1
n }. Then, U = {Un : n ∈N} is a neighborhood base of 0. Moreover, we

observe that | 1+ab̄
1+āb | = 1. Therefore, we obtain that 1yr[x, y](U) ⊂ U, for any x, y ∈ D and each U ∈ U , then it

follows that 1yr[x, y](U) = U by [20, Proposition 2.6]. Hence, (D,⊕M) is a strongly topological gyrogroup.
However, (D,⊕M) is not a group [4, Example 2].

Indeed, it is well known that Möbius gyrogroups, Einstein gyrogroups, and Proper velocity gyrogroups,
that were studied in [11–13, 23], are all strongly topological gyrogroups. Therefore, they are all topological
gyrogroups and rectifiable spaces. At the same time, all of them are not topological groups. Further, it
was also proved in [5, Example 3.2] that there exists a strongly topological gyrogroup which has an infinite
L-subgyrogroup.

3. Submaximal Properties of Topological Gyrogroups

In this section, we mainly prove that every submaximal topological gyrogroup of non-measurable
cardinality is strongly σ-discrete. First, we show that, for any cardinality κ > ω, there exists a gyrogroup G
with subgyrogroup H of the cardinality κ such that H is not a group.

Example 3.1. For any cardinality κ > ω, there exists a gyrogroup G with subgyrogroup H of the cardinality
κ such that H is not a group.

Let D be gyrogroup in Example 2.13 and let κ be an infinite cardinal number. It follows from [19,
Theorem 2.1] that Dκ is a gyrogroup. Fix a subset X of the gyrogroup Dκ such that the cardinality of X is
equal to κ and X contains arbitrary three points x = (xα)α<κ, y = (yα)α<κ and z = (zα)α<κ of Dκ such that
there exists β < α with xβ = 1/2, yβ = i/2 and zβ = −1/2. From the proof of [4, Example 2], we see that
x ⊕ (y ⊕ z) , (x ⊕ y) ⊕ z. Put H = 〈X〉, that is, H is a subgyrogroup generated from X. Then the cardinality
of H is also equal to κ. Moreover, since x, y, z ∈ H, it follows that H is not a group.

Proposition 3.2. Let G be a gyrogroup of cardinality κ > ω. Then, for any ω < α < κ, there exists a subgyrogroup
Gα of G with the cardinality α.

Proof. Take an arbitrary subset Y of G such that Y = 	Y, 0 ∈ Y and |Y| = α. Let Y0 = Y. By induction,
we assume that we have defined Y1, . . . ,Yn of subsets of G such that Yi+1 = 	(Yi ⊕ Yi) ∪ (Yi ⊕ Yi) for any
i = 0, . . . ,n − 1. Let Yn+1 = 	(Yn ⊕ Yn) ∪ (Yn ⊕ Yn). Clearly, the cardinality of each Yn is just α. Put
Gα =

⋃
n∈N Yn. Then Gα is a subgyrogroup of G with the cardinality α. Indeed, it is obvious that |Gα| = α.

It suffices to prove that Gα is a subgyrogroup of G. By our construction of Gα, we have Gα = 	Gα. Take
any x, y ∈ Gα. Then there exists n ∈ N such that x, y ∈ Yn, hence x ⊕ y ∈ Yn+1 ⊂ Gα. Therefore, Gα is a
subgyrogroup of G.

Next we give some lemmas.

Lemma 3.3. Let G be a gyrogroup of cardinality κ > ω. Then for each α < κ there are subsets Gα and Hα of G with
the following properties:

(1) Gα is a subgyrogroup of G for all α < κ;
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(2) if α < β < κ, we have Gα ⊂ Gβ and Gα , Gβ;
(3) |Gα| = |α| for all α < κ;
(4) Gα =

⋃
{Hυ : υ ≤ α} for all α < κ;

(5)
⋃
{Hα : α < κ} = G and Hα ∩Hβ = ∅ if α , β;

(6) if 1 ∈ Hα and α < β, we have that 1 ⊕Hβ = Hβ ⊕ 1 = Hβ;
(7) Hα = 	Hα for all α < κ;
(8) if A is a confinal subset of κ, the cardinality of

⋃
{Hα : α ∈ A} is κ.

