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Some Inequalities in Quasi-Banach Algebra of Non-Newtonian
Bicomplex Numbers

Nilay Sager?, Birsen Sagir®

*Ondokuz Mayis University, Faculty of Art and Sciences, Department of Mathematics, Samsun, TURKEY

Abstract. In this paper, we construct the quasi-Banach algebra BC (N) of non-Newtonian bicomplex num-

bers and we generalize some topological concepts and inequalities as Schwarz’s, Holder’s and Minkowski’s
in the set of bicomplex numbers in the sense of non-Newtonian calculus.

1. Introduction and Preliminaries

In 1972, Grossman and Katz [1] pointed out to different calculus, called non-Newtonian calculus consist-
ing of some special calculus such as geometric, bigeometric, quadratic, biquadratic calculus, and so forth,
which modify the calculus created by Isaac Newton and Gottfried Wilhelm Leibnitz in the 17th century.
The non-Newtonian calculus provides a wide diversity of mathematical tools for use in technology and
mathematics. Also, it has wonderful applications in various areas including engineering, physics, finance,
approximation theory, dynamical systems, tumor therapy, weighted calculus etc. There is a provision in
each member of non-Newtonian calculus class of all concepts used in classic calculus.

Recently, Tekin and Basar [2] obtained some sequence spaces over non-Newtonian complex field by
defining non-Newtonian complex field. Cakmak and Basar [3] constructed the space of continuous functions
on the non-Newtonian complex field and gave some important features. Kadak and Efe [4] studied Hilbert
spaces and examined Cauchy-Schwarz and triangle inequalities in terms of *—calculus. For further works
we refer the reader to [5-7].

In 1892, Corrado Segre defined the concept of bicomplex numbers [8]. There are many works in the
bicomplex setting. They can be found in [9-11]. Sager and Sagir [12] obtained well - known Holder’s and
Minkowski’s inequalities for sums in the bicomplex numbers, introduce bicomplex sequence spaces with
Euclidean norm in the set of bicomplex numbers and study completeness property of the spaces.

In the literature, it has been observed that bicomplex numbers have not been defined according to
non-Newtonian calculus. This idea enabled us to apply *—calculus to definition and the algebraic and
topological properties of the set of bicomplex numbers.

Following the same line, the main aim of our this study is to establish the quasi-Banach algebra BC (N)
by defining non-Newtonian bicomplex numbers as a generalization of both bicomplex numbers and non-
Newtonian complex numbers and also, examine the validity of the non-Newtonian bicomplex version of
the well-known Holder’s and Minkowski’s inequalities for sums.
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The followings will be needed in the sequel.
Let i and j be independent imaginary units such that i = j* = -1, ij = ji and C (i) be the set of complex
numbers with the imaginary unit i. The set of bicomplex numbers BC is defined by

BC ={z =21 + jz2 : 21,20 € C(i)}.

The set BC forms a Banach algebra with respect to the addition, scalar multiplication, multiplication and
norm for all z,w € BC, A € R defined as [13]

z+w (z1 + jz2) + (w1 + jw2) = (21 + wq) + j (22 + w2),

Az = A(z1+ jzo) = Az + jAzy,

ZXw (z1 + jz2) . (w1 + jwz) = (z1w1 — 22w2) + j(zaw2 + 2w1),

2 2
Il BC—>Rz- |zl = ylz1l” + |zl

A complete ordered field is called arithmetic if its realm is a subset of R. A generator is a one-to-one
function whose domain IR and whose range is a subset of R. Let « be a generator with range A. We denote
by R, the range of generator a. Also, the elements of R, are called non-Newtonian real numbers.

Let a and f be arbitrarily chosen generators which image the set IR to A and B respectively and * — ("’star-
””) calculus also be the ordered pair of arithmetics (o — arithmetic, § — arithmetic). The following notations
will be used. All definitions given for a—arithmetic are also valid for f—arithmetic.

a—arithmetic B — arithmetic
Realm A(=Ry) B(=Ry)
Summation ytz=alat(y)+al(z) ¥
Subtraction y—z=ala(y)—al(z) -
Multiplication y Xz =a{a™'(y)xa ! (z) X
Division ylz=a {(:x__ll((z)) } (z # O) /
Ordering y<zesal(y)<al(z) <

There are the following three properties for the isomorphism from a—arithmetic to f—arithmetic that is
the unique function :(iota).

1. 7is one-to-one.

2. 1is on A and onto B.

