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Abstract. We present new generalized Jacobson’s lemma for generalized Drazin inverses. This extends
the main results on g-Drazin inverse of Yan, Zeng and Zhu (Linear & Multilinear Algebra, 68(2020), 81–93).

1. Introduction

Let R be an associative ring with an identity. The commutant of a ∈ R is defined by comm(a) = {x ∈
R | xa = ax}. The double commutant of a ∈ R is defined by comm2(a) = {x ∈ R | xy = yx for all y ∈ comm(a)}.
An element a ∈ R has g-Drazin inverse in case there exists x ∈ R such that

x = xax, x ∈ comm2(a), a − a2x ∈ Rqnil.

The preceding x is unique if it exists, we denote it by ad. Here, Rqnil = {a ∈ R | 1 + ax ∈ R−1 for every x ∈
comm(a)}, where R−1 stands for the set of all invertible elements of R. As it is known, a ∈ R has g-Drazin
inverse if and only if there exists an idempotent p ∈ comm2(a) such that a + p ∈ R is invertible and ap ∈ Rqnil

(see [4, Lemma 2.4]).
For any a, b ∈ R, Jacobson’s Lemma for invertibility states that 1− ab ∈ R−1 if and only if 1− ba ∈ R−1 and

(1 − ba)−1 = 1 + b(1 − ab)−1a (see [7, Lemma 1.4]). Let a, b ∈ Rd. Zhuang et al. proved the Jacobson’s Lemma
for g-Drazin inverse. That is, it was proved that 1 − ab ∈ Rd if and only if 1 − ba ∈ Rd and

(1 − ba)d = 1 + b(1 − ab)da

(see [15, Theorem 2.3]). Jacobson’s Lemma plays an important role in matrix and operator theory. Many
papers discussed this lemma for g-Drazin inverse in the setting of matrices, operators, elements of Banach
algebras or rings. Mosić generalized Jacobson’s Lemma for g-Drain inverse to the case that bdb = bac, dbd =
acd (see [7, Theorem 2.5]). Recently, Yan et al. extended Jacobson’s Lemma to the case dba = aca, dbd = acd
(see [12, Theorem 3.3]). This condition was also considered for bounded linear operators in [10, 11, 13].

The motivation of this paper is to extend the main results of Yan et al. (see [12]) to a wider case. The
Drazin inverse of a ∈ R, denoted by aD, is the unique element aD satisfying the following three equations

aD = aDaaD, aD
∈ comm(a), ak = ak+1a
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for some k ∈N. The smallest integer k is called the Drazin index of a, and is denoted by i(a). Moreover, we
prove the generalized Jacobson’s lemma for the Drazin inverse.

Throughout the paper, all rings are associative with an identity. RD and Rd denote the sets of all Drazin
and g-Drazin invertible elements in R respectively. We use Rnil to denote the set of all nilpotents of the ring
R. C stands for the field of all complex numbers.

2. Generalized Jacobson’s lemma

We come now to the main result of this paper which will be the tool in our following development.

Theorem 2.1. Let R be a ring, and let a, b, c, d ∈ R satisfying

(ac)2 = (db)(ac), (db)2 = (ac)(db);
b(ac)a = b(db)a, c(ac)d = c(db)d.

Then α = 1 − bd ∈ Rd if and only if β = 1 − ac ∈ Rd. In this case,

βd =
[
1 − dαπ(1 − α(1 + bd))−1bac

]
(1 + ac) + dαdbac.

Proof. Let p = απ, x = αd. Then 1 − pα(1 + bd) ∈ R−1. Let

y =
[
1 − dp(1 − pα(1 + bd))−1bac

]
(1 + ac) + dxbac.