The family {Hα : α < κ} is called a canonical decomposition of G.

Proof. Since G is a gyrogroup of cardinality κ, let G = {1α : α < κ}, where 10 = 0 and 1α , 1β if α , β. Let
G0 = 〈{10}〉. Suppose that β < κ and that for every α < β we have constructed a subgyrogroup Gα of G
which has the following properties:

(i) Gα ⊂ Gγ and Gα , Gγ if α < γ < β;

(ii) |Gα| = |α| for all α < β;

(iii) {1γ : γ < α} ⊂ Gα for every α < β.

Let Bβ =
⋃
{Gα : α < β}. It follows from (ii) that Bβ , G, hence there exists

β∗ = min{α < κ : 1α < Bβ}.

Set Gβ = 〈Bβ ∪ {1β∗ }〉. Therefore, by induction, we can obtain that the family {Gα : α < κ} satisfies (i)-(iii) as
well as the property

⋃
{Gα : α < κ}. For every α < κ, let Hα = Gα \

⋃
{Gβ : β < α}.

Obviously, the sets Gα and Hα satisfy (1)-(5) and (7). To see that (6) holds. Assume that 1 ∈ Hα and α < β.
Clearly, 1 ∈ Gα and Gα is a subgyrogroup of Gγ for each α ≤ γ ≤ β. Therefore, 1 ⊕ Gγ = Gγ ⊕ 1 = Gγ for all
γ, then

1 ⊕Hβ = 1 ⊕ (Gβ \

⋃
{Gα : α < β})

= (1 ⊕ Gβ) \
⋃
{1 ⊕ Gα : α < β}

= Gβ \

⋃
{Gα : α < β}

= Hβ.

Similar, Hβ ⊕ 1 = Hβ, thus (6) holds. Finally, take any cofinal A ⊂ κ. It follows from |Hα+1| = |Gα| = |α| that

|

⋃
{Hα : α ∈ A}| = |

⋃
{Gα : α ∈ A}| = |G| = κ.

Let G be a gyrogroup, and let τ be a topology on G. A left topological gyrogroup consists of a gyrogroup
G and a topology τ on the set G such that for all 1 ∈ G, the left action l1 : G→ G, x 7→ 1 ⊕ x, is a continuous
mapping of the space G to itself. Similarly, we can define the concept of right topological gyrogroups. Clearly,
each topological gyrogroup is not only a left topological gyrogroup but also a right topological gyrogroup.

Let G be a gyrogroup of cardinality κ > ω, and let {Hα : α < κ} be a canonical decomposition of G. Then
for each A ⊂ κ put HA =

⋃
{Hα : α ∈ A}.

Lemma 3.4. Suppose that (G, τ,⊕) is a non-discrete irresolvable left (or right) topological gyrogroup such that
|G| = ∆(G, τ,⊕) = κ > ω, and suppose that {Hα : α < κ} is a canonical decomposition of G. Then the following
statements hold:

(1) For each subset A ⊂ κ and any 1, h ∈ G, the set
(
h ⊕ (1 ⊕HA)

)
\HA has cardinality less than κ.

(2) The family ξ = {A ⊂ κ : Int(HA) , ∅} is a free ultrafilter on κ.
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Proof. (1) Since 1, h ∈ G, there exists α, β < κ such that

1 ∈ Hα ⊂ Gα =
⋃
{Hυ : υ ≤ α}

and h ∈ Hβ ⊂ Gβ =
⋃
{Hυ : υ ≤ β}. If α < γ (β < γ), it follows from Lemma 3.3 that 1⊕Hγ = Hγ (h⊕Hγ = Hγ).

