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Abstract. In this article we recall a remarkable result stated as ”For a fixed α, 0 < α ≤ 1, the set of all
bounded statistically convergent sequences of order α is a closed linear subspace of m (m is the set of all bounded real
sequences endowed with the sup norm)” by Bhunia et al. (Acta Math. Hungar. 130 (1-2) (2012), 153–161) and to
develop the objective of this perception we demonstrate that the set of all bounded statistically convergent
sequences of order α may not form a closed subspace in other sequence spaces. Also we determine two
different sequence spaces in which the set of all statistically convergent sequences of order α (irrespective
of boundedness) forms a closed set.

1. Introduction

The phenomenon of statistical convergence had been appeared as a generalization of usual convergence
in the middle of twentieth century. Circumstantially this is to mention that in the same year 1951, Fast
[4] and Steinhaus [12] intimated this prime notion but in independent ways. In this description we now
proceed to the definition of statistical convergence. Meanwhile we delineate asymptotic density.

LetN denote the set of all natural numbers and A ⊆N. The expression A(m,n) (where m,n ∈N) denotes
the cardinality of the set A ∩ [m,n]. The upper and lower asymptotic (or natural) densities of the set A are
respectively defined as

d(A) = lim sup
n→∞

A(1,n)
n

and d(A) = lim inf
n→∞

A(1,n)
n

.

If d(A) = d(A) is satisfied, we say that the asymptotic density of A exists and is denoted by d(A). Specifically

d(A) = lim
n→∞

A(1,n)
n

.

Now we illustrate the definition of statistical convergence: A sequence x = {xn}n∈N of real numbers is
said to be statistically convergent to a real number c if for any ε > 0, the set A(ε) = {n ∈N : |xn − c| ≥ ε} has

the asymptotic density zero. We symbolize this as xn
St
−→ c or St − lim x = c. We shall also use the notation

m0 to denote the set of all statistically convergent sequences with real entries.
A sequence {xn}n∈N is said to be statistically bounded [13] if there exists a positive real number M such

that the asymptotic density of the set {n ∈ N : |xn| ≥ M} is zero. For more references please go through
[2, 3, 5–7, 9, 11].
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In such an incredible manner Šalát [8] amplified this subject and introduced many indispensable results.
We quote below a conventional one.

Theorem 1.1. [8] The set of all bounded statistically convergent sequences of real numbers form a closed linear
subspace of the norm linear space m (the set of all bounded real sequences endowed with the sup norm).

On the other hand, an interesting concept regarding to the statistical convergence was materialized by
Bhunia et al. [1] and termed as statistical convergence of order α. The depiction is as follows:
Let α be any real number such that 0 < α ≤ 1, then upper and lower α-asymptotic densities of the set A(⊂N)
are respectively defined as

dα(A) = lim sup
n→∞

A(1,n)
nα

and dα(A) = lim inf
n→∞

A(1,n)
nα

.

If dα(A) = dα(A), then we say that the α-asymptotic density (or, α-natural density) of A exists and it is

denoted by dα(A). Clearly dα(A) = lim
n→∞

A(1,n)
nα

.

A sequence x = {xn}n∈N of real numbers is said to be statistically convergent of order α to c if for every

ε > 0, dα({n ∈ N : |xn − c| ≥ ε}) = 0. We express this as Stα − lim x = c or xn
Stα
−−→ c. The set of all statistically

convergent sequences of order α (0 < α ≤ 1) is denoted by mα
0 .

Succeedingly in the year 2010, Bhunia et al. [1] did an extension of Šalát’s Theorem 1.1 for statistical
convergence of order α but keeping the sequence space m (where m is the set of all bounded real sequences
endowed with the sup norm) unaltered. This result has an relevant role in our study and so we state it.

Theorem 1.2. [1] For a fixed α, 0 < α ≤ 1, the set mα
0 ∩m is a closed linear subspace of m (where m is the set of all

bounded real sequences endowed with the sup norm).

In due course of time, from this aforementioned discussion we could scrutinize the objective ”closeness”
of the set of all bounded statistically convergent sequences of order α (for any α in 0 < α ≤ 1) had been
explained only over the space m (m is the set of all bounded real sequences endowed with the sup norm).
Our aspiration is to develop the characteristic of the above mentioned set apart from the sequence space
m and to do so we take two foremost sequence spaces such as Hilbert-Cube space and Frechet sequence
space in which Theorem 1.2 does not hold. Conjointly we explore two sequence spaces in which the set of
all statistically convergent sequences of order α regardless of boundedness been closed.

2. Main Results

In this section our first context of observation is Hilbert-Cube Space.