We shall prove that βd = y.
Step 1. yβy = y. We see that

yβ = 1 − (ac)2
− dp(1 − pα(1 + bd))−1bac

[
1 − (ac)2

]
+ dxbac(1 − ac)

= 1 − [dbac − dxbac(1 − ac)] − dp(1 − pα(1 + bd))−1[bac − bac(ac)2

= 1 − [dbac − dx(bac − bacac)] − dp(1 − pα(1 + bd))−1[ba − bacdba]c

= 1 − [dbac − dx(1 − bd)bac] − dp(1 − pα(1 + bd))−1[1 − (bd)2]bac

= 1 − dpbac − dp(1 − pα(1 + bd))−1pα(1 + bd)bac

= 1 − dp(1 − pα(1 + bd))−1
[
(1 − pα(1 + bd)) + pα(1 + bd)

]
bac

= 1 − dp(1 − pα(1 + bd))−1bac.

Since acdbd = a(cdbd) = a(cacd) = (ac)2d = (dbac)d = dbacd, we have (bacd)(bd) = (bd)(bacd), and so (bacd)α =
α(bacd). Hence, (bacd)x = x(bacd), and then

dp(1 − pα(1 + bd))−1bacdxbac(1 − ac)

= d(1 − pα(1 + bd))−1pxbacdbac(1 − ac) = 0.

Therefore we have
yβy = y − dp(1 − pα(1 + bd))−1bacy

= y − dp(1 − pα(1 + bd))−1bac
[
1 − dp(1 − pα(1 + bd))−1bac(1 + ac)

= y − dp(1 − pα(1 + bd))−1bac(1 + ac) + dp(1 − pα(1 + bd))−2(bacd)bac(1 + ac)

= y − dp(1 − pα(1 + bd))−1(1 + bd)bac + dp(1 − pα(1 + bd))−2(bd)2(1 + bd)bac

= y − dp(1 − pα(1 + bd))−2
[
p − pα(1 + bd) − p(bd)2(1 + bd)bac = y.
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Step 2. β − βyβ ∈ Rqnil. Since y = yβy, we see that (1 − yβ)2 = 1 − yβ. Hence,

β − βyβ = β(1 − yβ)

= βdp(1 − pα(1 + bd))−1(bacd)p(1 − pα(1 + bd))−1bac

= βd(bacd)p(1 − pα(1 + bd))−2bac

= (1 − ac)d(bacd)p(1 − pα(1 + bd))−2bac

= dαbacdp(1 − pα(1 + bd))−2bac.

Let z ∈ comm(β − βyβ). Then

zdαbacdp(1 − pα(1 + bd))−2bac = dαbacdp(1 − pα(1 + bd))−2bacz.

We will suffice to prove
1 + dαbacdp(1 − pα(1 + bd))−2bacz ∈ R−1.

Clearly, we have
p = (bd)2p[1 − pα(1 + bd)]−1 = (bd)4p[1 − pα(1 + bd)]−2.

Hence, we get
(baczdbacd)αp = (baczd)αbacdp[1 − pα(1 + bd)]−2(bd)4

= (baczd)αbacdp[1 − pα(1 + bd)]−2bac(db)2d
= bac

[
zdαbacdp(1 − pα(1 + bd))−2bac

]
acdbd

= bac
[
dαbacdp(1 − pα(1 + bd))−2bacz

]
acdbd

= bdbdbacd
[
αp(1 − pα(1 + bd))−2bacz

]
acdbd

= bacdbdbd
[
αp(1 − pα(1 + bd))−2bacz

]
a(cdbd)

= bdbdbdbd
[
αp(1 − pα(1 + bd))−2bacz

]
a(cacd)

= bdbdbdbdαp[1 − pα(1 + bd)]−2baczdbacd
= αp(baczdbacd).

Step 3. y ∈ comm2(β). Let s ∈ comm(β). Then sβ = βs, and so s(ac) = (ac)s.
Claim 1. s(dxbac) = (dxbac)s. We easily check that

(bacsdbd)α = bacsβdbd = bacβsdbd = α(bacsdbd).

Hence
(bacsdbd)x = x(bacsdbd),

and then
s(dpbac) = sd(bd)4p[1 − pα(1 + bd)]−2bac

= s(ac)2dbdbdp[1 − pα(1 + bd)]−2bac
= d(bacsdbd)bdp[1 − pα(1 + bd)]−2bac
= dbdp[1 − pα(1 + bd)]−2(bacsdbd)bac
= dbdp[1 − pα(1 + bd)]−2bacs(ac)3

= dbdp[1 − pα(1 + bd)]−2(bd)3bacs
= d(bd)4p[1 − pα(1 + bd)]−2bacs
= (dpbac)s.

