Filomat 35:7 (2021), 2267–2275 https://doi.org/10.2298/FIL2107267C



Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

# Generalized Jacobson's Lemma for Generalized Drazin Inverses

# Huanyin Chen<sup>a</sup>, Marjan Sheibani Abdolyousefi<sup>b</sup>

<sup>a</sup>Department of Mathematics, Hangzhou Normal University, Hangzhou, China <sup>b</sup>Farzanegan Campus, Semnan university, Semnan, Iran

**Abstract.** We present new generalized Jacobson's lemma for generalized Drazin inverses. This extends the main results on g-Drazin inverse of Yan, Zeng and Zhu (Linear & Multilinear Algebra, **68**(2020), 81–93).

## 1. Introduction

Let *R* be an associative ring with an identity. The commutant of  $a \in R$  is defined by  $comm(a) = \{x \in R \mid xa = ax\}$ . The double commutant of  $a \in R$  is defined by  $comm^2(a) = \{x \in R \mid xy = yx \text{ for all } y \in comm(a)\}$ . An element  $a \in R$  has g-Drazin inverse in case there exists  $x \in R$  such that

$$x = xax, x \in comm^2(a), a - a^2x \in \mathbb{R}^{qnil}.$$

The preceding *x* is unique if it exists, we denote it by  $a^d$ . Here,  $R^{qnil} = \{a \in R \mid 1 + ax \in R^{-1} \text{ for every } x \in comm(a)\}$ , where  $R^{-1}$  stands for the set of all invertible elements of *R*. As it is known,  $a \in R$  has g-Drazin inverse if and only if there exists an idempotent  $p \in comm^2(a)$  such that  $a + p \in R$  is invertible and  $ap \in R^{qnil}$  (see [4, Lemma 2.4]).

For any  $a, b \in R$ , Jacobson's Lemma for invertibility states that  $1 - ab \in R^{-1}$  if and only if  $1 - ba \in R^{-1}$  and  $(1 - ba)^{-1} = 1 + b(1 - ab)^{-1}a$  (see [7, Lemma 1.4]). Let  $a, b \in R^d$ . Zhuang et al. proved the Jacobson's Lemma for g-Drazin inverse. That is, it was proved that  $1 - ab \in R^d$  if and only if  $1 - ba \in R^d$  and

$$(1 - ba)^d = 1 + b(1 - ab)^d a$$

(see [15, Theorem 2.3]). Jacobson's Lemma plays an important role in matrix and operator theory. Many papers discussed this lemma for g-Drazin inverse in the setting of matrices, operators, elements of Banach algebras or rings. Mosić generalized Jacobson's Lemma for g-Drain inverse to the case that bdb = bac, dbd = acd (see [7, Theorem 2.5]). Recently, Yan et al. extended Jacobson's Lemma to the case dba = aca, dbd = acd (see [12, Theorem 3.3]). This condition was also considered for bounded linear operators in [10, 11, 13].

The motivation of this paper is to extend the main results of Yan et al. (see [12]) to a wider case. The Drazin inverse of  $a \in R$ , denoted by  $a^D$ , is the unique element  $a^D$  satisfying the following three equations

$$a^D = a^D a a^D, a^D \in comm(a), a^k = a^{k+1}a$$

Keywords. Generalized Drazin inverse; Drazin inverse; Group inverse; Jacobson's lemma; Ring

Communicated by Dijana Mosić

<sup>2010</sup> Mathematics Subject Classification. Primary 15A09; 16U99; 47A05

Received: 05 June 2020; Revised: 12 March 2021; Accepted: 25 March 2021

Corresponding author: Marjan Sheibani Abdolyousefi

Research supported by the Natural Science Foundation of Zhejiang Province, China (No. LY21A010018)

Email addresses: huanyinchen@aliyun.com (Huanyin Chen), m.sheibani@semnan.ac.ir (Marjan Sheibani Abdolyousefi)

for some  $k \in \mathbb{N}$ . The smallest integer *k* is called the Drazin index of *a*, and is denoted by *i*(*a*). Moreover, we prove the generalized Jacobson's lemma for the Drazin inverse.

