
Filomat 35:7 (2021), 2245–2256
https://doi.org/10.2298/FIL2107245C

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this note, the concepts of (G1,G2)-open, (G1,G2)-closed, (G1,G2)-quotient and (G1,G2)–perfect
mappings on arbitrary sets are introduced and some theorems on them are established firstly. In particular,
some results improve the corresponding results in [17]. Secondly, we give a partial answer to the question
posed by L. Liu [14]. Finally, some properties of G-topological groups, G-connectedness and totally G-
disconnectedness in G-topological groups are discussed.

1. Introduction

The concept of G-convergence and any concept related to G-convergence are very important research
objects in topology and analysis. G-convergence is closely related to G-sequentially compactness, G-
continuity and other related properties, which play a fundamental role in mathematics and its applications.
On the basis of ordinary convergence of sequences, there exists a variety of convergence types which play
an important role not only in pure mathematics but also in other branches of science involving mathematics,
especially in information theory, biological science and dynamical systems.

J. Connor and K.G. Grosse-Erdmann [11] introduced G-methods and G-convergence in the linear sub-
space of the set of real sequences spaces, and studied the continuity in the sense of G-methods. Huseyin
Çakalli [2] extended the above concepts to the first countable Hausdorff topological groups and introduced
the concept of G-sequential compactness. By G-sequential closures and G-sequentially closed sets, he dis-
cussed G-continuity further in [4]. The notion of G-sequential connectedness in topological groups was
introduced by Huseyin Çakalli [6] and some properties of the G-continuity were studied in [9]. Some other
types of continuities which can not be given by any sequential method can be found in [3, 5, 7, 9, 10].

In [8], H. Çakalli and P. Das extended the concept of G-sequential compactness to a fuzzy topological
group and introduced the notion of G-fuzzy sequential compactness, where G is a function from a suitable
subset of the set of all sequences of fuzzy points in a fuzzy first countable topological space X. In [1],
Açikgoz, Çakalli, Esenbel and Kočinac introduced neutrosophic G-continuity and investigated its properties
in neutrosophic topological spaces.
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Corresponding author: Jing Zhang
Research supported by the NSFC (No.11801254,12071199), the SDNSF (No. ZR2018MA013), the Institute of Meteorological Big

Data-Digital Fujian and Fujian Key Laboratory of Date Science and Statistics, the Key Program of the Natural Science Foundation of
Fujian Province (No. 2020J02043), the FJNSF(No. 2020J01797,2020J01801).

Email addresses: cje1993@163.com (Jiewen Chen), zhangjing86@126.com (Jing Zhang)



J.W. Chen, J. Zhang / Filomat 35:7 (2021), 2245–2256 2246

In 2016, S. Lin and L. Liu introduced the concepts of G-method and G-convergence on arbitrary sets and
the related notion of G-continuity. Several results for G-methods on first-countable topological groups are
improved [13].

In 2019, L. Liu [14] defined G-sequentially compact subsets in arbitrary sets and obtained some basic
properties. They also introduced the definition of G-method on a Cartesian product of an arbitrary family
of sets and posed the following problem:

Problem 1.1. ([14, Problem 3.12]) Whether the G-sequentially compact is closed under finite product?

Y.X. Wu and F.C. Lin [18] introduced the concept of G-topological groups and proved that the G-
connectedness is preserved by countable product.

Inspired by O. Mucuk, T. Şahan’s work [17], in this paper we introduce the concepts of G-open mappings,
G-closed mappings and G-quotient mappings on arbitrary sets under G-method and some results about
them are presented. We also discuss the properties of G-connectedness and totally G-disconnectedness in
G-topological groups. Readers may refer to [12] for some terminology unstated here.

2. Preliminaries

In this paper,N denotes the set of all positive integers. Let X be a set, s(X) denote the set of all X-valued
sequences, i.e., x∈ s(X) if and only if x={xn}n∈N is a sequence with each xn ∈ X. If X is a topological
space, the set of all X-valued convergent sequences is denoted by c(X), and we put lim x = lim

n→∞
xn for any

x={xn}n∈N ∈ c(X)[13].

Definition 2.1. ([13, Definition 1.1 ]) Let X be a set. A method on X is a function G : cG(X)→ X defined on
a subset cG(X) of s(X). A sequence x={xn}n∈N in X is said to be G-convergent to l ∈ X if x∈ cG(X) and G(x)=l.

Definition 2.2. Let X be a topological space.
(1) A method G : cG(X)→ X is called regular [13, Definition 1.1 (2.1)] if c(X) ⊂ cG(X) and G(x)=lim x for

each x∈ c(X).
(2) A method G: cG(X) → X is called subsequential [13, Definition 1.1 (2.2)] if, whenever x∈ cG(X) is

G-convergent to l ∈ X, then there exists a subsequence x′ ∈ c(X) of x with lim x′=l.
(3) We say a method G preserves the G-convergence of subsequences [16, pp.1083] if, whenever a sequence x

is G-convergent with G(x)=l, then any subsequence of x is G-convergent to the same point l.

The G-closures, as a generalization of the concept of closures in topological spaces, are essential concepts
in G-methods, see [13].

Definition 2.3. Let X be a set, and G be a method on X. A subset A of X is called a G-closed set [13, Definition
2.1] of X if, whenever x ∈ s(A)∩ cG(X), then G(x) ∈ A. A subset A of X is called G-open [13, Definition 3.1 (2)]
if X \ A is G-closed in X.