Since sdbac = s(ac)2 = (ac)2s = dbacs, we have

sdαxbac = dαxbacs,

and so
sdxbac − sdbdxbac = dxbacs − dbdxbacs.
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On the other hand, we have

s(dbdpbac) = sd(bd)5p[1 − pα(1 + bd)]−2bac
= s(ac)4dbdp[1 − pα(1 + bd)]−2bac
= dbdbd(bacsdbd)p[1 − pα(1 + bd)]−2bac
= dbdbdp[1 − pα(1 + bd)]−2(bacsdbd)bac
= dbdbdp[1 − pα(1 + bd)]−2bacs(ac)3

= dbdbdp[1 − pα(1 + bd)]−2(bd)3bacs
= dbd(bd)4p[1 − pα(1 + bd)]−2bacs
= (dbdpbac)s.

Since sdbdbac = s(ac)3 = (ac)3s = dbdbacs, we have

dbdαxbacs = sdbdαxbac.

Then we have
dbdbdαxbacs = ac(dbdαxbacs)

= ac(sdbdαxbac)
= sacdbdαxbac
= sdbdbdαxbac,

and so
dbd(1 + bd)αxbacs = sdbd(1 + bd)αxbac,

and then
dbdxbacs − dbd(bd)2xbacs = sdbdxbac − sdbd(bd)2xbac.

One easily checks that
d(bd)3xbacs = dx(bd)3bacs

= dxb(ac)4s
= dx(bacsdbd)bac
= d(bacsdbd)xbac
= (ac)2sdbdxbac
= sd(bd)3xbac.

This implies that dbdxbacs = sdbdxbac, and therefore s(dxbac) = (dxbac)s.
Claim 2. sdp(1−pα(1+bd))−1bac(1+ac) = dp(1−pα(1+bd))−1bac(1+ac)s. Set t = dp(1−pα(1+bd))−1bac(1+ac).

Then we have
st = sdp(1 − pα(1 + bd))−1bac(1 + ac)

= sd(bd)4p[1 − pα(1 + bd)]−3bac(1 + ac)
= (ac)3sdbdp[1 − pα(1 + bd)]−3bac(1 + ac)
= dbdp[1 − pα(1 + bd)]−3bs(ac)4(1 + ac)

Also we have
ts = dp(1 − pα(1 + bd))−1bac(1 + ac)s

= dp[1 − pα(1 + bd)]−3(bd)4bsac(1 + ac)
= dbdp[1 − pα(1 + bd)]−3b(ac)3sac(1 + ac)
= dbdp[1 − pα(1 + bd)]−3bs(ac)4(1 + ac)

Hence, st = ts, and so y ∈ comm2(β). Therefore y = βd, as required.
⇐= Since 1−ac ∈ Rd, it follows by Jacobson’s Lemma that 1−ca ∈ Rd. Applying the preceding discussion,

we obtain that 1 − bd ∈ Rd, as desired.

Corollary 2.2. ( [12, Theorem 3.1]) Let R be a ring, and let a, b, c, d ∈ R satisfying

acd = dbd, dba = aca.
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Then 1 − bd ∈ Rd if and only if 1 − ac ∈ Rd. In this case,

(1 − bd)d = 1 − d(1 − bd)π(1 − (1 − bd)π(1 − bd)(1 + bd))−1bac(1 + ac)+

d(1 − ac)dbac.

Proof. By hypothesis, we easily check that

(ac)2 = (aca)c = (dba)c = (db)(ac),
(db)2 = (dbd)b = (acd)b = (ac)(db);
b(ac)a = b(aca) = b(dba) = b(db)a,
c(ac)d = c(acd) = c(dbd) = c(db)d.

Then the result follows by Theorem 2.1.

We now generalize [12, Corollary 3.5] as follows.