If α ≥ β, then
1 ⊕HA ⊂ Gα ∪ {Hν : ν > α, ν ∈ A}.

Hence
h ⊕ (1 ⊕HA) ⊂ Gα ∪ {Hν : ν > α, ν ∈ A},

then
(
h ⊕ (1 ⊕HA)

)
\HA ⊂ Gα. If α < β, then it also easily see that

h ⊕ (1 ⊕HA) ⊂ Gβ ∪ {Hν : ν > β, ν ∈ A}.

Hence (
h ⊕ (1 ⊕HA)

)
\HA ⊂ Gβ.

Therefore, it follows from Lemma 3.3 that
(
h ⊕ (1 ⊕HA)

)
\HA has cardinality less than κ.

(2) It is clear that HA and Hκ\A are disjoint and G = HA ∪ Hκ\A. Hence one of the sets HA or Hκ\A has
non-empty interior as G is irresolvable. Therefore, A ∈ ξ or κ \ A ∈ ξ. Indeed, exactly one of the sets A and
κ \ A belongs to ξ. Suppose not, then both A and κ \ A belong to ξ. In order to obtain a contradiction, it
suffices to prove that HA and Hκ\A are dense in G. Indeed, we need only to consider the case of HA.

Clearly, U = Int(HA) , ∅. If U is not dense in G, there exists a non-empty open set V ⊂ G such that
V ∩U = ∅. For arbitrary x ∈ U and y ∈ V, set W = (y ⊕ ((	x) ⊕U)) ∩ V. Obviously, W is open, non-empty
and |W| = κ.

By (1), we see that |W \HA| < κ, hence Int(W \HA) = ∅ in G by our assumption. By the definitions of W
and U, it follows that

W = (W \HA) ∪ (W ∩HA) ⊂ (W \HA) ∪ (HA \U),

where W \HA and HA \U are disjoint and both of them have empty interior and dense in W. Therefore, W
is resolvable. The gyrogroup G can be covered by the all possible left translations of W, so G is resolvable
by [9] which proves that the union of resolvable spaces is also resolvable. This is a contradiction.

Therefore, if U = Int(HA) , ∅, then it follows that U has to be dense in G. So A or κ \ A belong to ξ and
ξ is an ultrafilter on κ. Further, ξ is a free ultrafilter since each Hα does not belongs to ξ by (5) of Lemma
3.3.

Theorem 3.5. Suppose that (G, τ,⊕) is a non-discrete irresolvable left (or right) topological gyrogroup of non-
measurable cardinality such that ∆(G, τ,⊕) = κ. If {Hα : α < κ} is a canonical decomposition of G, then there is a
family {An : n ∈N} of subsets of κ such that:

(1)
⋃
{An : n ∈N} = κ;

(2) every set HAn =
⋃
{Hα : α ∈ An} is closed and nowhere dense in G;

(3)
⋃
{HAn : n ∈N} = G.

In particular, (G, τ,⊕) is of first category.

Proof. It follows from Lemma 3.4 that the family ξ = {A ⊂ κ : Int(HA) , ∅} is a free ultrafilter on κ. Since κ is
a non-measurable cardinal, there is a family {Bn : n ∈N} such that Bn ∈ ξ for every n and

⋂
{Bn : n ∈N} = ∅.

Then
⋂
{HBn : n ∈ N} = ∅, thus

⋃
{Hκ\Bn : n ∈ N} = G. Set An = κ \ Bn. Since An < ξ for every n ∈ N, it

follows that Int(HAn ) = ∅. Above all, we know that {HAn : n ∈ N} is a family of nowhere dense sets whose
union covers G. The proof is completed.

Corollary 3.6. If (G, τ,⊕) is a non-discrete irresolvable left topological gyrogroup (or right topological gyrogroup) of
non-measurable cardinality, then (G, τ,⊕) is of first-category.
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Proof. Let ∆(G, τ,⊕) = κ. If κ = ω, it is obvious.
Suppose that κ > ω. There exists an open neighborhood U of 0 such that |U| = κ. Then the gyrogroup

G0 = 〈U〉 is open in G and the dispersion character of G0 coincides with its power. However, it follows from
Theorem 3.5 that G0 is of first category. Therefore, G is of first category.