Throughout the paper, all rings are associative with an identity.  $R^D$  and  $R^d$  denote the sets of all Drazin and g-Drazin invertible elements in R respectively. We use  $R^{nil}$  to denote the set of all nilpotents of the ring R.  $\mathbb{C}$  stands for the field of all complex numbers.

# 2. Generalized Jacobson's lemma

We come now to the main result of this paper which will be the tool in our following development.

**Theorem 2.1.** Let *R* be a ring, and let  $a, b, c, d \in R$  satisfying

$$(ac)^2 = (db)(ac), (db)^2 = (ac)(db);$$
  
 $b(ac)a = b(db)a, c(ac)d = c(db)d.$ 

*Then*  $\alpha = 1 - bd \in \mathbb{R}^d$  *if and only if*  $\beta = 1 - ac \in \mathbb{R}^d$ *. In this case,* 

$$\beta^{d} = \left[ 1 - d\alpha^{\pi} (1 - \alpha (1 + bd))^{-1} bac \right] (1 + ac) + d\alpha^{d} bac.$$

*Proof.* Let  $p = \alpha^{\pi}$ ,  $x = \alpha^{d}$ . Then  $1 - p\alpha(1 + bd) \in \mathbb{R}^{-1}$ . Let

$$y = \left[1 - dp(1 - p\alpha(1 + bd))^{-1}bac\right](1 + ac) + dxbac.$$

We shall prove that  $\beta^d = y$ .

Step 1.  $y\beta y = y$ . We see that

$$y\beta = 1 - (ac)^{2} - dp(1 - p\alpha(1 + bd))^{-1}bac[1 - (ac)^{2}] + dxbac(1 - ac)$$
  

$$= 1 - [dbac - dxbac(1 - ac)] - dp(1 - p\alpha(1 + bd))^{-1}[bac - bac(ac)^{2}]$$
  

$$= 1 - [dbac - dx(bac - bacac)] - dp(1 - p\alpha(1 + bd))^{-1}[ba - bacdba]c$$
  

$$= 1 - [dbac - dx(1 - bd)bac] - dp(1 - p\alpha(1 + bd))^{-1}[1 - (bd)^{2}]bac$$
  

$$= 1 - dpbac - dp(1 - p\alpha(1 + bd))^{-1}p\alpha(1 + bd)bac$$
  

$$= 1 - dp(1 - p\alpha(1 + bd))^{-1}[(1 - p\alpha(1 + bd)) + p\alpha(1 + bd)]bac$$
  

$$= 1 - dp(1 - p\alpha(1 + bd))^{-1}bac.$$

Since  $acdbd = a(cdbd) = a(cacd) = (ac)^2 d = (dbac)d = dbacd$ , we have (bacd)(bd) = (bd)(bacd), and so  $(bacd)\alpha = \alpha(bacd)$ . Hence, (bacd)x = x(bacd), and then

$$dp(1 - p\alpha(1 + bd))^{-1}bacdxbac(1 - ac)$$
$$= d(1 - p\alpha(1 + bd))^{-1}pxbacdbac(1 - ac) = 0$$

Therefore we have

$$y\beta y = y - dp(1 - p\alpha(1 + bd))^{-1}bacy$$
  
=  $y - dp(1 - p\alpha(1 + bd))^{-1}bac[1 - dp(1 - p\alpha(1 + bd))^{-1}bac(1 + ac)$   
=  $y - dp(1 - p\alpha(1 + bd))^{-1}bac(1 + ac) + dp(1 - p\alpha(1 + bd))^{-2}(bacd)bac(1 + ac)$   
=  $y - dp(1 - p\alpha(1 + bd))^{-1}(1 + bd)bac + dp(1 - p\alpha(1 + bd))^{-2}(bd)^{2}(1 + bd)bac$   
=  $y - dp(1 - p\alpha(1 + bd))^{-2}[p - p\alpha(1 + bd) - p(bd)^{2}(1 + bd)bac = y.$ 

Step 2.  $\beta - \beta y \beta \in R^{qnil}$ . Since  $y = y\beta y$ , we see that  $(1 - y\beta)^2 = 1 - y\beta$ . Hence,

$$\beta - \beta y\beta = \beta(1 - y\beta)$$
  
=  $\beta dp(1 - p\alpha(1 + bd))^{-1}(bacd)p(1 - p\alpha(1 + bd))^{-1}bac$   
=  $\beta d(bacd)p(1 - p\alpha(1 + bd))^{-2}bac$   
=  $(1 - ac)d(bacd)p(1 - p\alpha(1 + bd))^{-2}bac$   
=  $d\alpha bacdp(1 - p\alpha(1 + bd))^{-2}bac$ .