Definition 2.4. Let X be a set, G be a method on X and A ⊂ X.
(1) The G-closure [13, Definition 2.4 (2)] of A is defined as the intersection of all G-closed sets containing

A, and the G-closure of A is denoted by AG.
(2) The G-interior [13, Definition 3.3 (2)] of A is defined as the union of all G-open sets contained in A,

and the G-interior of A is denoted by A◦G.
(3) A subset A of X is called a G-neighborhood [13, Definition 3.1 (1)] of a point x ∈ X if there exists a

G-open set U with x ∈ U ⊂ A.
(4) A subset F of A is called G-closed [18, Definition 2.6 (7)] in A if there exists a G-closed subset K of X

such that F = K ∩ A.
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Remark 2.5. (1) The empty set ∅ and the whole space X are G-closed. It is clear that ∅
G

= ∅ and X
G

= X for
a regular method G.

(2) The union of any family of G-open subsets of X is G-open. Thus the G-interior A◦G of a set A is the
largest G-open set contained in A.

(3) A subset U of A is G-open in A if and only if there exists a G-open subset V of X such that U = A∩V.

Definition 2.6. ([13, Definition 7.1]) Let G1,G2 be methods on sets X and Y, respectively. A mapping
f : X → Y is called (G1,G2)-continuous if f (x)∈ cG2 (Y) and G2( f (x))= f (G1(x)) for each x∈ cG1 (X). (G1,G2)-
continuity is called the G-continuity if G1 and G2 are the same method G.

Definition 2.7. ([16, Definition 4.1]) A non-empty subset A of X is called G-connected if there are no non-
empty disjoint G-closed subsets F and K of A such that A=F ∪ K. In particular, X is called G-connected if
there are no non-empty, disjoint G-closed subsets of X whose union is X.

Now we recall the concepts of G-topological groups.

Definition 2.8. ([18, Definition 5.4]) Let X be a group with operations. A topology τ on the set X is a
G-topological group provided that the following statements hold:

(1) The multiplication mapping M : (X, τ) × (X, τ)→ (X, τ) is G-continuous;
(2) The inverse mapping In : (X, τ)→ (X, τ) is G-continuous.
Let X be a G-topological group and a ∈ X. A family Ba of G-open neighborhoods of a is called a

fundamental system [16, pp.1087] of G-open neighborhoods of a if for each G-open neighborhood U of a,
there is a V ∈ Ba such that V ⊂ U.

3. Mappings Defined by G-Methods on Arbitrary Sets

As a generalization of the concepts of G-open and G-closed mappings in the class of Hausdorff topo-
logical groups [17], we extend these concepts to arbitrary sets. Similarly to the corresponding concepts
in topological spaces, we give the concepts of (G1,G2)-quotient and (G1,G2)-perfect mappings under G-
methods on arbitrary sets. All the mappings in this section are onto mappings.

Definition 3.1. Let G1,G2 be methods on sets X and Y, respectively. f : X→ Y be a mapping.
(1) f is called (G1,G2)-quotient if, F ⊂ Y and f−1(F) is a G1-closed subset of X, then F is a G2-closed subset

of Y.
(2) f is called (G1,G2)-open if, V is a G1-open subset of X, then f (V) is a G2-open subset of Y.
(3) f is called (G1,G2)-closed if, F is a G1-closed subset of X, then f (F) is a G2-closed subset of Y.

Now, we recall an important result which is due to S. Lin and L. Liu[13].

Proposition 3.2. ([13, Lemma 7.2, Theorem 7.3]) Let f : X→ Y be a mapping, where G1, G2 are methods on sets
X and Y, respectively. Then (1)⇒(2)⇔(3)⇔(4) in the following conditions.

(1) f is a (G1,G2)-continuous mapping.

(2) f (A
G1

) ⊂ f (A)
G2

for each A ⊂ X.
(3) f−1(W) is a G1-open set of X for each G2-open set W of Y.
(4) f−1(F) is a G1-closed set of X for each G2-closed set F of Y.

By modifying very slightly the proofs of the work of O. Mucuk, T. Şahan [17], we improve the corre-
sponding result by replacing topological groups with arbitrary sets.

Theorem 3.3. Let G be a method on a set X and f , 1 : X→ X be mappings on X. Then the following are satisfied:
(1) If f and 1 are G-continuous, then so also is 1 f .
(2) If f and 1 are G-open (closed), then so also is 1 f .
(3) If 1 f is G-open (closed) and f is onto and G-continuous, then 1 is G-open (closed).
(4) If 1 f is G-open (closed) and 1 is one to one and G-continuous, then f is G-open (closed).
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Proof. (1) For each x∈ cG(X), we have f (x)∈ cG(X) and G( f (x))= f (G(x)) by f is G-continuous. Since 1 is G-
continuous, 1 f (x)=1( f (x))∈ cG(X) and G(1( f (x)))=1(G( f (x))). Thus G(1 f (x))=G(1( f (x)))=1( f (G(x)))=1 f (G(x)),
which proves that 1 f is G-continuous.

(2) It is obvious.
(3) Let A be a G-open subset of X. Since f is G-continuous, f−1(A) is G-open. Since 1 f is G-open and f

is onto, we conclude that (1 f )( f−1(A)) = 1(A) is G-open. Similarly, we can prove that 1 is G-closed.
(4) Let A be a G-open subset of X. It follows from 1 f is G-open that 1 f (A) is G-open. Since 1 is G-

continuous and one to one, we can conclude that 1−11 f (A) = f (A) is G-open. The proof is similar when A
is G-closed.

