Filomat 35:7 (2021), 2209–2213 https://doi.org/10.2298/FIL2107209J

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Separability of Path Spaces under the Open-Point and Bi-Point-Open Topologies

Anubha Jindal^a

^aDepartment of Mathematics, S.S. Jain Subodh PG (Autonomous) College Jaipur, Rajasthan 302015, India

The paper is dedicated to professor Robert A. McCoy

Abstract. In [3], two new kinds of topologies called the open-point topology and the bi-point-open topology on C(X), the set of all real-valued continuous functions on a Tychonoff space X, have been introduced. In this article, we study the separability of the space P(X), of all continuous maps on [0, 1] into a Hausdorff space X, with the open-point and bi-point-open topologies. Our result also demonstrates, the claim made in [3], that both the domain as well as the codomain play significant roles in the construction of the open-point and bi-point-open topologies.

1. Introduction

The set of all real-valued continuous functions defined on a space *X* is denoted by C(X). The open-point and bi-point-open topologies on C(X) were introduced by A. Jindal et al. in [3]. Their endeavor was to define such meaningful topologies in which both the domain *X* as well as the codomain \mathbb{R} play significant roles in the construction of topologies on C(X). Recall that the *point-open topology p on* C(X) is generated by subbase consisting of sets of the form

$$[x, V]^+ = \{ f \in C(X) : f(x) \in V \},\$$

where $x \in X$ and *V* is open in \mathbb{R} . The *open-point topology h on C*(*X*) has a subbase consisting of sets of the form

$$[U, r]^{-} = \{ f \in C(X) : f^{-1}(r) \cap U \neq \emptyset \},\$$

where *U* is an open subset of *X* and $r \in \mathbb{R}$. The space *C*(*X*) equipped with the open-point topology is denoted by $C_h(X)$. The *bi-point-open topology ph on C*(*X*) is the join of the point-open topology *p* and the open-point topology *h*. In other words, it is the topology having subbasic open sets of both kinds: $[x, V]^+$ and $[U, r]^-$, where $x \in X$ and *V* is an open subset of \mathbb{R} , while *U* is an open subset of *X* and $r \in \mathbb{R}$. The space *C*(*X*) equipped with the bi-point-open topology is denoted by $C_{ph}(X)$. These topologies (as shown in [3]) are fundamentally different from the usual set-open topologies that we study on the space *C*(*X*). The spaces $C_h(X)$ and $C_{ph}(X)$ have been studied extensively in [2–7].

²⁰¹⁰ Mathematics Subject Classification. Primary 54C35; Secondary 54D05, 54D65

Keywords. Open-point topology, bi-point-open topology, path spaces, Peano space, σ-Peano space

Received: 01 June 2020; Revised: 15 September 2020; Accepted: 19 September 2020

Communicated by Ljubiša D.R. Kočinac

Email address: jindalanubha217@gmail.com (Anubha Jindal)

In particular, the separability of the open-point and bi-point-open topologies on C(X) has been studied in [2, 3, 6, 7] under the assumption that X has a countable π -base. In [3], it has been proved that if X has a countable π -base consisting of nontrivial connected sets, then $C_h(X)$ is separable, and if X is also submetrizable, then $C_{ph}(X)$ is also separable. Osipov in [7], further studied the separability of the spaces $C_h(X)$ and $C_{ph}(X)$ in a wider perspective. He proved the following improved version of the result given in [3].

Theorem 1.1. ([7]) Let X be a Tychonoff space with a countable π -base. Then the following statements are true:

- (i) The space $C_h(X)$ is separable if and only if X has a countable π -network consisting of I-sets.
- (ii) The space $C_{ph}(X)$ is separable if and only if X is submetrizable and has a countable π -network consisting of *I*-sets.

The above theorem was also proved independently by Jindal, McCoy and Kundu in [2]. But in [2], in order to study the separability of the spaces $C_h(X)$ and $C_{ph}(X)$ the concept of an \mathcal{R} -set has been defined, which is equivalent to the concept of an \mathcal{I} -set used in [7]. But the complete characterization of the separability of $C_h(X)$ and $C_{ph}(X)$ in terms of topological properties for an arbitrary domain space X is still an open problem.

In this article, we take the codomain to be an arbitrary topological space *X* instead of \mathbb{R} . More precisely, we consider the open-point and bi-point-open topologies on the space $P(X) = \{p : [0,1] \rightarrow X : p \text{ is continuous}\}$, the space of all paths into a Hausdorff space *X*. We show that the separability of the open-point and bi-point-open topologies on P(X) can be characterized completely in terms of topological properties of the codomain space *X*. This demonstrates the fact that the codomain also plays a significant role in the construction of the open-point and bi-point-open topologies.

Throughout this paper the following conventions are used. The symbols \mathbb{R} , \mathbb{Q} and \mathbb{N} denote the space of real numbers, rational numbers and natural numbers, respectively. For a subset *A* of a space *X*, \overline{A} denotes the closure of *A* in *X*. Also for any two topological spaces *X* and *Y* that have the same underlying set, the expression, $X \leq Y$ means that, the topology of *X* is weaker than or equal to topology of *Y*. For other basic topological notions, refer to [1].

2. Preliminaries

Let *I* be the unit interval [0, 1] with the usual topology, and let P(X) = C(I, X) be the space of all paths into *X*. We define the *open-point topology* on P(X) having subbasic open sets of the form

$$[U, x]^{-} = \{ f \in P(X) : f^{-1}(x) \cap U \neq \emptyset \},\$$

where *U* is an open subset of *I* and $x \in X$. The space P(X) equipped with the open-point topology is denoted by $P_h(X)$.