Let  $z \in comm(\beta - \beta y\beta)$ . Then

 $zd\alpha bacdp(1 - p\alpha(1 + bd))^{-2}bac = d\alpha bacdp(1 - p\alpha(1 + bd))^{-2}bacz.$ 

We will suffice to prove

$$1 + d\alpha bacdp(1 - p\alpha(1 + bd))^{-2}bacz \in R^{-1}.$$

Clearly, we have

$$p = (bd)^2 p [1 - p\alpha(1 + bd)]^{-1} = (bd)^4 p [1 - p\alpha(1 + bd)]^{-2}$$

Hence, we get

| (baczdbacd)αp | = | $(baczd)\alpha bacdp[1 - p\alpha(1 + bd)]^{-2}(bd)^4$                   |
|---------------|---|-------------------------------------------------------------------------|
|               | = | $(baczd)\alpha bacdp[1 - p\alpha(1 + bd)]^{-2}bac(db)^{2}d$             |
|               | = | $bac \left[ zd\alpha bacdp(1 - p\alpha(1 + bd))^{-2}bac \right] acdbd$  |
|               | = | $bac \left[ d\alpha bacdp(1 - p\alpha(1 + bd))^{-2}bacz \right] acdbd$  |
|               | = | $bdbdbacd \left[ \alpha p(1 - p\alpha(1 + bd))^{-2} bacz \right] acdbd$ |
|               | = | $bacdbdbd \alpha p(1 - p\alpha(1 + bd))^{-2}bacz a(cdbd)$               |
|               | = | $bdbdbdbd \alpha p(1 - p\alpha(1 + bd))^{-2}bacz a(cacd)$               |
|               | = | $bdbdbdd\alpha p[1 - p\alpha(1 + bd)]^{-2}baczdbacd$                    |
|               | = | $\alpha p(baczdbacd).$                                                  |
|               |   |                                                                         |

Step 3.  $y \in comm^2(\beta)$ . Let  $s \in comm(\beta)$ . Then  $s\beta = \beta s$ , and so s(ac) = (ac)s. Claim 1. s(dxbac) = (dxbac)s. We easily check that

 $(bacsdbd)\alpha = bacs\beta dbd = bac\beta sdbd = \alpha(bacsdbd).$ 

Hence

(bacsdbd)x = x(bacsdbd),

and then

$$\begin{split} s(dpbac) &= sd(bd)^4 p [1 - p\alpha(1 + bd)]^{-2} bac \\ &= s(ac)^2 db db dp [1 - p\alpha(1 + bd)]^{-2} bac \\ &= d(bacsdbd) bdp [1 - p\alpha(1 + bd)]^{-2} bac \\ &= db dp [1 - p\alpha(1 + bd)]^{-2} (bacsdbd) bac \\ &= db dp [1 - p\alpha(1 + bd)]^{-2} bacs(ac)^3 \\ &= d(bd)^4 p [1 - p\alpha(1 + bd)]^{-2} bacs \\ &= (dpbac)s. \end{split}$$

Since  $sdbac = s(ac)^2 = (ac)^2 s = dbacs$ , we have

 $sd\alpha xbac = d\alpha xbacs$ ,

and so

sdxbac - sdbdxbac = dxbacs - dbdxbacs.