The following theorem indicates that each (G1,G2)-continuous mapping is (G1,G2)-quotient if cG1 (X) =
s(X).

Theorem 3.4. Let G1,G2 be methods on sets X and Y, respectively, where cG1 (X) = s(X). If f : X → Y is a
(G1,G2)-continuous mapping, then f is (G1,G2)-quotient.

Proof. Assume B ⊂ Y and f−1(B) is a G1-closed set of X, we show that B is a G2-closed set of Y. If
y={yn}n∈N ∈ cG2 (Y) ∩ s(B). For every n ∈ N, we chose a point xn ∈ X such that xn ∈ f−1(yn), then
x={xn}n∈N ∈ s( f−1(B)) ∩ cG1 (X).

Put G1(x)= x. It follows from f−1(B) is a G1-closed set of X that x ∈ f−1(B). Thus f (x) ∈ B. By (G1,G2)-
continuity of the mapping f , we have f (x) = f (G1(x))=G2( f (x))= G2(y), and hence G2(y)∈ B. Therefore, B
is a G2-closed set of Y, it follows that f is (G1,G2)-quotient.

It is natural to ask whether each (G1,G2)-quotient mapping is (G1,G2)-continuous. In the general case,
the next example tells us that it is not true. Now, let us recall the related definition which will be used in
the following example .

Let G : cG(X) → X be a method on a set X, and Y ⊂ X. Put cG|Y (Y) = {x∈ s(Y) ∩ cG(X) : G(x)∈ Y}, and
define a function G|Y : cG|Y (Y) → Y by G|Y(x)=G(x). The function G|Y : cG|Y (Y) → Y is called the submethod
[13, Definition 4.1] of G on the subset Y of X, or the method on the subset Y induced by G.

Example 3.5. ([13, Example 7.4 (1)]) There exists a (G1,G2)-quotient mapping which is not (G1,G2)-continuous.
Let X be the set Z of all integers endowed with the discrete topology. Put

cG1 (X) = {{xn}n∈N ∈ s(X) : there exists an m ∈N such that

{xn − xn−1}n>m is a constant sequence}.

Define G1 : cG1 (X)→ X by G1(x)= lim
n→∞

(xn+1 − xn) for each x={xn}n∈N ∈ cG1 (X). Then G1 is a method on X.

Let Y = {0, 1}. Define a mapping f : X→ Y as follows: f (x) = 0 if and only if x = 2k, k ∈ Z.
Let G2 = G1|Y. Then G2 is a method on the set Y. Let F be a non-empty subset of Y, then F is equal to

{0}, {1} or Y. Thus f−1(F)= f−1({0}) = {2k}k∈Z, f−1(F)= f−1({1}) = {2k + 1}k∈Z, or f−1(F)= f−1(Y) = X. It is easy to
verify that if f−1(F) is G1-closed in X, then F is equal to {0} or Y which are G2-closed in Y. Therefore, f is
(G1,G2)-quotient. It follows from the proof of [13, Example 7.4 (1)] that f is not (G1,G2)-continuous.

It is easy to check the validity of the next theorem.

Theorem 3.6. Let G1,G2 be methods on sets X and Y, respectively. Then:
(1) f is (G1,G2)-quotient if f is a (G1,G2)-open mapping from X onto Y.
(2) f is (G1,G2)-quotient if f is a (G1,G2)-closed mapping from X onto Y..

Proof. (1) Let F ⊂ Y and f−1(F) is a G1-closed subset of X, then X \ f−1(F) is a G1-open subset of X. It follows
from f is (G1,G2)-open that Y \ f (X \ f−1(F)) = F is a G2-closed subset of Y. Therefore, f is (G1,G2)-quotient.

(2) Let F ⊂ Y and f−1(F) is a G1-closed subset of X, then F = f ( f−1(F)) is a G2-closed subset of Y. It
follows that f is (G1,G2)-quotient.
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Corollary 3.7. Let G1,G2 be methods on sets X and Y, respectively. If f : X → Y is a one to one and (G1,G2)-
continuous mapping, then the followings are equivalent:

(1) f is (G1,G2)-open.
(2) f is (G1,G2)-closed.
(3) f is (G1,G2)-quotient.

It is well known that the next lemma is true.

Lemma 3.8. Let f : X→ Y be a mapping, U and F be subsets of sets X and Y, respectively. Then

f−1(F) ⊂ U⇔ F ⊂ Y − f (X −U)

The next theorem is useful when we discuss some properties of (G1,G2)-closedness.

Theorem 3.9. Let G1,G2 be methods on sets X and Y, respectively. A mapping f : X→ Y is (G1,G2)-closed if and
only if for each y ∈ Y and every G1-open set U ⊂ X with f−1(y) ⊂ U, there exists a G2-open V ⊂ Y containing y
such that f−1(V) ⊂ U.

Proof. Suppose f is (G1,G2)-closed, then for every y ∈ Y and a G1-open set U ⊂ X such that f−1(y) ⊂ U. Put
V = Y − f (X −U), then V is G2-open in Y. It follows from Lemma 3.8 that y ∈ V and f−1(V) ⊂ U.

Conversely, suppose F is G1-closed in X. Take an arbitrary y ∈ Y − f (F), then f−1(y) ⊂ X − F. By
assumption, there exists a G2-open set W in Y such that y ∈ W and f−1(W) ⊂ X − F. Therefore, W is a
G2-open subset of Y containing y and W∩ f (F) = ∅ by Lemma 3.8. Thus f (F) is G2-closed in Y which implies
that f is (G1,G2)-closed.