3. Forallu,v € A,

tw+v) = () ¥ (v), t(u=0v) =1(u)=(v),
tuxv) = t@)xi(), (u/o)=@)]i@),0#0
u < v 1)<,
tw) = platw)},

Also, for every integer n, we set ¢ (71) = i1 [1].

A a— positive number is a number x with 0 < x and a a—negative number is a number with x < 0.
a—zero and a—one numbers are denoted by 0=a (0) and 1=a (1), and the set of a— positive numbers is
denoted by R}. Also, a (—p) =« {a‘1 (p)} = —pfor all p € Z*. The a—absolute value of x € A is defined by

o X, if 0<x
lx|=4 0, if 0=x
0-x, if x<0.
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The definitions of a—convergence of a sequence of the elements in A and * — limit, and *—continuity of
the function f : X ¢ A — B are found in [1].
The following definitions which appeared in [2] will be a crucial tool in our study.

Leta € (A, +,5,%,/, S) and b € (B, i5,%,, S) be arbitrarily chosen elements from corresponding

arithmetics. Then, the ordered pair (iz, b) is called as a *— point. The set of all *— points is called the set of
+—complex numbers (non-Newtonian complex numbers) and is denoted by C* or C (N) that is,

C(N)={(c’z,E):ézeAgR,BeBglR}.

The set C (N) forms a field with respect to addition ®; and multiplication ® forall z} = (dl, bl), zy = (a'Q, bz) €
C (N) defined as

® : C((N)XC(N)—>C((N),
(Z;,ZE) - Z; D1 Z; = (ﬂ.l, bl) D1 (ﬂ.z, bz) = (ﬂ.l +ay, b1 + bz),
® : C((N)XC(N)—=C((N),

(Z;,Z;) - Z; ®1 Z; = (Ll.l,b“l) ®1 (Ll.z, bz) = (a (mar — blbz),ﬁ (a1br + blaz)) .

Let b € B C R. Then, the number b X b is called the p— square of b and is denoted by b2 Let b be a
nonnegative number in B. Then, [ B! (b)] is called the f— square root of band is denoted by b. The »—

distance d. between two elements z] = (a'l, bl) and z;, = (a‘z, bz) of the set C (N) is defined by

d. : C(N)xC(N)—[0,c)CB
(z.3) - d(z.3)= \/ (a1 - a‘z)]i (b - b"z)é = ,B[\/(al —a2)* + (by - bz)z].

Let z* € C(N). Then, d. (z*,0") is called *— norm of z* and is denoted by || . ||1 . In other words,

Iz ”1= d.(z,0") = J[l(d - 0)]2 + (b - 0)2 = ﬁ( Va2 + bz),

where z* = (él, b) and 0* = (O, 0)
Now we are ready to present and discuss our main results.

2. Main Results

2.1. =—Bicomplex Numbers (Non-Newtonian Bicomplex Numbers)

In this section, we define bicomplex numbers and bicomplex sequences in the sense of non-Newtonian
calculus and we prove that the set of non-Newtonian bicomplex numbers BC (N) is a Banach space with

respect to the norm || g .

Definition 2.1. Let a,c € (A, 5%, /, S) and b,d € (B, i,5%,/, S) Then, ([1, b,c, d) is called as a *— bicomplex
point. The set of all +— bicomplex points is called the set of +—bicomplex numbers (non-Newtonian bicomplex numbers)
and is denoted by BC" or BC (N) ; that is,

BC(N) = {(a,b,¢d):a,c€ ACR,b,deBCR)

{(z*,w*) 1zh = (iz,é),w* = (é,d),él,é €A Q]R,E,EZE BC ]R}
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The algebraic operations addition ©,, multiplication ®, and scalar multiplication ©, defined on BC (N) as follows:

® : BC(N)xBC(N)— BC(N),

(CLCZ) - (&G = (zl,wl) & (z;, wz) = (z1 @1 25, Wy B wz),
® : BC(N)xBC(N)— BC(N),

(€.6) = GeG=(zw)e (5 w)=((z & 2) e (v & w),(z & w)) e (2 & w))),
® : C{IN)xBC(N)— BC(N),

(Z*, Cl) - 0= (zl,wl) = (z* ®12,,7 & wl)

where g = (z;,w;), G = (z;,w;) € BC(N) and z* € C(N). According to the these operations, it can simply be
shown that the set BC (N) forms a *—vector space over the field C (N) and a ring.