2269

On the other hand, we have

$$\begin{split} s(dbdpbac) &= s(lod)^5 p[1 - p\alpha(1 + bd)]^{-2}bac \\ &= s(\alpha)^3 dbdp[1 - p\alpha(1 + bd)]^{-2}bac \\ &= dbdbd[1 - p\alpha(1 + bd)]^{-2}(hacdbdpbac) \\ &= dbdbdp[1 - p\alpha(1 + bd)]^{-2}(hacdbdpbac) \\ &= dbdbdp[1 - p\alpha(1 + bd)]^{-2}(hacdbdpbac) \\ &= dbdbdp[1 - p\alpha(1 + bd)]^{-2}(hacdbdpbac) \\ &= dbdbdpac). \end{split}$$
Since  $sdbdbac = s(ac)^3 = (ac)^{3}s = dbdbacs, we have \\ dbdaxbacs = sdbdaxbac. \\ Then we have \\ dbdaxbacs = sdbdaxbac, \\ &= s(dbdbaxbac) \\ &= s(dbaxba$ 

**Corollary 2.2.** ([12, Theorem 3.1]) Let R be a ring, and let  $a, b, c, d \in R$  satisfying

acd = dbd, dba = aca.

*Then*  $1 - bd \in \mathbb{R}^d$  *if and only if*  $1 - ac \in \mathbb{R}^d$ *. In this case,* 

$$(1 - bd)^d = 1 - d(1 - bd)^{\pi} (1 - (1 - bd)^{\pi} (1 - bd)(1 + bd))^{-1} bac(1 + ac) + d(1 - bd)^{\pi} (1 - bd)^{\pi} (1 - bd)^{-1} bac(1 + ac) + d(1 - bd)^{\pi} (1 - bd)^{-1} bac(1 + ac) + d(1 - bd)^{\pi} (1 - bd)^{\pi} ($$

 $d(1-ac)^d bac.$ 

*Proof.* By hypothesis, we easily check that

 $(ac)^{2} = (aca)c = (dba)c = (db)(ac),$  $(db)^{2} = (dbd)b = (acd)b = (ac)(db);$ b(ac)a = b(aca) = b(dba) = b(db)a,c(ac)d = c(acd) = c(dbd) = c(db)d.

Then the result follows by Theorem 2.1.  $\Box$ 

We now generalize [12, Corollary 3.5] as follows.

**Corollary 2.3.** *Let* R *be a ring, and let*  $a, b, c \in R$  *satisfying* 

$$(aba)b = (aca)b, b(aba) = b(aca),$$
  
 $(aba)c = (aca)c, c(aba) = c(aca).$ 

*Then*  $1 - ba \in \mathbb{R}^d$  *if and only if*  $1 - ac \in \mathbb{R}^d$ *. In this case,* 

$$(1-ba)^d = \left[1 - a(1-ba)^{\pi}(1-(1-ba)^{\pi}(1-ba)(1+ba))^{-1}bac\right](1+ac) + a(1-ac)^d bac.$$

*Proof.* By hypothesis, we verify that

 $(ac)^{2} = (aca)c = (aba)c = (ab)(ac),$   $(ab)^{2} = (aba)b = (aca)b = (ac)(db);$  b(ac)a = b(aca) = b(aba) = b(ab)a,c(ac)a = c(aca) = c(aba) = c(ab)a.

This completes the proof by Theorem 2.1.  $\Box$ 

It is convenient at this stage to derive the following.

**Theorem 2.4.** Let *R* be a ring, let  $n \in \mathbb{N}$ , and let  $a, b, c, d \in \mathcal{A}$  satisfying

$$(ac)^{2} = (db)(ac), (db)^{2} = (ac)(db);$$
  
 $b(ac)a = b(db)a, c(ac)d = c(db)d.$ 

Then  $(1 - bd)^n \in \mathbb{R}^d$  if and only if  $(1 - ac)^n \in \mathbb{R}^d$ . *Proof.*  $\Rightarrow$  Let  $\alpha = (1 - ac)^n$ . Then

$$\begin{aligned} \alpha &= \sum_{i=0}^{n} (-1)^{i} \binom{n}{i} (ac)^{i} \\ &= 1 - a \sum_{i=1}^{n} (-1)^{i} \binom{n}{i} c(ac)^{i-1} \\ &= 1 - ac', \end{aligned}$$

where  $c' = \sum_{i=1}^{n} (-1)^{i} {n \choose i} c(ac)^{i-1}$ . Let  $\beta = (1 - ba)^{n}$ . Then

$$\beta = \sum_{i=0}^{n} (-1)^{i} {n \choose i} (bd)^{i}$$
  
=  $1 - \left(\sum_{i=1}^{n} (-1)^{i} {n \choose i} (bd)^{i-1} b\right) d$   
=  $1 - b' d$ ,