Corollary 3.7. Every non-discrete irresolvable topological gyrogroup of non-measurable cardinality is of first cate-
gory.

A (strongly) σ-discrete space is one which is a countable union of (closed) discrete subspaces.

Corollary 3.8. Every submaximal topological gyrogroup of non-measurable cardinality is strongly σ-discrete.

Proof. It follows directly from the facts that every nowhere dense subset is closed and discrete in a submax-
imal space and every submaximal space is irresolvable.

4. Submaximal Properties of Strongly Topological Gyrogroups

In this section, we prove that the cellularity of every submaximal strongly topological gyrogroup G is
equal to the cardinality of G. Further, we prove that every submaximal strongly topological gyrogroup of
non-measurable cardinality is hereditarily paracompact.

A topological gyrogroup (G, τ,⊕) is left κ-bounded for some cardinal κ if for every open neighborhood U
of the element 0 there exists a subset A ⊂ G with |A| ≤ κ such that A ⊕U = G. First, we need some lemmas
in order to obtain one of main results in this section.

Lemma 4.1. ([17]) Suppose that (G, τ,⊕) is a strongly topological gyrogroup with a symmetric neighborhood base U
at 0. Suppose further that U,V,W are all open neighborhoods of 0 such that V ⊕V ⊂W, W ⊕W ⊂ U and V,W ∈ U .
If a subset A of G is U-disjoint, then the family of open sets {a ⊕ V : a ∈ A} is discrete in G.

Lemma 4.2. Let (G, τ,⊕) be a strongly topological gyrogroup with a symmetric open neighborhood base U at 0. If
c(G) ≤ κ, then G is left κ-bounded.

Proof. For an arbitrary open neighborhood U of the identity element 0 in G, there exist V,W ∈ U such that
V ⊕ V ⊂W and W ⊕W ⊂ U. Let

F = {A ⊂ G : (b ⊕ V) ∩ (a ⊕ V) = ∅, for any distinct a, b ∈ A}.

Define ≤ in G such that A1 ≤ A2 if and only if A1 ⊂ A2, for any A1,A2 ∈ F . Then, (F ,≤) is a poset and the
union of any chain of V-disjoint sets is again a V-disjoint set. Therefore, it follows from Zorn’s Lemma that
there exists a maximal element A in F so that {a⊕V : a ∈ A} is a disjoint family of non-empty spen sets in G.
By Lemma 4.1, the family of open sets {a ⊕ V : a ∈ A} is discrete in G. Since c(G) ≤ κ, it follows that |A| ≤ κ.

Since A is maximal, for every x ∈ G, there exists a ∈ A such that (x ⊕ V) ∩ (a ⊕ V) , ∅. Then, there exist
v1, v2 ∈ V such that x ⊕ v1 = a ⊕ v2. By the right cancellation law (2) in Lemma 2.3, we have that

x = (x ⊕ v1) ⊕ 1yr[x, v1](	v1)
= (a ⊕ v2) ⊕ 1yr[x, v1](	v1)
∈ (a ⊕ v2) ⊕ 1yr[x, v1](V)
= (a ⊕ v2) ⊕ V
= a ⊕ (v2 ⊕ 1yr[v2, a](V))
= a ⊕ (v2 ⊕ V)
⊂ a ⊕ (V ⊕ V)
⊂ a ⊕U.

Therefore, A ⊕U = G.
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Corollary 4.3. Every separable strongly topological gyrogroup G is left ω-narrow.

From [16, Corollary 5.10], it follows that every pseudocompact rectifiable space is a Souslin space.
Therefore, we have the following corollary.

Corollary 4.4. Every pseudocompact strongly topological gyrogroup is left ω-narrow.