Corollary 2.3. Let R be a ring, and let a, b, c ∈ R satisfying

(aba)b = (aca)b, b(aba) = b(aca),
(aba)c = (aca)c, c(aba) = c(aca).

Then 1 − ba ∈ Rd if and only if 1 − ac ∈ Rd. In this case,

(1 − ba)d =
[
1 − a(1 − ba)π(1 − (1 − ba)π(1 − ba)(1 + ba))−1bac

]
(1 + ac) + a(1 − ac)dbac.

Proof. By hypothesis, we verify that

(ac)2 = (aca)c = (aba)c = (ab)(ac),
(ab)2 = (aba)b = (aca)b = (ac)(db);
b(ac)a = b(aca) = b(aba) = b(ab)a,
c(ac)a = c(aca) = c(aba) = c(ab)a.

This completes the proof by Theorem 2.1.

It is convenient at this stage to derive the following.

Theorem 2.4. Let R be a ring, let n ∈N, and let a, b, c, d ∈ A satisfying

(ac)2 = (db)(ac), (db)2 = (ac)(db);
b(ac)a = b(db)a, c(ac)d = c(db)d.

Then (1 − bd)n
∈ Rd if and only if (1 − ac)n

∈ Rd.

Proof. ⇒ Let α = (1 − ac)n. Then

α =
n∑

i=0
(−1)i

(
n
i

)
(ac)i

= 1 − a
n∑

i=1
(−1)i

(
n
i

)
c(ac)i−1

= 1 − ac′,

where c′ =
n∑

i=1
(−1)i

(
n
i

)
c(ac)i−1. Let β = (1 − ba)n. Then

β =
n∑

i=0
(−1)i

(
n
i

)
(bd)i

= 1 −
( n∑

i=1
(−1)i

(
n
i

)
(bd)i−1b

)
d

= 1 − b′d,
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where b′ =
n∑

i=1
(−1)i

(
n
i

)
(bd)i−1b. We directly compute that

(ac′)2

=
[
a

n∑
i=1

(−1)i

(
n
i

)
c(ac)i−1

]2
=

[ n∑
i=1

(−1)i

(
n
i

)
(ac)i

]2

=
[ n∑

i=1
(−1)i

(
n
i

)
(ac)i

]
ac

[ n∑
i=1

(−1)i

(
n
i

)
(ac)i−1

]
;

(db′)(ac′)

=
[ n∑

i=1
(−1)i

(
n
i

)
d(bd)i−1b

][ n∑
i=1

(−1)i

(
n
i

)
(ac)i

]
=

[ n∑
i=1

(−1)i

(
n
i

)
(db)i

]
ac

[ n∑
i=1

(−1)i

(
n
i

)
(ac)i−1

]
.

Since (ac)i(ac) = (db)i(ac) for any i ∈N, we have (ac′)2 = (db′)(ac′). Moreover, we check that

(db′)2

=
[
d

n∑
i=1

(−1)i

(
n
i

)
(bd)i−1b

]2
=

[ n∑
i=1

(−1)i

(
n
i

)
(db)i

]2

=
[ n∑

i=1
(−1)i

(
n
i

)
(db)i

]
db

[ n∑
i=1

(−1)i

(
n
i

)
(db)i−1

]
;

(ac′)(db′)

=
[
a

n∑
i=1

(−1)i

(
n
i

)
c(ac)i−1

][
d

n∑
i=1

(−1)i

(
n
i

)
b(db)i−1

]
=

[ n∑
i=1

(−1)i

(
n
i

)
(ac)i

]
db

[ n∑
i=1

(−1)i

(
n
i

)
(db)i−1

]
.

Since (ac)i(db) = (db)i(db) for any i ∈N, we have (db′)2 = (ac′)(db′). Furthermore, we verify that

b′(ac′)a =
[ n∑

i=1
(−1)i

(
n
i

)
(bd)i−1b

][
a

n∑
i=1

(−1)i

(
n
i

)
c(ac)i−1a

]
=

[ n∑
i=1

(−1)i

(
n
i

)
(bd)i−1

][ n∑
i=1

(−1)i

(
n
i

)
b(ac)ia

]
;

b′(db′)a =
[ n∑

i=1
(−1)i

(
n
i

)
(bd)i−1b

][
d

n∑
i=1

(−1)i

(
n
i

)
(bd)i−1b

]
a

=
[ n∑

i=1
(−1)i

(
n
i

)
(bd)i−1

][ n∑
i=1

(−1)i

(
n
i

)
b(db)ia

]
.