Making use of Theorem 3.9, it is easy to deduce the corollary below.

Corollary 3.10. Let G1,G2 be methods on sets X and Y, respectively and f : X → Y be a (G1,G2)-continuous
mapping. Then the following are equivalent:

(1) f is (G1,G2)-closed.
(2) For each y ∈ Y and each G1-open set U ⊂ X which contains f−1(y), there exists a G1-open set V in X such

that f−1(y) ⊂ V ⊂ U, V = f−1( f (V)) and f (V) is G2-open in Y.

Proof. (1) ⇒ (2) Assume that f is (G1,G2)-closed. For each y ∈ Y and each G1-open set U ⊂ X which
contains f−1(y), by Theorem 3.9, there exists a G2-open set Wy in Y such that y ∈ Wy and f−1(Wy) ⊂ U. Put
V = f−1(Wy), then f (V) = Wy. It is easy to see that the set V is required.

(2)⇒ (1) For each y ∈ Y and each G1-open set U ⊂ X which contains f−1(y), by (2), there is a G1-open set
V in X such that f−1(y) ⊂ V ⊂ U, V = f−1( f (V)) and f (V) is G2-open set in Y. Take W = f (V), then W is a
G2-open set of Y, y ∈W and f−1(W) ⊂ U. It follows from Theorem 3.9 that f is (G1,G2)-closed.

In order to characterize (G1,G2)-closed mappings by means of G-closures and G- closed sets, we recall
two important propositions below.

Proposition 3.11. ([13, Proposition 2.6]) Let G be a method on a set X and A ⊂ X. The following are equivalent:
(1) A is G-closed.

(2) A
G
⊂ A, i.e., A

G
= A.

Proposition 3.12. ([13, Corollary 3.6]) Let G be a method on a set X and A ⊂ X. The following are equivalent.
(1) A is G-open.
(2) A ⊂ A◦G, i.e., A◦G = A.

Making use of Proposition 3.11 and the definition of (G1,G2)-closed mappings , it is easy to see that the
following theorem is true.
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Theorem 3.13. Let G1,G2 be methods on sets X and Y, respectively. A mapping f : X → Y is (G1,G2)-closed if

f (A)
G2
⊂ f (A

G1
) for every subset A of X.

Proof. Let K be a G1-closed subset of X. By assumption f (K)
G2
⊂ f (K

G1 ). It follows from Proposition 3.11

that K
G1

= K. So we have f (K)
G2
⊂ f (K), and f (K) is a G2-closed subset of Y.

It follows from Theorem 3.13 that the next corollary is true.

Corollary 3.14. ([17, Theorem 2.9]) Let G be a method on a set X. A function f : X → X is G-closed if

f (A)
G
⊂ f (A

G
) for every subset A of X.

Similarly, we can characterize (G1,G2)-open mappings by means of G-interiors.

Theorem 3.15. Let G1,G2 be methods on sets X and Y, respectively. A mapping f : X→ Y is (G1,G2)-open if and
only if f (A◦G1 ) ⊂ f (A)◦G2 for every subset A of X.

Proof. Since A◦G1 ⊂ A, we have that f (A◦G1 ) ⊂ f (A). Therefore, f (A◦G1 )◦G2 ⊂ f (A)◦G2 . Since f is (G1,G2)-open,
we conclude that f (A◦G1 ) is a G2-open subset in Y. It follows from Proposition 3.12 that f (A◦G1 ) ⊂ f (A)◦G2 .

Conversely, suppose f (A◦G1 ) ⊂ f (A)◦G2 for any subset A of X. For any G1-open subset U of X, it follows
from Proposition 3.12 that U◦G1 = U. We have f (U) ⊂ f (U)◦G2 . As a consequence, f (U) is a G2-open subset
of Y.

Corollary 3.16. ([17, Theorem 2.12]) Let G be a method on set X. A mapping f : X → X is G-open if and only if
f (A◦G) ⊂ f (A)◦G for every subset A of X.

At the end of this section, firstly we define G-compact sets and (G1,G2)-perfect mappings under G-
methods. Subsequently we discuss (G1,G2)-perfect mappings. Finally, we give a partial answer to the
question about G-sequentially compact sets posed in [14].

Definition 3.17. Let G be a method on a set X, a family {As}s∈S of G-open subsets of X is called G-open cover
if,
⋃

s∈S As = X.

Definition 3.18. Let G be a method on a set X, X is called G-compact if, every G-open cover of X has a finite
subcover.

Definition 3.19. Let G1,G2 be methods on sets X and Y, respectively. A mapping f : X → Y is called a
(G1,G2)-perfect mapping if f is (G1,G2)-continuous, (G1,G2)-closed and f−1(y) is a G1-compact subset of X for
each y ∈ Y.

We can use the concept of G-compact to prove that the image of a G-compact set under a G-continuous
mapping is G-compact.

Theorem 3.20. Let G1,G2 be methods on sets X and Y, respectively. If the mapping f : X→ Y is (G1,G2)-continuous
and X is G1-compact, then Y is G2-compact.

Proof. Let {Us}s∈S be a G2-open cover of Y. The family { f−1(Us)}s∈S is a G1-open cover of X. Thus there exists
a finite set {s1, s2, · · ·, sk} ⊂ S such that

f−1(Us1 ) ∪ f−1(Us2 ) ∪ · · · ∪ f−1(Usk ) = X

and this implies that Us1 ∪Us2 ∪ · · · ∪Usk = Y.