Proposition 4.5. If (G, τ,⊕) is a left κ-bounded strongly topological gyrogroup with a symmetric open neighborhood
base U at 0 and H is a subgyrogroup of G, then H is also left κ-bounded.

Proof. Let W be an arbitrary open neighborhood of 0 in H. Then we can fix V ∈ U such that (V⊕V)∩H ⊂W.
Since G is left κ-bounded, there is a set B with |B| ≤ κ in G such that B⊕V = G. Let C = {c ∈ B : (c⊕V)∩H , ∅}.
It is obvious that |C| ≤ |B| ≤ κ and H ⊂ C⊕V. We can find ac ∈ (c⊕V)∩H for every c ∈ C. Let A = {ac : c ∈ C}
and |A| ≤ κ in H. We show that A ⊕W = H.

Since H is a subgyrogroup and (V ⊕ V) ∩H ⊂ W ⊂ H, we have that (A ⊕ (V ⊕ V)) ∩H ⊂ A ⊕W. Hence,
it suffices to prove H ⊂ A ⊕ (V ⊕ V). For every c ∈ C, there exists v ∈ V such that ac = c ⊕ v. Therefore

c = (c ⊕ v) ⊕ 1yr[c, v](	v)
= ac ⊕ 1yr[c, v](	v)
∈ ac ⊕ 1yr[c, v](V)
= ac ⊕ V.

Thus, C ⊂ A ⊕ V. Moreover, since H ⊂ C ⊕ V, we have that

H ⊂ (A ⊕ V) ⊕ V
⊂ A ⊕ (V ⊕ 1yr[V,A](V))
= A ⊕ (V ⊕ V).

Therefore, H = A ⊕W.

Lemma 4.6. Let (G, τ,⊕) be a strongly topological gyrogroup with a symmetric open neighborhood base U at 0 and
H a closed and discrete subgyrogroup of G. Take any open neighborhood V of the identity element 0 in G such that
V ∩H = {0}.

(1) If U ∈ U such that U ⊕U ⊂ V, then H 1 A ⊕U for any A ⊂ G with |A| < |H|.
(2) If W,U ∈ U such that W ⊕W ⊂ V and U ⊕U ⊂W, then the family {1 ⊕U : 1 ∈ H} is discrete in G.

Proof. Indeed, if there is A ⊂ G with H ⊂ A ⊕ U such that |A| < |H|, then for some a ∈ A the set a ⊕ U must
contain at least two elements of H. Take any h, 1 ∈ H ∩ (a ⊕U) such that h , 1. Then there are v,u ∈ U such
that h = a ⊕ u and 1 = a ⊕ v. Since

a = (a ⊕ v) ⊕ 1yr[a, v](	v)
= 1 ⊕ 1yr[a, v](	v)
∈ 1 ⊕ 1yr[a, v](U)
= 1 ⊕U,

it follows that

h = a ⊕ u
∈ (1 ⊕U) ⊕ u
⊂ (1 ⊕U) ⊕U
= 1 ⊕ (U ⊕ 1yr[U, 1](U))
= 1 ⊕ (U ⊕U)
⊂ 1 ⊕ V.
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Therefore, 0 , 	1 ⊕ h ∈ V ∩H, which is a contradiction.
In order to prove (2), we take an arbitrary 1 ∈ G. We show that 1 ⊕U intersects at most one element of