Remark 2.2. We can denote non-Newtonian complex number z* = (1'1, b) by (a, 0) @ 1" (O, b) =ad @b
where it = (O,i) = (O, i, O, ('j),(i*)2 = 611". Also, we can denote non-Newtonian bicomplex number C* = (z*, w")
by (z,0") @, j @ (w*,0) =2° @ [ @ w* = (d, b) @ " @ (é, d) where z* = (iz, b),w = (é, &),j* = (O, 0,1, 0) =
07,19, ( ])2 = ©,1" and also define z* and w* by R and I, respectively.

Definition 2.3. The +—distance dpc(n) between two arbitrarily elements (] = z] @, | ® w}, T =z, @ | @ w; of
the set BC (N) is defined by

dpcoy  : BC(N)xBC(N) — [0,00) C B,

(@.6) - deeow (6.G)= \/ iz 0123 liy + Il w} &1 wj Il
Theorem 2.4. The +—distance dpcqy) is a metric on BC (N).

dien (G5, C3) + dpeew (G Gy) for all €, G5, € BC(N). Let § = 2, @ j* @ w), G, = 25 & | & wj, and
Gy = z; @ J" ® wj. Then,

Proof. It is trivial that dpc(y) satisfies the metric axioms on BC (N). We only show that dpcqy) (q, Cz) <

dpey (1, G) = \/ Iz 012 I + | w) &1 w; iy

\/II (z1 &1 23) & (23 =i zz) IIf 1 (w1 =i w3) & (w3 & wz) IIi

< \/ iz 0125 0l + il 25 0125 I ]+ [il oy 01 w3 Il + i wy ©1 703 i ]

[II Ziorzylly +llz5enz; |l +2x |l z; 125 h X || 2561 25 |I1]

+ [II wy 1wy Iy + [ wi &1 wy [l +2X || wi €1 w} [l X || wy 61 w) |I1]

< \/IIZ]eﬂg Iy + Il w) &1 w; |I1+\/||z;61z; Il + 1l w; &1 w; Iy

dpe) (CL C;) + dpc) (CE, C;) ,

asrequired. Therefore, the function dpcqy) is a metric on BC (N) and so, (]BC (N), d]BC(N)) isametricspace. [
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Definition 2.5. A sequence in BC (N) is a function defined by s : IN — BC (N),n — s;,. This sequence is called a
non-Newtonian bicomplex sequence. It converges to a limit s* € BC (N) with respect to the metric dpcqy) if and only

if to each € > 0 there corresponds a natural number ng (¢) € IN such that dpcew (S}, s%) < € for all n = ng (¢) . It is
denoted by lim”s;, = s*. The sequence (s},) is a Cauchy sequence with respect to the metric dgcqy) if and only if to each
n—oo

e > 0 there corresponds a natural number ng (¢) € N such that dgc) (S5, 85,) < € for all n,m > ng (¢).

Theorem 2.6. Ifs : N — BC (N),n — s}, is a non-Newtonian bicomplex sequence, s* = z* @, j* ®, w* € BC (N)
and
(D)s;, =z,@ @ w;, lim’s}, = lim”* (2, & j @ w},) =57,
n—oo n—oo
then, the following limits exist and have the values shown respectively:
(2) im*z, =z, hm w;, = w",

n—oo

Moreover, if the lzmzts exist as indicated in (2), then lim”s}, exists as stated in (1), and lim’s;, = s™.

n—oo n—oo

Proof. The proof is application of definition of non-Newtonian bicomplex sequences. [

Definition 2.7. Let (s},) be a non-Newtonian bicomplex sequence. Then, the infinite sum

(o8]

@ZZSZ = S; 5] S; D) ... S; Dy ... (1)
k=1

is called a non- Newtoniun bicomplex series. Define the non-Newtonian bicomplex sequence S : IN — BC (N) ,n — S,
by setting S;, =¢, Z s, for every n € IN. The infinite series (2.1) converges to a limit S* € BC (N) with respect to the

metric dpcn) if and only if (S;,) converges to a limit S* € BC (N) with respect to the metric dpcqv). Then, S* is called
the sum of non-Newtonian bicomplex series, and we write

@2252 =S (2)

k=1

Theorem 2.8. In (2.2), let s : N — BC(N),n — s;, = z;, @ j* ® w), be a non-Newtonian bicomplex sequence,
S =z2"& s & w € BC(N). Then, the infinite series (2.1) converges to a limit S* € BC (N) with respect to the
metric dpc(ny and has the sum S* if and only if the following infinite series converge and have the sums shown:

0o (=]
* * * *
@IEZk:Z,@lg wk=w.
k=1 k=1

Proof. The proof is application of definition of non-Newtonian bicomplex series. [
Theorem 2.9. The metric space BC (N) is complete with respect to the metric dpcqy)-

Proof. Let (s;,) = (z;, @, j* ® w;,) be a Cauchy sequence with respect to the metric dpe(y). Then, there exists
a natural number 1 (¢) € N such that dpcy) (55, 5;,) < € for all n,m > ng (¢) . Then,

dpe) (S 8m) = ﬁ(\/|z§' - 2'1”|2 + |wr - wﬂz) Ze=B().

In this case, the inequality \/ )z - zm| + |w - wm| < ¢ holds. Thus, we obtain that |z -z | < ¢ and

(wl - w;") < ¢'. Then, ( 1) and ( ) are complex Cauchy sequences. Since C is complete with respect to the
norm |.|, we can see that for every ¢’ > 0 there exists a natural number 11 (¢),1, (¢) € N and z,w € C such
that |z§’ - z| < % for all n > ny (¢) and )w’f - w| < % foralln > n, (e).
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Now, define s* = z* @, j* ® w* where z*,w* € C (N). Then, we get
B( Vet =F + s -

(Nt = + Vot - |

= Bl 2l + [ - )

s 5)
= B()==e

Hence, the sequence (s,) converges to s* € BC (N) . Thus, (]BC (N), d]BC(N)) is a complete metric space. [J

dpe) (5,57)

Remark 2.10. Theorem 2.9 says that the space BC (N) is complete with the metric dpc(y induced by the norm || bz
defined by

I T o= dpcavy (C,07) = VIl z* ll; + [l w Iy

forT'=z"@ j* @ w* € BC(N).

Corollary 2.11. BC (N) is a Banach space with respect to the norm || Al

2.2. Some inequalities in BC (N) with respect to the norm || Al
In this section, we obtain that the system (]BC (N),®,,®, || . “2, ®2) is a quasi-Banach algebra by using

some inequalities in BC (N) with respect to the norm || . ||2 which are discussed in this part. Also, we
generalize Holder’s and Minkowski’s inequalities in the set of bicomplex numbers to the set of non-
Newtonian bicomplex numbers.

Lemma 2.12. Let C}, C; € BC(N). Then, the following inequalities are satisfied:
DG @G LG+
i) 1T 0 Gl Tl + 18 -
i) 1 G 1l = 11 G 1< 6 €2 Gl -
i0) [l G 1 =11 G 11 <l G @2 Gy o -
Congis S TGl * T

Proof. i) Let C} =z} @, j* @ wj}, C; = 25, @, J* ® w; € BC(N). By using Lemma 2 in [2], we have

NG &Gl = \/II 21 @12 Iy + || w) & w} [l

< || Zl ”1 + ” Zz ||1 + ” wl “1 + ” wz “1

< ” Zl “1 + ” wl “1 + || Zz ”1 + ” wz ”1
G+ 111Gz,

as required.
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i) Let ] = 2] @ [ @ w], (5 = 25 @2 j* ® w; € BC(N). By using Lemma 2 in [2] in a similar way, we have

\/II zio1z; lly + llwy e wj iy

< A2yt + 0z g [+ (T w) ll + 1 wj

SJWNMW%M+JWHHM%M

= G L+18

€128 Il

as required.
iii) Since

1 1= & @2 (G 2 6) =11 (G ©2G) @2 G 1= 6 02 Gl 11 G s
we have that || g ||2 2 G ||2S|I &g ||2 . Also, since

1G 1=l G @2 (¢ ©2¢) 1=l (G 2 C) @2 G 1h2=l1 G €2 G Il 11 G s
we have that = || ge g ||2S|I & ||2 .y G ||2 . Thus, we can write

G e G <16 1h<1 6 e G b,

and so, || ¢ Il = | G ILI<II T ©2 G |l as required.
iv) Since

1G 1= G @2 (G 02 G) 1= (G @2 G) @2 G 1= G @2 Gl 11 G Il
we have that || (& ||2 - || G ||2£|| @G ||2 . Also, since

1C llo=ll € @2 (G €2 C1) l=ll (G @2 G) @2 G 120 G @2 Gy Il + 11 C s
we have that = || G &G <l & o =i G ll, . Thus, we can write