In 2019, L. Liu [14] introduced the definition of G-method on a Cartesian product of an arbitrary family
of sets. L. Liu and Z. Ping[15] also introduce the concept of product G-methods on sets which lead to a
G-generalized topology on the Cartesian products.
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Definition 3.21. Suppose {Gα : cGα (Xα)→ Xα}α∈Λ is a family of G-methods. Put

cG(
∏

α∈Λ Xα) = {z∈ s(
∏

α∈Λ Xα) : pα(z)∈ cGα (Xα), α ∈ Λ}.

The product of the family {Gα}α∈Λ denoted by G is defined as follows:

G : cG(
∏

α∈Λ Xα)→
∏

α∈Λ Xα

G(z)=(Gα(pα(z)))α∈Λ,

where pα :
∏

α∈Λ Xα → Xα is a projection for each α ∈ Λ.

Theorem 3.22. Let G1,G2 be methods on sets X and Y, respectively, where G2 is a regular method. Then the mapping
f from X to X × {y} defined by f (x) = (x, y) for some y ∈ Y is (G1,G1 × G2|{y})-continuous.

Proof. Let x={xn}n∈N ∈ cG1 (X), then f (x)={(xn, y)}n∈N. Put y={(xn, y)}n∈N and G = G1 × G2|{y}, then y∈
cG(X × {y}). Take G1(x)= x, then f (G1(x))= f (x) = (x, y) = G({(xn, y)}n∈N) = G(y)=G( f (x)). We have shown
that f is (G1,G1 × G2|{y})-continuous.

Theorem 3.23. Let G1,G2 be methods on sets X and Y, respectively. If f : X → Y is a (G1,G2)-perfect mapping,
then for every G2-compact subset Z ⊂ Y, f−1(Z) is a G1-compact subset of X.

Proof. It suffices to show that for any family {Us}s∈S of G1-open subsets of X whose union contains f−1(Z)
there exists a finite set S0 ⊂ S such that f−1(Z) ⊂

⋃
s∈S0

Us. Let J be the family of all finite subsets of S and
UJ =

⋃
s∈J Us for J ∈ J . For each z ∈ Z, f−1(z) is G1-compact and thus is contained in the set UJ for some

J ∈ J . It follows that z ∈ Y \ f (X \ UJ), and thus Z ⊂
⋃

J∈J (Y \ f (X \ UJ)). Since Y \ f (X \ UJ) is G2-open,
there exist J1, J2, · · ·, Jk ∈ J such that Z ⊂

⋃k
i=1(Y \ f (X \UJi )). Hence

f−1(Z) ⊂
⋃k

i=1 f−1(Y \ f (X \UJi ))=
⋃k

i=1(X \ f−1 f (X \UJi )) ⊂
⋃k

i=1(X \ (X \UJi )) =
⋃k

i=1 UJi =
⋃

s∈S0
Us,

where S0 = J1 ∪ J2 ∪ · · · ∪ Jk.

It is easy to conclude that the next corollary is true.

Corollary 3.24. Let G1,G2 be methods on sets X and Y, respectively. If f : X → Y is a (G1,G2)-perfect mapping
and Y is G2-compact, then X is G1-compact.

The next problem about the product of G-sequentially compact was posed by L. Liu in [14] .

Problem 3.25. Whether G-sequentially compact sets is closed under finite product?

First, we recall the related definition.

Definition 3.26. ([14]) Let G be a method on X and F ⊂ X. F is called a G-sequentially compact subset of X if,
whenever x ∈ s(F) there is a subsequence x′ of x with x′∈ cG(X) and G(x′) ∈ F.

It is natural to consider the relation between the concepts of G-compact and G-sequentially compact.

Example 3.27. There is a G-sequentially compact set X which is not G-compact.

Let X = [0,+∞), cG(X) = s(X). Define G : s(X) → X by G(x)=x1 for each x={xn}n∈N ∈ s(X). It is evident
that every sequence in X is G-convergent, thus X is G-sequentially compact. For each subset A of X, it is
easy to see that A is both G-closed and G-open in X. Thus X is not G-compact.

Now, we give a partial answer to the above Problem 3.25.

Theorem 3.28. Let G1 be a method on a set X preserving the G1-convergence of subsequences and G2 be a method
on a set Y. If X is G1-sequentially compact and Y is G2-sequentially compact, then X × Y is G-sequentially compact
with respect to the product method G.
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Proof. Let {zn}n∈N ∈ s(X×Y), where zn = (xn, yn) for every n ∈N. Since X is G1-sequentially compact, there is
a subsequence {xnk }k∈N of {xn}n∈N such that {xnk }k∈N ∈ cG1 (X). Since Y is G2-sequentially compact, there exists
a subsequence {ynkj

} j∈N of {ynk }k∈N such that y={ynkj
} j∈N ∈ cG2 (Y). It follows from G1 is a method preserving

the G1-convergence of subsequences that x={xnkj
} j∈N satisfies x∈ cG1 (X). Put G1(x)=x and G2(y)=y, then

G(x,y)=(x, y) ∈ X × Y.

It is easy to check that if G2 is a method on a set Y preserving the G2-convergence of subsequences and
G1 is a method on a set X, then X × Y is G-sequentially compact with respect to the product method G
whenever X is G1-sequentially compact and Y is G2-sequentially compact.