{x ⊕U : x ∈ H}. Suppose not, then we can find a, b, c, d ∈ U and distinct p, q ∈ H such that p ⊕ a = 1 ⊕ b and
q ⊕ c = 1 ⊕ d. Since

p = (p ⊕ a) ⊕ 1yr[p, a](	a)
= (1 ⊕ b) ⊕ 1yr[p, a](	a)
∈ (1 ⊕ b) ⊕ 1yr[p, a](U)
= (1 ⊕ b) ⊕U
⊂ (1 ⊕U) ⊕U
= 1 ⊕ (U ⊕ 1yr[U, 1](U))
= 1 ⊕ (U ⊕U)
⊂ 1 ⊕W,

and by the same method, we know that 1 ∈ q ⊕W. Therefore,

p ∈ 1 ⊕W ⊂ (q ⊕W) ⊕W = q ⊕ (W ⊕ 1yr[W, q](W)) = q ⊕ (W ⊕W) ⊂ q ⊕ V,

which implies that (	q) ⊕ p ∈ V. Since p and q are different, we have (	q) ⊕ p , 0 and (	q) ⊕ p ∈ V ∩ H,
which is a contradiction.

Lemma 4.7. If G is a strongly topological gyrogroup, then there exists an open L-subgyrogroup H of G such that
|H| = 4(G).

Proof. Let G be a strongly topological gyrogroup with a symmetric open neighborhood base U at 0. Since U
is a base at 0 and G is homogeneous, it follows from Definition 2.11 that there exists an open neighborhood
V of 0 such that |V| = 4(G), then we can find U ∈ U such that U ⊂ V. Clearly, |U| ≤ |V| because U ⊂ V, hence
|U| = 4(G). Put H0 = U. We define a sequence {Hn}n∈N of subsets of G such that Hn+1 = 	(Hn⊕Hn)∪(Hn⊕Hn)
for each n ∈N. Set H =

⋃
n∈NHn, hence H is open in G and |H| = 4(G). We claim that H is an L-subgyrogroup

in G. It is clear that H is closed for the gyrogroup operation and the inverse, so H is a subgyrogroup of G.
Moreover, for any x, y ∈ G, gyr[x, y] is a groupoid homomorphism from G onto itself and gyr[x, y](U) = U.
Next we claim that gyr[x, y](Hn) = Hn for any x, y ∈ G and n ∈ N. Clearly, we have gyr[x, y](H0) = H0 for
all x, y ∈ G. By induction, we may assume that for some n ∈Nwe have gyr[x, y](Hn) = Hn for any x, y ∈ G.
Now we prove gyr[x, y](Hn+1) = Hn+1 for any x, y ∈ G.

Indeed, for all x, y ∈ G, we have

gyr[x, y](Hn+1) = gyr[x, y](	(Hn ⊕Hn) ∪ (Hn ⊕Hn))
= 	(gyr[x, y](Hn) ⊕ gyr[x, y](Hn)) ∪ (gyr[x, y](Hn) ⊕ gyr[x, y](Hn))
= 	(Hn ⊕Hn) ∪ (Hn ⊕Hn)
= Hn+1.

Then, for any z ∈ H, there exists n ∈N such that z ∈ Hn. It follows that gyr[x, y](z) ∈ gyr[x, y](Hn) = Hn ⊂ H.
Hence gyr[x, y](H) = H. Therefore, H is an L-subgyrogroup of G.

Let the gyrogroup K16 be endowed with discrete topology [22, p. 41] and letD be topological gyrogroup
in Example 2.13. Put G = K16 ×D, where G is endowed with the product topology and the operation with
coordinate. Fix an arbitrary L-subgyrogroup H in K16, for example, H = {0, 1, 2, 3} or {0, 1, 2, 3, · · · , 7}. Then
H is an open L-subgyrogroup of G such that |H| = 4(G).

Theorem 4.8. Let κ be an infinite cardinal number. If G is a left κ-bounded submaximal strongly topological
gyrogroup, then |G| ≤ κ.
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Proof. Let 4(G) = λ, and from Lemma 4.7 take an open L-subgyrogroup N of G such that |N| = λ. Then G is
a discrete union of left translations of N and it is impossible to cover G by less than |G/N| left translations of
N. Thus, |G/N| ≤ κ. Then it suffices to prove λ = |N| ≤ κ. We divide the proof into the following two cases.