2.1. Hilbert-Cube Space
Let H∞ be the set of all real sequences {xn}n∈N such that 0 ≤ xn ≤ 1 for all n ∈N. Let the distance function

ρ be defined by

ρ(x, y) =

∞∑
k=1

1
2k
|xk − yk|

where x = {xk}k∈N and y = {yk}k∈N are elements in H∞. This distance function ρ forms a metric on H∞. The
space H∞ is called the Hilbert-Cube Space.

While reformulating the Theorem 1.2 based over the Hilbert-Cube Space, the objective of closeness
violates. Our following first example asserts this.

Example 2.1. The space mα
0 ∩H∞ is not a closed subspace of H∞.
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Proof. In our line of proof we assume a sequence {x(n)
}n∈N in the form x(n) = {x(n)

k }k∈N belongs to mα
0 ∩H∞ for

n ∈N and that {x(n)
}n∈N converges to x in H∞ but x does not belong to mα

0 ∩H∞.
Let x(n) = {x(n)

k }k∈N where

x(n)
k =

1, k ∈ {12, 22, 32, ...} ∪ {3, 5, ..., 2n − 1},
0, otherwise.

Clearly each x(n) = {x(n)
k }k∈N (n = 1, 2, 3, ...) is statistically convergent of order α to 0 (where 1

2 < α ≤ 1).
Setting x = {xk}k∈N where

xk =

1, k ∈ {12, 22, 32, ...} ∪ {2k − 1 : k ∈N},
0, otherwise.

Now,

lim
n→∞

ρ(x(n), x) = lim
n→∞

 ∞∑
k=1

1
2k
|x(n)

k − xk|

 = lim
n→∞

( 1
22n+1 +

1
22n+3 +

1
22n+5 + ...

)

= lim
n→∞

[ 1
22n+1 (1 +

1
22 +

1
24 + ...)

]
= lim

n→∞

1
22n+1 .

4
3

= 0.

This implies lim
n→∞

x(n) = x in H∞.

For 0 < ε < 1 we consider two sets

A(ε) = {k ∈N : |xk − 0| ≥ ε} = {12, 22, 32, ...} ∪ {2k − 1 : k ∈N},

B(ε) = {k ∈N : |xk − 1| ≥ ε} =N \ ({12, 22, 32, ...} ∪ {2k − 1 : k ∈N}).

Therefore we get

dα(A(ε)) = dα(B(ε)) =

∞, if α ∈ ( 1
2 , 1),

1
2 , if α = 1.

As a conclusion we observe that the sequence x = {xk}k∈N does not belong to mα
0 ∩ H∞. Hence our

assertion follows.

2.2. Fréchet Sequence Space

Let F be the set of all real sequences. Also let the distance function σ be defined by

σ(x, y) =

∞∑
k=1

1
2k

|xk − yk|

1 + |xk − yk|

where x = {xk}k∈N and y = {yk}k∈N are in F. This distance function σ forms a metric over F and hence F is
called the Fréchet sequence space.

Our next aim is to discuss the closeness of the space mα
0 ∩ F.

Example 2.2. The space mα
0 ∩ F is not a closed subspace of F. In particular, the space mα

0 is not a closed subspace of F.
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Proof. Let us consider x(n) = {x(n)
k }k∈N ∈ mα

0 for n = 1, 2, 3, ... and {x(n)
}n∈N be convergent to x where x = {xk}k∈N

is in (F, σ). Our target is to show that x < mα
0 .

Let 1
2 < α ≤ 1. Define the sequences {x(n)

k }k∈N for n ∈N and x = {xk}k∈N respectively as follows:

x(n)
k =

1, k ∈ {12, 22, 32, ...} ∪ {3, 5, ..., 2n − 1},
0, otherwise,

and xk =

1, k ∈ {12, 22, 32, ...} ∪ {2k − 1 : k ∈N},
0, otherwise.

Clearly each x(n) = {x(n)
k }k∈N (n = 1, 2, 3, ...) is statistically convergent of order α to 0.

Now

lim
n→∞

σ(x(n), x) = lim
n→∞

 ∞∑
k=1

1
2k

|x(n)
k − xk|

1 + |x(n)
k − xk|

 = lim
n→∞


∞∑

k=2n+1

1
2k

k∈{2m−1:m∈N}\{m2:m∈N}

×
1
2

 ≤ lim
n→∞

1
22n+1 .

4
3

= 0.

This implies x(n)
→ x in F. But for each 0 < ε < 1 and x = {xk}k∈N,

A(ε) = {k ∈N : |xk − 0| ≥ ε} = {12, 22, 32, ...} ∪ {2k − 1 : k ∈N}.

Hence the sequence x = {xk}k∈N is not statistically convergent of order α (where 1
2 < α ≤ 1). So x < mα

0 .

Remark 2.3. From the above Example 2.2 we can also draw a conclusion that the set of all bounded statistically
convergent sequences of order α is not a closed subspace in the Fréchet sequence space.