Since b(ac)a = b(db)a we see that b(ac)2a = b(dbac)a = bdb(ac)a = bdb(db)a = b(dbdb)a = b(db)2a. By induction,
we have b(ac)ia = b(db)ia for any n ∈N. Therefore b′(ac′)a = b′(db′)a. Also we have

c′(ac′)d =
[ n∑

i=1
(−1)ic(ac)i−1

][
a

n∑
i=1

(−1)ic(ac)i−1d
]

=
[ n∑

i=1
(−1)i(ca)i−1

][ n∑
i=1

(−1)ic(ac)id
]
;

c′(db′)d =
[ n∑

i=1
(−1)ic(ac)i−1

][
d

n∑
i=1

(−1)i(bd)i−1b
]
d

=
[ n∑

i=1
(−1)i(ca)i−1

][ n∑
i=1

(−1)ic(db)id
]
.

Since c(ac)d = c(db)d, by induction, we get c(ac)id = c(db)id for any n ∈N. This implies that c′(ac′)d = c′(db′)d.
In light of Theorem 2.1, 1 − db′ ∈ Rd if and only if 1 − ac′ ∈ Rd, as desired.
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Corollary 2.5. Let R be a ring, let n ∈N, and let a, b, c ∈ R satisfying

(aba)b = (aca)b, b(aba) = b(aca),
(aba)c = (aca)c, c(aba) = c(aca).

Then (1 − ba)n
∈ Rd if and only if (1 − ac)n

∈ Rd.

Proof. This is obvious by Theorem 2.4.

3. Drazin inverse

As it is known, a ∈ RD if and only if there exists x ∈ R such that x = xax, x ∈ comm2(a), a − a2x ∈ Rnil, and
so aD = ad. For the generalized Jacobson’s Lemma for Drazin inverse, we have

Theorem 3.1. Let R be a ring, and let a, b, c, d ∈ R satisfying

(ac)2 = (db)(ac), (db)2 = (ac)(db);
b(ac)a = b(db)a, c(ac)d = c(db)d.

Then 1 − bd ∈ RD if and only if 1 − ac ∈ RD. In this case,

(1 − ac)D =
[
1 − d(1 − bd)π(1 − (1 − bd)(1 + bd))−1bac

]
(1 + ac)

+ d(1 − bd)Dbac,
i(1 − bd) ≤ i(1 − ac) + 1.

Proof. Set α = 1 − bd and β = 1 − ac. Let p = απ, x = αD. In view of Theorem 2.1, β ∈ Rd and

βd =
[
1 − dp(1 − pα(1 + bd))−1bac

]
(1 + ac) + dxbac.

We shall prove that βD = βd.
We will suffice to check β − ββdβ ∈ Rnil. As in the proof of Theorem 2.1, we have

β − ββdβ = β(1 − βdβ)
= dαbacdp(1 − pα(1 + bd))−2bac.

In light of [6, Lemma 3.1], we will suffice to prove

bacdαbacdp(1 − pα(1 + bd))−2
∈ Rnil.

Similarly to the discussion in Theorem 2.1, we see that bacd ∈ comm(α), and so bacd, αp and (1− pα(1 + bd))−2

commute with each other. Set n = i(α). Then[
bacdαbacdp(1 − pα(1 + bd))−2

]n

= (bacd)2n(1 − pα(1 + bd))−2n(α − α2αd)n

= 0;

hence,
(β − ββdβ)n+1

= dαbacdp(1 − pα(1 + bd))−2
[
bacdαbacdp(1 − pα(1 + bd))−2

]n
bac

= 0.