“1G @GR <16 L2 G @ G b,

and so, ||| G [l = I G lI<Il ¢ @2 G |l,, as required.

v) Let (] = (a'l, b1) @ " (cj, d1) G = (a'z, bz) @ @ (dz, dz) . Then, a straightforward calculation gives
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that

ice i, ﬁ[Jw1+@f+wm+hﬁ2+@l+qf+oh+dﬂﬂ
1 2

1+ || &G ”2 1+ B [ \/(ﬂl + az)z + (b1 + bz)z +(a+ 02)2 +(d1 + d2)2]

-1 (,3 \/(lh + @) + (b1 + b)) + (c1 + ) + (dy + d2)2)

g1 [5 [ﬁ—l (1) +p (ﬁ \/(al + @)’ + (by +bo)? + (e + ) + (dy + dZ)Z)H

0407 1+ 02+ (e + o)+ + ) ‘
= §

1+ @+ @20+ (01 + 02 + (e + 02 + (e + o)

,/a +b7 + 3 +d] B+ + G +ds
1+,/a +b7+ 3 +d] 1+,/a +bi+c5+d;

+b2+c +d2)]

,S (,9(1))+,8 2P+ d +d2))]
+b2+c +d2)]

ﬁ (ﬁ(l))+ﬁ +b2+c +dz))]

: } ﬁ [“ Cl l'llzc B [ (f):[iiz(iiiizli “2)]}
i

ﬁ [||c ] i G i }
ﬁl[ﬁ +ﬁ (nc AN R R Al

el el
_ [3{[3_1 [%l o H ﬁzcgziizl}

i .I.I Cl ||2“ i .I.I C2 ”2.. ,
+G 1 1+1G R

as required. [

Theorem 2.13. (Schwarz’s inequality in BC ((N)) with respect to || . ||2) Let s, t;, € BC(N) for k € {1,2,...,n}.
Then,

[ (il it ‘iz)Jz : [2 i ni] [z i ni}.

Proof. Since || Sy ||2, || t ||2€ ]R* for s}, t; € BC(N), If we take f—arithmetic intead of a—arithmetic and we

choose p = g =2in non—Newtoman Holder’s inequality in [16], then we derive Theorem 2.13. [
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Theorem 2.14. Let C,C, € BC(N) and z* € C(N). Then, the following statements are satisfied:
iz o ib=lz lh X0 G iz -
i) 115 ® Gy [ V21 6l X1 Gl -
i 1 (¢) 1% (3)" % (il ¢ i) forati n e N,

Proof. LetC} =z} @ j*® w},C; =25 @, j* @ w, € BC(N) and z* € C(N).

i) Since

lz2o Gl =

|z @ (Zl @] @ w’i) I

I (Z* 1 Zl) @ @ (Z* ® wl) I

\/II z2@1 2y |h + Il z2 @ wj [y
Iz 1l x Iz lly )+ {11z 1l X ey Iy
Izl < {2 1l + Il Iy

z" [l %

Iz} Il + [l w) Il

2" 1 X 11 G Il

the equality || 2 ® C; ll=ll 2" [ X || €} Il holds.

ii) By using Schwarz’ s inequality in BC (N) with respect to the norm || . ||,, we obtain that

Il ¢ ® G 2

as required.

Il (21 @2 ' ®2 w}) ® Gy Il

I1(z; ©2G) @ (" @2 (w22 G))

<l 23 @2 Glla + 11 j* @2 (w) ©2G) [l
(it 2 Tl % 0 G k) + (I il 01 € 1)

(il 2y fh + Ty )% 01 3 1l
< V2l z; Il + 1wy 101 S il
V2% || 2, @2 f* @ w) Il X 11 G Il
V2X 1 C o % 1C o

2239

iif) For n = 1 and n = 2; the proof is clear. We assume that the inequality holds for n = k, that is,
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. koo g k=1)/2 . e ek ) )
Il (C,’;) < (2) X <|| (& ||2) . Now, we want to show that it holds for n = k + 1. Consider

(&) i

IS EL

£V () T %01 €

<vax (3 (i i) i ¢
(i)((k+1)_l)/2 % (” Ci |~~|2>k+1 .

Then, above given inequality is true for n = k + 1. Thus, the mathematical induction principle completes
the proof. O

Corollary 2.15. The system (]BC (N),®,, ™, || . iiz, ®2) is a quasi-Banach algebra.