2.3. Another Sequence Spaces

In this segment we introduce two effectual sequence spaces so that not only the set of all bounded
statistically convergent sequences of order α form a closed set but also the set of all statistically convergent
sequences of order α form a closed set.

Suppose (X, %) be any complete metric space. We introduce the set mα
% (where 0 < α ≤ 1) as follows:

mα
% = {x = {xn}n∈N : xn ∈ X for all n ∈N and Stα − lim x ∈ X}.

This set mα
% plays an important role on the following two theorems.

Our first approach to a metric on the sequence space Xω (where ω = {1, 2, 3, ...}) as

τ(x, y) = sup
k∈N

(
%(xk, yk)

1 + %(xk, yk)

)
where x = {xk}k∈N and y = {yk}k∈N belong to Xω. This distance function τ forms a metric on Xω.

Theorem 2.4. The set mα
% forms a closed subspace of (Xω, τ) for a fixed α ranges in 0 < α ≤ 1.

Proof. We yield to expound that in the sequence space Xω, if any sequence {x(n)
}n∈N in mα

% be such that
{x(n)
}n∈N converges to x in Xω then x belongs to mα

% .

Suppose x(n) = {x(n)
k }k∈N

Stα
−−→ ξn where n ∈N. This implies {x(n)

k }k∈N
St
−→ ξn where n ∈N.

We prove the theorem in two steps:

Step (i): To show {ξn}n∈N is a convergent sequence in X.
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Step (ii): Finally x = {xk}k∈N
Stα
−−→ ξ, where lim

n→∞
ξn = ξ.

We begin with step (i):

Since τ(x(n), x)→ 0 as n→∞, then for each 0 < ε < 1 there exists a natural number n0 such that

τ(x(n), x( j)) <
ε
4

for all n, j ≥ n0

⇒ sup
k∈N
{
%(x(n)

k , x
( j)
k )

1 + %(x(n)
k , x

( j)
k )
} <

ε
4

for all n, j ≥ n0

⇒
%(x(n)

k , x
( j)
k )

1 + %(x(n)
k , x

( j)
k )

<
ε
4

for all n, j ≥ n0 and k ∈N

⇒ %(x(n)
k , x

( j)
k ) <

ε
4 − ε

<
ε
3

for all n, j ≥ n0 and k ∈N.

Since {x(n)
k }k∈N

St
−→ ξn then there exists An(⊆N) such that d(An) = 1 and lim

k→∞
k∈An

x(n)
k = ξn

⇒ %(x(n)
k , ξn) <

ε
3

for all k ∈ An and k ≥ l0 (where l0 ∈N depends on ε).

In a similar manner as {x( j)
k }k∈N

St
−→ ξ j so there exists A j(⊆N) such that d(A j) = 1 and lim

k→∞
k∈A j

x( j)
k = ξ j

⇒ %(x( j)
k , ξ j) <

ε
3

for all k ∈ A j and k ≥ q0 (where q0 ∈N depends on ε).

Now choose a natural number k such that k ∈ An ∩ A j and k ≥ max{l0, q0}. Thus we derive that

%(ξn, ξ j) ≤ %(x(n)
k , ξn) + %(x( j)

k , ξ j) + %(x(n)
k , x

( j)
k ) <

ε
3

+
ε
3

+
ε
3

= ε for all n, j ≥ n0.

Hence {ξn}n∈N forms a Cauchy sequence in the complete metric space (X, %).Consequently lim
n→∞

ξn = ξ ∈ X.

Now we proceed to step (ii):

Since τ(x(n), x)→ 0 and %(ξn, ξ)→ 0 as n→∞, therefore we get

τ(x(p), x) <
ε
4

for all p ≥ a0 and %(ξp, ξ) <
ε
3

for all p ≥ b0,

⇒ τ(x(p), x) <
ε
4

and %(ξp, ξ) <
ε
3

for all p ≥ max{a0, b0}.

If we choose a fixed p such that p ≥ max{a0, b0} then

%(x(p)
k , xk) <

ε
3

and %(ξp, ξ) <
ε
3

for all k ∈N.

Applying above inequalities we get %(xk, ξ) ≤ %(x(p)
k , ξp) + %(ξp, ξ) + %(x(p)

k , xk) ≤ %(x(p)
k , ξp) + 2ε

3 for all k ∈N
which procures {k ∈N : %(xk, ξ) ≥ ε} ⊆ {k ∈N : %(x(p)

k , ξp) + 2ε
3 ≥ ε} = {k ∈N : %(x(p)

k , ξp) ≥ ε
3 }.