4. Some Basic Properties of G-Topological Groups

In this part, we assume that G is a regula method preserving the subsequence. Y. Wu and F. Lin
[18] showed that the right translation and the left translation are all G-continuous in G-topological groups.
Making use of Theorem 3.3, we have next two propositions.

Proposition 4.1. Let X be a G-topological group. Then for any a ∈ X, the left translation λa : X → X, x 7→ ax is
G-closed and G-open.

Proof. Since X is a G-topological group, λa is G-continuous for each a ∈ X. Since λa−1 ◦ λa = λa ◦ λa−1 is an
identity mapping which is G-open and G-closed, it follows from λa−1 is one to one, onto and G-continuous
that λa is G-open and G-closed by Theorem 3.3.

Proposition 4.2. Let X be a G-topological group. Then the inverse mapping In : X → X, x 7→ x−1 is G-closed and
G-open.

Proof. Since X is a G-topological group, then the inverse mapping In is G-continuous. Thus F−1 is a G-closed
set in X for each G-closed set F of X which implies that the inverse mapping In is G-closed. By the same
way, we can conclude that the inverse mapping In is G-open.

S. Lin and L. Liu [13] induced naturally a method on the subset Y of a set X with a G-method.
Put

cG|Y (Y) = {x∈ s(Y) ∩ cG(X) : G(x)∈ Y},

and define a function G|Y : cG|Y (Y)→ Y by

G|Y(x)=G(x), x∈ cG|Y (Y).

Then G|Y is a method on the subset Y of X.
Recall that if G is a method on a set X, and Y ⊂ X. The function G|Y : cG|Y (Y)→ Y is called the submethod

of G on the subset Y of X, or the method on the subset Y induced by G [13, Definition 4.1].
In 2018, O. Mucuk, H. Çakalli [16] give a remark which say that if G is a method defined on a Hausdorff

topological group X, then we can also obtain a similar method on X × X defined by G(x,y) = (G(x), G(y))
when x and y are G-convergent sequences in X. By Definition 3.21, if G is a method defined on a set X, then
we denote the method G × G by G on X × X in the following results .

Theorem 4.3. If X is a G-topological group and H is a subgroup of X. Then H is a G|H-topological group.

Proof. It is only need to prove that the multiplication mapping M|H×H : (H, τ|H)× (H, τ|H)→ (H, τ|H) and the
inverse mapping In|H : (H, τ|H)→ (H, τ|H) are G|H-continuous.

Indeed, if y∈ cG|H (H) ⊂ cG(X), then In|H(y)=In(y)∈ cG(X) and G(In(y))=In(G(y)) by G-continuity of the
inverse mapping In . Since H is a subgroup of X, InH(y)=In(y) is a sequence in H. Note that G(In|H(y))=
G(In(y))=In(G(y)) and G(y)∈ H, so we have G(In|H(y)) ∈ H. Thus In|H(y) ∈ cG|H (H). It is easy to conclude
that G|H(In|H(y))=G(In(y))=In(G(y))=In|H(G|H(y)). This proves that In|H is G|H-continuous.
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In fact, if z=(x,y)∈ cG|H (H×H), then x∈ cG|H (H) and y ∈ cG|H (H) by Definition 3.21. Thus z=(x,y)∈ cG(X×X).
Since M : X × X → X is G-continuous, M|H×H(z)=M(z)∈ cG(X) and G(M(z))=M(G(z)). It follows from
H is a subgroup of X that M|H×H(z) is a sequence in H. Since G(M|H×H(z))= G(M(z))=M(G(z)) and
G(z)=(G(x), G(y))∈ H × H, it follows that G(M|H×H(z))∈ H. Thus M|H×H(z)∈ cG|H (H). It follows from
G|H(M|H×H(z))=G(M(z))=M(G(z))=M|H×H(G|H(z)) that the multiplication mapping M|H×H is G|H-continuous.

In [16], the authors proved the following fact.

Proposition 4.4. ([16, Proposition 3.15]) Let G be a method on X, A and B be subsets of X. If A and B are G-closed,
then A × B is G-closed.

A delicate situation arise when we discuss G-closures of G-topological subgroup in G-topological group.

Proposition 4.5. ([18, Proposition 5.14]) Let X be a G-topological group and A ⊂ X. Then x ∈ A
G

if and only if
for each G-open neighborhood U of x ones have A ∩U , ∅.

Theorem 4.6. If H is a subgroup of a G-topological group X, then H
G

is a subgroup of X.

Proof. We claim that H
G

H ⊂ H
G

. In fact, for each y ∈ H
G

and x ∈ H, we have yx ∈ H
G

x ⊂ Hx
G

since X is a

G-topological group. Since H is a subgroup, Hx ⊂ H and hence yx ∈ H
G

. Thus H
G

H ⊂ H
G

. Next we verify

that for each z ∈ H
G

if y ∈ H
G

, then yz ∈ H
G

. Indeed, for every G-open neighborhood U of the neutral

element e, there is y′ ∈ zU ∩H, then yy′ ∈ yzU ∩H
G

H ⊂ H
G

, which proves that H
G

H
G
⊂ H

G
.

Since the inverse mapping In is G-continuous, we conclude that In(H
G

) ⊂ In(H)
G

, that is H
G−1
⊂ H−1

G
.

It follows that H
G−1
⊂ H

G
, and thus the set H

G
is also closed under taking inverses. We have shown that

H
G

is a subgroup of X.