Case 1 λ is a limit cardinal.
We assume that κ < λ and take a subset P ⊂ N such that κ < |P| = γ < λ. Then |〈P〉| = γ and H = 〈P〉

is closed and discrete in G since G is submaximal. From (1) of Lemma 4.6, it follows that G is not left
κ-bounded, which is a contradiction.

Case 2 λ is a successor cardinal.
Then λ = c f (λ). Since the L-subgyrogroup N is submaximal, it follows that 4(N) = |N|, then we can

take a canonical decomposition {Hα : α < λ} for N. By Lemma 3.4, there exists a cofinal set A ⊂ λ such that
HA =

⋃
{Hα : α ∈ A} is closed and discrete in G and 0 < HA.

For every α ∈ A, choose a point xα ∈ Hα. It is obvious that Y = {xα : α ∈ A} is closed and discrete in G.
By the confinality of A in λ, we have |Y| = λ. Hence we can find an open neighborhood U of 0 such that
U ∩HA = ∅. There exists V ∈ U such that V ⊕ V ⊂ U. We claim that P ⊕ V , G for any P ⊂ G with |P| < λ.

Suppose not, then there exists P ⊂ G with |P| < λ such that P ⊕ V = G. Since |Y| = λ and |P| < λ, there
exists a p ∈ P such that p ⊕ V contains at least two distinct points xα, xβ of Y, where α < β. It follows from
	xα ∈ Hα and xβ ∈ Hβ that (	xα) ⊕ xβ ∈ Hβ ⊂ HA by (6) of Lemma 3.3. Moreover, we can find u, v ∈ V such
that p ⊕ u = xα and p ⊕ v = xβ. Since

p = (p ⊕ u) ⊕ 1yr[p,u](	u) = xα ⊕ 1yr[p,u](	u) ∈ xα ⊕ 1yr[p,u](V) = xα ⊕ V,

then
xβ ∈ (xα ⊕ V) ⊕ V = xα ⊕ (V ⊕ 1yr[V, xα](V)) = xα ⊕ (V ⊕ V).

Thus, 	xα ⊕ xβ ∈ (V ⊕ V) ∩HA ⊂ U ∩HA, which is a contradiction. Thus, P ⊕ V , G. Therefore, κ ≥ λ.

Now we can easily obtain the first main result in this section.

Theorem 4.9. c(G) = |G| for every submaximal strongly topological gyrogroup G. In particular, a submaximal
strongly topological gyrogroup with the Suslin property is countable.

Proof. By Lemma 4.2, if c(G) ≤ κ, we have that G is left κ-bounded. Then it follows from Theorem 4.8 that
|G| ≤ κ.

Finally, we prove the second main result in this section.

Lemma 4.10. ([1, Lemma 3.13]) Let X be a regular space. Suppose that X =
⋃
{Hn : n ∈N}, where the subsets Hn

have the following properties:
(1) Hi is closed and discrete in X for all i ∈N;
(2) Hi ∩H j = ∅ if i , j;
(3) for every x ∈ X there is an open neighborhood Vx of x such that for any i ∈ N the family {Vx : x ∈ Hi} is

discrete in X.
Then X is weakly collectionwise Hausdorff.

Theorem 4.11. Let (G, τ,⊕) be a submaximal strongly topological gyrogroup with a symmetric open neighborhood
base U at 0. If G has non-measurable cardinality, then G is hereditarily paracompact.

Proof. From Lemma 4.7, G has an open L-subgyrogroup whose cardinality and dispersion character are
equal. Hence, if we prove hereditary paracompactness of this open L-subgyrogroup of G, then G will be
hereditarily paracompact. Without loss of generality, we may assume that |G| = κ is a uncountable cardinal
such that 4(G) = κ. From [1, Theorem 2.2], each submaximal weakly collectionwise Hausdorff space is
hereditarily paracompact, hence it suffices to prove that G is weakly collectionwise Hausdorff. Take a
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canonical decomposition {Hα : α < κ} of G. We verify that a family of subsets {Pn : n ∈ N} satisfies the
conditions of Lemma 4.10.