Accordingly dα({k ∈ N : %(x(p)
k , ξp) ≥ ε

3 }) = 0 and as a subsequence dα({k ∈ N : %(xk, ξ) ≥ ε}) = 0. This

shows that x = {xk}k∈N
Stα
−−→ ξ. Hence we reach to the desired conclusion.
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Finally, let us define another metric on the sequence space Xω as

D(x, y) = sup
k∈N
{%̄(xk, yk)},

where x = {xk}k∈N, y = {yk}k∈N are elements of Xω and %̄ is the standard bounded metric on X (i.e.,
%̄ = min{%, 1}). This distance function D forms a metric on Xω

and is called uniform metric on Xω

Theorem 2.5. For a fixed α (0 < α ≤ 1) the set mα
% is a closed subspace of Xω (Xω-endowed with uniform metric).

Proof. Let x(n) = {x(n)
k }k∈N ∈ mα

% (n = 1, 2, 3, ...) and lim
n→∞

x(n) = x where x = {xk}k∈N ∈ Xω, i.e., lim
n→∞

D(x(n), x) = 0.

We shall show that x ∈ mα
% . By our assumption, each x(n) is statistically convergent of order α in X and let

Stα − lim x(n) = ξn (n = 1, 2, 3, ...). We require two steps to prove the theorem.

Step (I) : {ξn}n∈N is a convergent sequence in X.

Step (II) : Stα − limx = lim ξn.

(I) : Let 0 < δ < 1. Since lim
n→∞

x(n) = x so {x(n)
}n∈N is Cauchy in Xω. Then there exists k0 ∈ N such that for

u, v ∈N and u, v > k0 we have
D(x(u), x(v)) < δ/3

⇒ sup
k∈N
{%̄(x(u)

k , x
(v)
k )} < δ/3 < 1

⇒ %̄(x(u)
k , x

(v)
k ) < δ/3 < 1 for all k ∈N,

⇒ %(x(u)
k , x

(v)
k ) < δ/3 for all k ∈N.

We know that, if {x(n)
k }k∈N

Stα
−−→ ξn then {x(n)

k }k∈N
St
−→ ξn where n ∈N.

Since {x(u)
k }k∈N

St
−→ ξu then there exists Au(⊆N) such that d(Au) = 1 and lim

k→∞
k∈Au

x(u)
k = ξu

⇒ %(x(u)
k , ξu) <

δ
3

for all k ∈ Au and k ≥ k1 (where k1 ∈N depends on δ).

Similarly, {x(v)
k }k∈N

St
−→ ξv then there exists Av(⊆N) such that d(Av) = 1 and lim

k→∞
k∈Av

x(v)
k = ξv

⇒ %(x(v)
k , ξv) <

δ
3

for all k ∈ Av and k ≥ k2 (where k2 ∈N depends on δ).

Since d(Au ∩ Av) = 1 so there exists a natural number k such that k ∈ Au ∩ Av and k ≥ max{k1, k2} which
together imply

%(ξu, ξv) ≤ %(x(u)
k , ξu) + %(x(v)

k , ξv) + %(x(u)
k , x

(v)
k ) < δ for all u, v ≥ k0.

Hence {ξn}n∈N is a Cauchy sequence in a complete metric space (X, %). So conveniently lim
n→∞

ξn = ξ ∈ X.

(II): Let 0 < ε < 1 be given. Choose v0 ∈ N such that for v ∈ N and v > v0 we have simultaneously
%(ξv, ξ) < ε/3 and D(x(v), x) < ε/3. Also we have %(x(v)

k , xk) < ε/3 for all k ∈N. Now for each k ∈Nwe have

%̄(xk, ξ) ≤ %̄(xk, x
(v)
k ) + %̄(x(v)

k , ξv) + %̄(ξv, ξ) <
ε
3

+ %̄(x(v)
k , ξv) +

ε
3
. (1)

Let A(ε) = {k ∈N : %(xk, ξ) ≥ ε} and Av(ε/3) = {k ∈N : %(x(v)
k , ξv) ≥ ε/3}. Then (A(ε))c = {k ∈N : %(xk, ξ) <

ε} = {k ∈ N : %̄(xk, ξ) < ε} and (Av(ε/3))c = {k ∈ N : %(xv
k , ξv) < ε/3} = {k ∈ N : %̄(x(v)

k , ξv) < ε/3}, where c
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stands for complement.

From (1) now it easily follows that (Av(ε/3))c
⊂ (A(ε))c

⇒ A(ε) ⊂ Av(ε/3). Since dα(Av(ε)) = 0 so
dα(A(ε)) = 0. Hence Stα − limx = ξ and this proves the result.

Remark 2.6. In particular if we consider X = R and % is the usual metric onR then from Theorem 2.4 and Theorem
2.5 we get the set of all statistically convergent sequences of order α forms a closed subspace w.r.t the metrics τ and D.
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