where  $b' = \sum_{i=1}^{n} (-1)^{i} \binom{n}{i} (bd)^{i-1}b$ . We directly compute that

$$(ac')^{2} = \left[a\sum_{i=1}^{n} (-1)^{i} \binom{n}{i}c(ac)^{i-1}\right]^{2} = \left[\sum_{i=1}^{n} (-1)^{i} \binom{n}{i}(ac)^{i}\right]^{2} = \left[\sum_{i=1}^{n} (-1)^{i} \binom{n}{i}(ac)^{i-1}\right]^{2} = \left[\sum_{i=1}^{n} (-1)^{i} \binom{n}{i}(ac)^{i-1}\right] = \left[\sum_{i=1}^{n} (-1)^{i} \binom{n}{i}d(bd)^{i-1}b\right] \left[\sum_{i=1}^{n} (-1)^{i} \binom{n}{i}(ac)^{i}\right] = \left[\sum_{i=1}^{n} (-1)^{i} \binom{n}{i}(db)^{i}\right] ac\left[\sum_{i=1}^{n} (-1)^{i} \binom{n}{i}(ac)^{i-1}\right].$$

Since  $(ac)^i(ac) = (db)^i(ac)$  for any  $i \in \mathbb{N}$ , we have  $(ac')^2 = (db')(ac')$ . Moreover, we check that

$$(db')^{2} = \left[d\sum_{i=1}^{n} (-1)^{i} \binom{n}{i} (bd)^{i-1}b\right]^{2} = \left[\sum_{i=1}^{n} (-1)^{i} \binom{n}{i} (db)^{i}\right]^{2} \\ = \left[\sum_{i=1}^{n} (-1)^{i} \binom{n}{i} (db)^{i}\right] db \left[\sum_{i=1}^{n} (-1)^{i} \binom{n}{i} (db)^{i-1}\right]; \\ (ac')(db') \\ = \left[a\sum_{i=1}^{n} (-1)^{i} \binom{n}{i} c(ac)^{i-1}\right] \left[d\sum_{i=1}^{n} (-1)^{i} \binom{n}{i} b(db)^{i-1}\right] \\ = \left[\sum_{i=1}^{n} (-1)^{i} \binom{n}{i} (ac)^{i}\right] db \left[\sum_{i=1}^{n} (-1)^{i} \binom{n}{i} (db)^{i-1}\right].$$

Since  $(ac)^i(db) = (db)^i(db)$  for any  $i \in \mathbb{N}$ , we have  $(db')^2 = (ac')(db')$ . Furthermore, we verify that

$$b'(ac')a = \left[\sum_{i=1}^{n} (-1)^{i} \binom{n}{i} (bd)^{i-1}b\right] \left[a\sum_{i=1}^{n} (-1)^{i} \binom{n}{i} c(ac)^{i-1}a\right]$$
$$= \left[\sum_{i=1}^{n} (-1)^{i} \binom{n}{i} (bd)^{i-1}\right] \left[\sum_{i=1}^{n} (-1)^{i} \binom{n}{i} b(ac)^{i}a\right];$$
$$b'(db')a = \left[\sum_{i=1}^{n} (-1)^{i} \binom{n}{i} (bd)^{i-1}b\right] \left[d\sum_{i=1}^{n} (-1)^{i} \binom{n}{i} (bd)^{i-1}b\right]a$$
$$= \left[\sum_{i=1}^{n} (-1)^{i} \binom{n}{i} (bd)^{i-1}\right] \left[\sum_{i=1}^{n} (-1)^{i} \binom{n}{i} b(db)^{i}a\right].$$