Thus we have β − ββdβ ∈ Rnil, and so βD = βd. Moreover, we have i(β) ≤ i(α) + 1, as desired.

As an immediate consequence of Theorem 3.1, we now derive



H. Chen, M. Sheibani Abdolyousefi / Filomat 35:7 (2021), 2267–2275 2274

Corollary 3.2. Let R be a ring, and let a, b, c, d ∈ R satisfying

acd = dbd, dba = aca.

Then 1 − bd ∈ RD if and only if 1 − ac ∈ RD. In this case,

(1 − ac)D =
[
1 − dαπ(1 − α(1 + bd))−1bac

]
(1 + ac)

+ d(1 − bd)Dbac,
i(1 − bd) ≤ i(1 − ac) + 1.

Corollary 3.3. Let R be a ring, and let a, b, c ∈ R satisfying

(aba)b = (aca)b, b(aba) = b(aca),
(aba)c = (aca)c, c(aba) = c(aca).

Then 1 − ba ∈ RD if and only if 1 − ac ∈ RD. In this case,

(1 − ac)D =
[
1 − a(1 − ba)π(1 − (1 − ba)(1 + ba))−1bac

]
(1 + ac)

+ a(1 − ba)Dbac,
i(1 − ba) ≤ i(1 − ac) + 1.

The group inverse of a ∈ R is the unique element a#
∈ R which satisfies aa# = a#a, a = aa#a, a# = a#aa#. We

denote the set of all group invertible elements of R by R#. As it is well known, a ∈ R# if and only if a ∈ RD

and i(a) = 1. We are now ready to prove:

Theorem 3.4. Let R be a ring, and let a, b, c, d ∈ R satisfying

(ac)2 = (db)(ac), (db)2 = (ac)(db);
b(ac)a = b(db)a, c(ac)d = c(db)d.

Then 1 − bd has group inverse if and only if 1 − ac has group inverse. In this case,

(1 − ac)#

=
[
1 − dαπ(1 − α(1 + bd))−1bac

]
(1 + ac) + d(1 − bd)#bac.

Proof. Since 1 − bd ∈ R#, we have 1 − bd ∈ RD. In light of Theorem 3.1, 1 − ac ∈ RD. Then

βD = [1 − dαπ(1 − α(1 + bd)−1bac](1 + ac) + d(1 − bd)#bc.

Let α = 1 − bd and β = 1 − ac, βD = (1 − ac)D. Let p = 1 − ααD. Since α ∈ R#, we have αp = α − α2αD = 0.
As in the proof of Theorem 3.1, we have

β − ββDβ
= dα(bacd)p(1 − pα(1 + bd))−2bac
= d(bacd)αp(1 − pα(1 + bd))−2bac
= 0.

Obviously, βD
∈ comm(β) and βD = βDββD. Therefore

β# = βD

=
[
1 − dαπ(1 − α(1 + bd))−1bac

]
(1 + ac) + d(1 − bd)#bac.

This completes the proof.
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Corollary 3.5. Let R be a ring, and let a, b, c ∈ R satisfying

(aba)b = (aca)b, b(aba) = b(aca),
(aba)c = (aca)c, c(aba) = c(aca).

Then 1 − ba has group inverse if and only if 1 − ac has group inverse. In this case,

(1 − ac)#

=
[
1 − a(1 − ba)π(1 − (1 − ba)(1 + ba))−1bac

]
(1 + ac) + a(1 − ba)#bac,

Proof. This is obvious by Theorem 3.4.

Corollary 3.5 is a nontrivial generalization of [7, Corollary 2.4] as the following example follows.

Example 3.6.

Let R = M2(C). Choose

a =

(
1 1
1 0

)
, b =

(
1 −1
0 0

)
, c =

(
0 0
0 0

)
∈ R

Then we see that
(aba)b = (aca)b, b(aba) = b(aca),
(aba)c = (aca)c, c(aba) = c(aca).

But aba =

(
0 1
0 1

)
, 0 = aca. In this case,

(1 − ac)# =

(
1 0
0 1

)
, (1 − ba)# =

(
1 1
0 1

)
.
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