Indeed, it follows from Theorem 3.5 that there exists a family {An : n ∈ N} of subsets of κ such that⋃
{An : n ∈ N} = κ and Pn = HAn =

⋃
{Hα : α ∈ An} is closed and discrete in G. Now we only need to check

the condition (3) in Lemma 4.10.
For each n ∈N there exists an open neighborhood Un of 0 with Un∩HAn ⊂ {0}. Choose Vn,Wn ∈ U such

that Vn ⊕ Vn ⊂ Wn and Wn ⊕Wn ⊂ Un. For every α ∈ An, let Wn
α = Hα ⊕ Vn. For arbitrary 1 ∈ G, we show

that O = 1 ⊕ Vn can intersect at most one element of γn = {Wn
α : α ∈ An}. We assume that there are α, β ∈ An

with α < β such that Wn
α ∩ O , ∅ , Wn

β ∩ O. Therefore, there are p ∈ Hα, q ∈ Hβ and u, v,u1, v1 ∈ Vn such
that 1 ⊕ v1 = p ⊕ v and 1 ⊕ u1 = q ⊕ u. Since

1 = (1 ⊕ u1) ⊕ 1yr[1,u1](	u1)
= (q ⊕ u) ⊕ 1yr[1,u1](	u1)
∈ (q ⊕ u) ⊕ 1yr[1,u1](Vn)
⊂ (q ⊕ Vn) ⊕ Vn

= q ⊕ (Vn ⊕ 1yr[Vn, q](Vn)
= q ⊕ (Vn ⊕ Vn)
⊂ q ⊕Wn.

Then, by the same method, we have

p ∈ 1 ⊕Wn

⊂ (q ⊕Wn) ⊕Wn

= q ⊕ (Wn ⊕ 1yr[Wn, q](Wn))
= q ⊕ (Wn ⊕Wn)
⊂ q ⊕Un.

Therefore, 0 , (	q) ⊕ p ∈ Un. Moreover, 	q ∈ Hβ implies (	q) ⊕ p ∈ Hβ by (6) of Lemma 3.3. It is contradict
with HAn ∩Un ⊂ {0}. Thus, γn = {Wn

α : α ∈ An} is discrete in G.
For each α ∈ An, since |Gα| < κ, we have that the subgyrogroup Gα =

⋃
{Hυ : υ ≤ α} is closed and discrete

in G. Let U be an open neighborhood of 0 such that U∩Gα = {0}. We can find V,W ∈ U such that V⊕V ⊂W
and W ⊕W ⊂ U. It follows from (2) of Lemma 4.6 that the family µ = {x ⊕ V : x ∈ Gα} is discrete.

For an arbitrary n ∈ N, if α ∈ An and p ∈ Hα, let Vp = (p ⊕ V) ∩Wn
α. It is clear that µn = {Vp : p ∈ Pn} is

discrete in G and p ∈ Vp for every p ∈ Pn.
Therefore, the conditions (1)-(3) in Lemma 4.10 hold and it follows from Lemma 4.10 that G is weakly

collectionwise Hausdorff.

By [10, Theorem 7.2], we know that if a normal space is a countable union of its strongly zero-dimensional
spaces, then it is strongly zero-dimensional. Therefore, we have the following results.

Corollary 4.12. If a submaximal strongly topological gyrogroup G has non-measurable cardinality, then dim(G) = 0.
In particular, G cannot be connected.

Corollary 4.13. If there does not exist any measurable cardinal, then every submaximal strongly topological gy-
rogroup is hereditarily paracompact and zero-dimensional in the sense of the dimension dim. In particular, no
submaximal infinite strongly topological gyrogroup is connected.

Since every strongly topological gyrogroup is a topological gyrogroup, it is natural to pose the following
question.

Question 4.14. Is each submaximal topological gyrogroup G of non-measurable cardinality hereditarily paracom-
pact?
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