Since b(ac)a = b(db)a we see that  $b(ac)^2a = b(dbac)a = bdb(ac)a = bdb(db)a = b(dbd)a = b(db)^2a$ . By induction, we have  $b(ac)^i a = b(db)^i a$  for any  $n \in \mathbb{N}$ . Therefore b'(ac')a = b'(db')a. Also we have

$$\begin{aligned} c'(ac')d &= \Big[\sum_{i=1}^{n} (-1)^{i} c(ac)^{i-1}\Big] \Big[a\sum_{i=1}^{n} (-1)^{i} c(ac)^{i-1}d\Big] \\ &= \Big[\sum_{i=1}^{n} (-1)^{i} (ca)^{i-1}\Big] \Big[\sum_{i=1}^{n} (-1)^{i} c(ac)^{i}d\Big]; \\ c'(db')d &= \Big[\sum_{i=1}^{n} (-1)^{i} c(ac)^{i-1}\Big] \Big[d\sum_{i=1}^{n} (-1)^{i} (bd)^{i-1}b\Big]d \\ &= \Big[\sum_{i=1}^{n} (-1)^{i} (ca)^{i-1}\Big] \Big[\sum_{i=1}^{n} (-1)^{i} c(db)^{i}d\Big]. \end{aligned}$$

Since c(ac)d = c(db)d, by induction, we get  $c(ac)^i d = c(db)^i d$  for any  $n \in \mathbb{N}$ . This implies that c'(ac')d = c'(db')d. In light of Theorem 2.1,  $1 - db' \in \mathbb{R}^d$  if and only if  $1 - ac' \in \mathbb{R}^d$ , as desired.  $\Box$  **Corollary 2.5.** *Let* R *be a ring, let*  $n \in \mathbb{N}$ *, and let*  $a, b, c \in R$  *satisfying* 

$$(aba)b = (aca)b, b(aba) = b(aca),$$
  
 $(aba)c = (aca)c, c(aba) = c(aca).$ 

Then  $(1 - ba)^n \in \mathbb{R}^d$  if and only if  $(1 - ac)^n \in \mathbb{R}^d$ .

*Proof.* This is obvious by Theorem 2.4.  $\Box$ 

# 3. Drazin inverse

As it is known,  $a \in R^D$  if and only if there exists  $x \in R$  such that  $x = xax, x \in comm^2(a), a - a^2x \in R^{nil}$ , and so  $a^D = a^d$ . For the generalized Jacobson's Lemma for Drazin inverse, we have

**Theorem 3.1.** Let *R* be a ring, and let  $a, b, c, d \in R$  satisfying

$$(ac)^2 = (db)(ac), (db)^2 = (ac)(db);$$
  
 $b(ac)a = b(db)a, c(ac)d = c(db)d.$ 

*Then*  $1 - bd \in R^D$  *if and only if*  $1 - ac \in R^D$ *. In this case,* 

$$\begin{array}{rcl} (1-ac)^D &=& \left[1-d(1-bd)^{\pi}(1-(1-bd)(1+bd))^{-1}bac\right](1+ac) \\ &+& d(1-bd)^Dbac, \\ i(1-bd) &\leq& i(1-ac)+1. \end{array}$$

*Proof.* Set  $\alpha = 1 - bd$  and  $\beta = 1 - ac$ . Let  $p = \alpha^{\pi}$ ,  $x = \alpha^{D}$ . In view of Theorem 2.1,  $\beta \in \mathbb{R}^{d}$  and

$$\beta^{d} = \left[1 - dp(1 - p\alpha(1 + bd))^{-1}bac\right](1 + ac) + dxbac.$$

We shall prove that  $\beta^D = \beta^d$ .

We will suffice to check  $\beta - \beta \beta^d \beta \in \mathbb{R}^{nil}$ . As in the proof of Theorem 2.1, we have

$$\begin{aligned} \beta - \beta \beta^d \beta &= \beta (1 - \beta^d \beta) \\ &= d\alpha bacdp (1 - p\alpha (1 + bd))^{-2} bac. \end{aligned}$$

In light of [6, Lemma 3.1], we will suffice to prove

$$bacd\alpha bacdp(1 - p\alpha(1 + bd))^{-2} \in \mathbb{R}^{nil}.$$

Similarly to the discussion in Theorem 2.1, we see that  $bacd \in comm(\alpha)$ , and so bacd,  $\alpha p$  and  $(1 - p\alpha(1 + bd))^{-2}$  commute with each other. Set  $n = i(\alpha)$ . Then

$$\begin{bmatrix} bacd\alpha bacdp(1 - p\alpha(1 + bd))^{-2} \end{bmatrix}^n$$
  
=  $(bacd)^{2n}(1 - p\alpha(1 + bd))^{-2n}(\alpha - \alpha^2 \alpha^d)^n$   
= 0:

hence,

$$(\beta - \beta \beta^{a} \beta)^{n+1} = d\alpha bacdp(1 - p\alpha(1 + bd))^{-2} \left[ bacd\alpha bacdp(1 - p\alpha(1 + bd))^{-2} \right]^{n} bac$$
  
= 0.