Corollary 4.7. If H is a subgroup of a G-topological group X, then H
G

is a G|
H

G topological group.

Theorem 4.8. Suppose that X is a G-topological group. If X ×X is the Cartesian product and the product operation
is defined coordinatewise, then X × X is a G-topological group.

Proof. Let Y = X × X. It suffices to prove that the multiplication mapping M : Y × Y → Y and the inverse
mapping In : Y→ Y are G-continuous.

In fact, if (x,y)∈ cG(Y × Y), then x=(x1,x2)∈ cG(Y) = cG(X × X) and y=(y1,y2)∈ cG(Y) = cG(X × X) by
Definition 3.21. Note that X is a G-topological group, so we have M((x1,x2))∈ cG(X) and M((y1,y2))∈ cG(X).
Thus M((x,y))=(M(x1,x2), M(y1,y2))∈ cG(Y). It follows from G(M(x,y))=G(M(x1,x2), M(y1,y2))=(G(M(x1,x2)),
G(M(y1,y2)))=(M(G(x1,x2)), M(G(y1,y2))) = M(G(x1,x2), G(y1,y2))=M(G(x,y)). This proves that the multipli-
cation mapping M is G-continuous.

If z=(z1,z2)∈ cG(Y) = cG(X × X), then z1
∈ cG(X) and z2

∈ cG(X) . Since X is a G-topological group, we can
conclude that In(z)=(In(z1), In(z2))∈ cG(Y). It is easy to verify that G(In(z))=(G(In(z1)), G(In(z2)))=(In(G(z1)),
In(G(z2)))=In(G(z)) This proves that In is G-continuous.

5. G-Connectedness and Total G-Disconnectedness in G-Topological Groups

In this section, we mainly discuss G-connectedness and total G-disconnectedness in G-topological
groups. we assume that G is a regular method preserving the subsequence.

The following results play an important role in this section.

Proposition 5.1. ([18, Theorem 5.5]) A fundamental system Be of G-open neighborhoods of the neutral element e
of a G-topological group X satisfies the following conditions:

(1) If U ∈ Be, then there exists V ∈ Be such that V−1
⊂ U.

(2) The right translation and the left translation are all G-continuous.



J.W. Chen, J. Zhang / Filomat 35:7 (2021), 2245–2256 2254

Proposition 5.2. ([18, Theorem 5.7]) Let Be be a fundamental system at e of a G-topological group X. Then, for
each x ∈ X, the family Bx = {xU : U ∈ Be} is a fundamental system of x.

Proposition 5.3. ([18, Proposition 5.11]) Let A be a subgroup with operations of a G-topological group X. If A is
G-open, then it is G-closed.

Proposition 5.4. ([18, Proposition 5.15]) Let X be a G-topological group, U a G-open subset of X, and A any subset
of X. Then the set AU (respectively, UA) is G-open in X.

Proposition 5.5. ([18, Corollary 5.9]) Suppose that X is a G-topological group, and assume that H is a G-topological
subgroup with operations of X. If H contains a non-empty G-open subset of X then H is G-open in X.

Proposition 5.6. ([6, Theorem 1]) A G-continuous image of any G-connected subset of X is G-connected.

Proposition 5.7. ([18, Proposition 4.4]) If X and Y are G-connected, then X × Y is G-connected.

In what follows we often use the next obvious statement.

Lemma 5.8. Let X be a G-topological group. Let A and B be G-connected subsets of X, then the subsets A−1 and AB
are G-connected.

Proof. By Proposition 5.6, A−1 is G-connected as the image of the G-connected set A under the G-continuous
mapping x 7→ x−1.

Since A and B are G-connected in X, A × B is G-connected in X ×X by Proposition 5.7. The set AB is the
image of A×B under the multiplication mapping which is G-continuous , and hence AB is G-connected.

If x ∈ X, the G-connected component of x in X is denoted by CG(x). By [16, Theorem 4.4], we have the
following proposition.

Proposition 5.9. The G-connected component of e ∈ X are closed, normal subgroup of X.

Theorem 5.10. Let X be a G-topological group and let e be the neutral element of X. Then CG(y) = yCG(e) = CG(e)y
for every y ∈ X.

Proof. Let y be a point of X. We show that CG(y) = yCG(e) = CG(e)y. It follows from Proposition 5.1 that the
mappings x 7→ yx and x 7→ y−1x are G-continuous. Thus the sets yCG(e) and y−1CG(y) are G-connected. By
y ∈ yCG(e) and e ∈ y−1CG(y), it is clear that yCG(e) ⊂ CG(y) and y−1CG(y) ⊂ CG(e). Moreover, the inclusion
y−1CG(y) ⊂ CG(e) is equivalent with the inclusion CG(y) ⊂ yCG(e). By the foregoing, yCG(e) = CG(y). Since
the subgroup CG(e) is normal, yCG(e) = CG(e)y.

The following lemma is clear by [6, Lemma 5].

Lemma 5.11. Let X be a G-topological group, A ⊂ X, and U a G-open and G-closed subset of X. If A is G-connected,
then either A ⊂ U or A ⊂ X \U.

Lemma 5.12. Let G1,G2 be methods on sets X and Y, respectively. Let f be a (G1,G2)-open mapping from X onto Y
such that f−1(y) is G1-connected for every y ∈ Y. Then f−1(D) is G1-connected for every G2-connected subset D in
Y.