Proof. All properties of the system have been established in preceding theorems. In the usual definition of a
Banach algebra, the norm of the product of two elements is required to be equal to or less than the product
of the norms of these elements. So, BC (N) is a quasi-Banach algebra (see [14, 15].) O

b b
axXbs< —+—
p 4
for a and b positive non-Newtonian real numbers. The equality holds if a? = b9
Proof. One can see from Young’ s inequality that
axb = a {oc‘l (@) xa™t (b)}
1 ol (b)Y
{oc @, a'® }
p q

o))
e )

<a

= «a
ab . b
pooq’

as required. Also, if #” = b, thena = b1, Thus,

i 1]_aﬁ.m
p

a>'<b:b”7;i>'<b:bv7:bq>'<(TJrT
P g

This completes the proof. [
Lemma 2.17. (Hb’lder’s inequality in BC (N) with respect to I ||2) Let p and q be non-Newtonian real numbers
with 1 < p < oo be such that % T % =1and s, t; € BC(N) fork € {1,2,...,n}. Then,

1
q

" " ; "

s R . s --p .. s -(
P «/Ex[z I ||z] x[Z s ||2] :
k=1 k=1 k=1
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i st il

N. Sager, B. Sag / Filomat 35:7 (2021), 2231-2243

AR

7

1
n P
. . . ..p
(z is; ||2]
k=1

-
n q
. . ..q
[z it ||2]
k=1

By non-Newtonian Young's inequality, we get

Ox 9=

s 12 X Il £ Il

sop : S
isib 0. it

i
n v
. . . ..p
(Z Il s ||2]
k=1

A=

.,S—Xn—+—>(
i P

i n ’
" 1 T Ty

AN YAlspl YAl

X (kZ Il £ ”2) el e
=1

Termwise summation gives

s 1l X Il £ 112

IA:

1

— n n q

N L Al
Yolspllz| x| X Il
k=1 k=1

and from this

n

< |

Y (isi@f i) < Y V2x syl % 1l £ I

k=1

k=1

n
= V2x ) lisill %1 £ Il
k=1

n

i i
P n q

< V2x Z“Hskll2 X lekaz

k=1

k=1

The proof is completed. [

2241

Lemma 2.18. (Minkowski’s inequality in BC (N) with respect to I ||2) Let p be a non-Newtonian real number with
1< p <coands;, t; € BC(N) fork € {1,2,..,n}. Then,

i
n P

Y lisi@th| <

k=1

Proof. We have

n

- N * * hp
Y lisi @ty il
k=1

i 1

n » n »
Y sl | )ik
k=1 k=1

n .-

- o * p71 SN *
Y lisi@till, xils@
k=1

n
<Y lisientyll x(isplh+ 4 )
k=1
n

n
- I * n o * * p71 N = " * N o * * p71
Ylsiloxiisi@t il +) 061 xi0s el -
k=1 k=1
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Setg = Ll Then, % + % =1,s0 by the Holder’s inequality in BC (N) with respect to the norm Il I, we have

o
i 1
I . ..p—l . L P . L . p—l q
Yiisplxiisie il <Y lispla| x| isietlly |
k=1 k=1 k=1
1 i
n e n P n ( . ) q
" * N o * * “pil )y N * p v " * * N p71 q
AR ETA e DI TS I DI A A
k=1 k=1 k=1
Adding these two inequalities, we obtain that
i 1 1
. . “p . . -p . . -p . s o p—l q
Yisiea b || Y Uisiin| +| Y 6| [%|) s @t il
k=1 k=1 k=1 k=1
Observing that (p - 1) q = p by definiton, we have
i 1 i
! ! g ! d ! a
. . P .. - P . - --p .. - . -p
Yisieti b || Y Uisiin| +[ X 6| [x|) s @t
k=1 k=1 k=1 k=1
and so,
; i i P,
Yiisietlh| =Y st  <||).0siik| +|), it
k=1 k=1 k=1 k=1

The proof is completed. [

3. CONCLUSION

In the present work, we have studied some basic structures in non-Newtonian bicomplex setting and
obtained that the set of non-Newtonian bicomplex numbers is a quasi-Banach algebra. For the future,
we will examine the validity of the bicomplex and non-Newtonian bicomplex versions of some geometric
properties as convexity, strictly convexity and uniformly convexity. Also, we will construct non-Newtonian
bicomplex sequence spaces as a generalization of the bicomplex sequence spaces, and then, discuss the
concepts of convexity, strictly convexity and uniformly convexity in the bicomplex and non-Newtonian
bicomplex setting of these spaces.
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