Thus we have  $\beta - \beta \beta^d \beta \in \mathbb{R}^{nil}$ , and so  $\beta^D = \beta^d$ . Moreover, we have  $i(\beta) \le i(\alpha) + 1$ , as desired.  $\Box$ 

As an immediate consequence of Theorem 3.1, we now derive

**Corollary 3.2.** *Let* R *be a ring, and let*  $a, b, c, d \in R$  *satisfying* 

$$acd = dbd, dba = aca$$

*Then*  $1 - bd \in \mathbb{R}^D$  *if and only if*  $1 - ac \in \mathbb{R}^D$ *. In this case,* 

$$\begin{aligned} (1-ac)^D &= \left[ 1 - d\alpha^{\pi} (1 - \alpha (1 + bd))^{-1} bac \right] (1 + ac) \\ &+ d(1 - bd)^D bac, \\ i(1 - bd) &\leq i(1 - ac) + 1. \end{aligned}$$

**Corollary 3.3.** *Let* R *be a ring, and let*  $a, b, c \in R$  *satisfying* 

$$(aba)b = (aca)b, b(aba) = b(aca),$$
  
 $(aba)c = (aca)c, c(aba) = c(aca).$ 

*Then*  $1 - ba \in \mathbb{R}^D$  *if and only if*  $1 - ac \in \mathbb{R}^D$ *. In this case,* 

$$\begin{array}{rcl} (1-ac)^D &=& \left[1-a(1-ba)^{\pi}(1-(1-ba)(1+ba))^{-1}bac\right](1+ac) \\ &+& a(1-ba)^Dbac, \\ i(1-ba) &\leq& i(1-ac)+1. \end{array}$$

The group inverse of  $a \in R$  is the unique element  $a^{\#} \in R$  which satisfies  $aa^{\#} = a^{\#}a, a = aa^{\#}a, a^{\#} = a^{\#}aa^{\#}$ . We denote the set of all group invertible elements of R by  $R^{\#}$ . As it is well known,  $a \in R^{\#}$  if and only if  $a \in R^{D}$  and i(a) = 1. We are now ready to prove:

**Theorem 3.4.** Let *R* be a ring, and let  $a, b, c, d \in R$  satisfying

$$(ac)^2 = (db)(ac), (db)^2 = (ac)(db);$$
  
 $b(ac)a = b(db)a, c(ac)d = c(db)d.$ 

Then 1 - bd has group inverse if and only if 1 - ac has group inverse. In this case,

$$(1 - ac)^{\#} = \left[1 - d\alpha^{\pi}(1 - \alpha(1 + bd))^{-1}bac\right](1 + ac) + d(1 - bd)^{\#}bac$$

*Proof.* Since  $1 - bd \in R^{\#}$ , we have  $1 - bd \in R^{D}$ . In light of Theorem 3.1,  $1 - ac \in R^{D}$ . Then

$$\beta^{D} = [1 - d\alpha^{\pi} (1 - \alpha (1 + bd)^{-1} bac] (1 + ac) + d(1 - bd)^{\#} bc$$

Let  $\alpha = 1 - bd$  and  $\beta = 1 - ac$ ,  $\beta^D = (1 - ac)^D$ . Let  $p = 1 - \alpha \alpha^D$ . Since  $\alpha \in R^{\#}$ , we have  $\alpha p = \alpha - \alpha^2 \alpha^D = 0$ . As in the proof of Theorem 3.1, we have

$$\beta - \beta \beta^{D} \beta$$

$$= d\alpha (bacd)p(1 - p\alpha(1 + bd))^{-2}bac$$

$$= d(bacd)\alpha p(1 - p\alpha(1 + bd))^{-2}bac$$

$$= 0.$$

Obviously,  $\beta^D \in comm(\beta)$  and  $\beta^D = \beta^D \beta \beta^D$ . Therefore

$$\begin{split} \beta^{\#} &= \beta^{D} \\ &= \Big[ 1 - d\alpha^{\pi} (1 - \alpha (1 + bd))^{-1} bac \Big] (1 + ac) + d(1 - bd)^{\#} bac \end{split}$$