Proof. Let D ⊂ Y be G2-connected. Put E = f−1(D) and 1 = f |E. First, 1 is (G1|E,G2|D)-open. Let A be a
G1|E-open subset of E, there exists a G1-open B of X such that A = B ∩ E. It follows that 1(A) = f (A) =
f (B∩E) = f (B∩ f−1(D)) = f (B)∩D. Hence f (B)∩D is G2|D-open in D, since f is (G1,G2)-open. Next we shall
prove that E is G1-connected. Let U be a non-empty G1|E-clopen subset of E. We show that U = E. For every
x ∈ E, the set 1−11(x) = f−1 f (x) is G1-connected, and it follows from Lemma 5.11 that either 1−11(x) ⊂ U
or 1−11(x) ∩ U = ∅. Thus 1(U) ∩ 1(E\U) = ∅. Since the set U is G1|E-clopen in E and the mapping 1 is
(G1|E,G2|D)-open, the set 1(U) and 1(E\U) are (G1|E,G2|D)-open in 1(E) = D of Y. We have 1(U)∩ 1(E\U) = ∅
and 1(U)∪1(E\U) = D. Since D is G2-connected and 1(U) , ∅, it follows that 1(E\U) = ∅. As a consequence,
we have E\U = ∅ and hence U = E.
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Proposition 5.13. ([18, Theorem 5.12]) Every G-topological group X has a G-open base at the identity consisting
of symmetric neighborhoods.

Theorem 5.14. Let X be a G-topological group, the following are equivalent:
(1) X has no proper G-open subgroup.
(2) X =

⋃
∞

n=1 Vn for every V ∈ Be, where Be is a fundamental system at e.

Proof. (1) ⇒ (2) For each V ∈ Be, there is a symmetric G-open neighborhood Uof e such that U ⊂ V . Put
H =

⋃
∞

n=1 Un. It is easy to verify that H is a G-open subgroup of X . Since X has no proper G-open subgroup,
X = H =

⋃
∞

n=1 Un
⊂
⋃
∞

n=1 Vn, which completes our proof.
(2)⇒ (1) Assume that (2) holds. To prove (1), let H be a G-open subgroup of X, there exists V ∈ Be such

that V ⊂ H. It follows from
⋃
∞

n=1 Vn = X that H = X.

Corollary 5.15. Let X be a G-connected G-topological group and V ∈ Be. Then X =
⋃
∞

n=1 Vn.

Recall that X/H denotes the set of all left cosets aH of H in H when X is a group and H is a subgroup of
X.

The next corollary follows from Theorem 3.4.

Corollary 5.16. Suppose that X is a G1-topological group and cG1 (X) = s(X). Assume that H is a G1-topological
subgroup with operations of X. Let G2 be a method on X/H. If the natural mappingπ : X→ X/H is (G1,G2)-quotient,
then π is (G1,G2)-open.

Proof. Let U be a G1-open of X, then UH = π−1(π(U)) be a G1-open of X. thus π(U) is a G2-open of X/H, so
π is (G1,G2)-open.

Theorem 5.17. Let X be a G1-topological group, cG1 (X) = s(X) and H be a G1-connected subgroup of X. If the
natural mapping π : X→ X/H is (G1,G2)-quotient and X/H is G2-connected, then X is G1-connected.

Proof. By Corollary 5.16, π is (G1,G2)-open. For every y ∈ X/H, π−1(y) = yH. Since X is a G1-topological
group, the right translation is G1-continuous, thus %y(H) = yH is G1-connected. Since X/H is G2-connected,
by Lemma 5.12, it follows that X is G1-connected.

X is called totally G-disconnected when CG(x) = {x} for every x ∈ X.

Theorem 5.18. Let X be a G1-topological group and cG1 (x) = s(X). Suppose C is the G1-connected component of the
neutral element of X and G2 is a method on X/C. If natural mapping πC : X → X/C is (G1,G2)-continuous, then
X/C is totally G2-disconnected.

Proof. By Proposition 5.9, C is a normal subgroup of X. We shall show that X/C is totally G2-disconnected.
Denote by D the G2-connected component of the neutral element C of X/C. By Theorem 5.10, totally
G2-disconnectedness of X/C follows once we show that D = {C}.

By Corollary 5.16, πC is (G1,G2)-open. Since the subgroup C of X is G1-connected, it follows from Lemma
5.12 that the subset π−1

C (D) of X is G1-connected. Since C ∈ D, we have e ∈ π−1
C (D). From the foregoing it

follows that the set π−1
C (D) is contained in the G1-connected component C of e. As a consequence, we have

πC(π−1
C (D)) ⊂ {C}, in other words, D ⊂ {C}. It follows, since C ∈ D, that D = {C}.

Theorem 5.19. Every totally G-disconnected normal subgroup of a G-connected G-topological group is contained in
the center of the G-topological group.

Proof. Let H be a totally G-disconnected normal subgroup of a G-connected G-topological group X, and let
h ∈ H. The following we shall prove that xh = hx for every x ∈ X. We define a mapping f : X → X by the
formula f (x) = xhx−1, and we note that f is G-continuous. Since H is a normal subgroup, we have xhx−1

∈ H
for every x ∈ X. As a consequence, f (X) ⊂ H. The G-continuous image f (X) of the G-connected set X is
G-connected. Since H is totally G-disconnected, it follows that the set f (X) is a singleton. Since f (e) = h,
it follows from the foregoing, that f (X) = {h} . Hence we have, for every x ∈ X, that xhx−1 = h, i.e. that
xh = hx.
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