This completes the proof.  $\Box$ 

**Corollary 3.5.** *Let* R *be a ring, and let*  $a, b, c \in R$  *satisfying* 

$$(aba)b = (aca)b, b(aba) = b(aca),$$
  
 $(aba)c = (aca)c, c(aba) = c(aca).$ 

Then 1 - ba has group inverse if and only if 1 - ac has group inverse. In this case,

$$= \left[1-ac\right]^{\#} = \left[1-a(1-ba)^{\pi}(1-(1-ba)(1+ba))^{-1}bac\right](1+ac) + a(1-ba)^{\#}bac$$

*Proof.* This is obvious by Theorem 3.4.  $\Box$ 

Corollary 3.5 is a nontrivial generalization of [7, Corollary 2.4] as the following example follows.

#### Example 3.6.

Let  $R = M_2(\mathbb{C})$ . Choose

$$a = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, b = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, c = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in R$$

Then we see that

(aba)b = (aca)b, b(aba) = b(aca),(aba)c = (aca)c, c(aba) = c(aca).

But  $aba = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \neq 0 = aca$ . In this case,

$$(1-ac)^{\#} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, (1-ba)^{\#} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

### Acknowledgement

The authors are so grateful to the referee for his careful reading and valuable comments.

# References

- N. Castro-González; C. Mendes-Araújo and P. Parricio, Generalized inverses of a sum in rings, Bull. Aust. Math. Soc., 82(2010), 156–164.
- [2] G. Corach, Extensions of Jacobson's lemma, Comm. Algebra, 41(2013), 520-531.
- [3] D. Cvetković-Ilić and R. Harte, On Jacobson's lemma and Drazin invertibility, Applied Math. Letters, 23(2010), 417-420.
- [4] J.J. Koliha, A generalized Drazin inverse, *Glasgow Math. J.*, **38**(1996), 367–381.
- X. Mary, Weak inverses of products Cline's formula meets Jacobson lemma, J. Algebra Appl., 17(2018), DOI: 10.1142/S021949881850069X.
- [6] V.G. Miller and H. Zguitti, New extensions of Jacobson's lemma and Cline's formula, *Rend. Circ. Mat. Palermo, II. Ser.*, Published online: 09 February 2017, Doi: 10.1007/s12215-017-0298-6.
- [7] D. Mosić, Extensions of Jacobson's lemma for Drazin inverses, Aequat. Math., 91(2017), 419–428.
- [8] D. Mosić, Generalized inverses, Faculty of Science and Mathematics, University of Nis, Nis 2018.
- [9] K. Yang and X. Fang, Common properties of the operator products in spectral theory, Ann. Funct. Anal., 6(2015), 60–69.
- [10] K. Yang and X. Fang, Common properties of the operator products in local spectral theory, Acta Math. Sin. Engl. Ser., 31(2015), 1715–1724.
- [11] K. Yan; Q. Zeng and Y. Zhu, On Drazin spectral equation for the operator products, *Complex Analysis and Operator Theory*, (2020) 14:12 https://doi.org/10.1007/s11785-019-00979-y.
- [12] K. Yan; Q. Zeng and Y. Zhu, Generalized Jacobson's lemma for Drazin inverses and its applications, *Linear and Multilinear Algebra*, 68(2020), 81–93.
- [13] Q. Zeng; Z. Wu and Y. Wen, New extensions of Cline's formula for generalized inverses, Filomat, 31(2017), 1973–1980.
- [14] Q.P. Zeng and H.J. Zhong, New results on common properties of the products AC and BA, J. Math. Anal. Appl., 427(2015), 830–840.
- [15] G. Zhuang; J. Chen and J. Cui, Jacobson's lemma for the generalized Drazin inverse, Linear Algebra Appl., 436(2012), 742–746.