Similarly, we define the *bi-point-open topology* on P(X) having subbasic open sets of the form $[a, V]^+$ and $[U, x]^-$, where $a \in I, x \in X, V$ is open in X and U is open in I. The space P(X) equipped with the bi-point-open topology is denoted by $P_{ph}(X)$.

We first give bases for the spaces $P_h(X)$ and $P_{ph}(X)$ that are useful in characterizing separability for these spaces. Let \mathcal{U} be some given countable base for I = [0, 1] consisting of open intervals and \mathcal{V} be a given base for X.

Proposition 2.1. The space $P_h(X)$ has a base consisting of the sets of the form $[U_1, x_1]^- \cap ... \cap [U_n, x_n]^-$, where $n \in \mathbb{N}$, $U_i \in \mathcal{U}$, $x_i \in X$ and $\sup U_i < \inf U_j$, whenever $1 \le i < j \le n$.

Proof. Let *G* be any open set in $P_h(X)$ of the form $[V_1, t_1]^- \cap \ldots \cap [V_n, t_n]^-$, where each V_i is an open set in [0, 1] and $t_i \in X$. Let $f \in G$. So there exists $r_i \in V_i$ such that $f(r_i) = t_i$ for $1 \le i \le n$. If for some $1 \le i < j \le n$, $r_i = r_j$, then $t_i = t_j$ and $r_i \in V_i \cap V_j \ne \emptyset$. So $f \in [V_i \cap V_j, t_i]^- \subseteq [V_i, t_i]^- \cap [V_j, t_i]^-$. Take $G' = [V_1, t_1]^- \cap \ldots \cap [V_{i-1}, t_{i-1}]^- \cap [V_{i+1}, t_{i+1}]^- \cap \ldots \cap [V_{j-1}, t_{j-1}]^- \cap [V_{j+1}, t_{j+1}]^- \cap \ldots \cap [V_n, t_n]^- \cap [V_i \cap V_j, t_i]^-$. Clearly $f \in G' \subseteq G$. By proceeding in this way we get a basic open set $\widetilde{G} = [W_1, z_1]^- \cap \ldots \cap [W_m, z_m]^-$

such that $m \le n$ and $f \in \widetilde{G} \subseteq G$; and for each $1 \le j \le m$, there exists $y_j \in W_j$ with $f(y_j) = z_j$ and y_1, \ldots, y_m are distinct points. Since y_1, \ldots, y_m are distinct points in [0, 1], there exist pairwise disjoint open sets $\{B_1, \ldots, B_m\}$ in \mathcal{U} such that $y_i \in B_i \subseteq \overline{B_i} \subseteq W_i$ and $\overline{B_i} \cap \overline{B_j} = \emptyset$ for $1 \le i < j \le m$. Since for each $1 \le j \le m, B_j$ is an interval in [0, 1], we can arrange B_1, \ldots, B_m in a manner such that there infimums are in increasing order and name them U_1, \ldots, U_m , and the corresponding z_1, \ldots, z_m call them x_1, \ldots, x_m . Therefore $f \in [U_1, x_1]^- \cap \ldots \cap [U_m, x_m]^- \subseteq \widetilde{G} \subseteq G$ and for $1 \le i < j \le m$, we have sup $U_i < \inf U_i$. \Box

The next result gives a base for the space $P_{ph}(X)$. It can be proved easily by using Proposition 2.1.

Proposition 2.2. The space $P_{ph}(X)$ has a base consisting of sets of the form $[r_1, V_1]^+ \cap ... \cap [r_m, V_m]^+ \cap [U_1, x_1]^- \cap ... \cap [U_n, x_n]^-$, where $m, n \in \mathbb{N}$, $r_i \in [0, 1]$, $V_i \in \mathcal{V}$, $U_l \in \mathcal{U}$, $x_l \in X$, and $r_i < r_j$, $\sup U_l < \inf U_s$, whenever $1 \le i < j \le m$ and $1 \le l < s \le n$.

3. Main Result

In order to study the separability of the spaces $P_h(X)$ and $P_{ph}(X)$, first we need the following definitions.

Definition 3.1. A compact, connected, locally connected metric space is said to be a *Peano space*.

Definition 3.2. A subset of a space is said to be Peano subspace if it is Peano with its relative topology.

Definition 3.3. *If a space can be written as a countable union of its Peano subspaces, then it is said to be a* σ *-Peano space.*

The space \mathbb{R} with the usual topology is an example of a σ -Peano space, which is not a Peano space.

The Urysohn's metrization theorem says that every regular second countable T_1 space is separable and metrizable. So a continuous image of a compact metric space space into a Hausdorff space is again metrizable (see corollary 23.2, page 166 in [9]). Moreover, since quotient of a locally connected space is locally connected, it follows that continuous open as well as continuous closed image of locally connected space is locally connected. Therefore, a Hausdorff space which is a continuous image of a Peano space is Peano.

, if $f \in P(X)$ and X is Hausdorff, then f(I) is a Peano subspace of X. The Hahn and Mazurkiewicz theorem (Theorem 31.5, page 221 in [9]) says that the converse is also true, that is, if X is a Peano space, then X = f(I) for some $f \in P(X)$. Therefore, a Hausdorff space is a Peano space if and only if it is a continuous image of a closed and bounded interval. Every Peano space is pathwise connected and locally pathwise connected. Therefore if A is a Peano subspace of a space X, then A is contained in some path component of X. For more details on these properties, see [1] and [9].

Lemma 3.4. If X is a σ -Peano space, then X has countably many path components.

Proof. Let $X = \bigcup Y_n$, where each Y_n is a Peano subspace of X and \mathcal{K} be the collection of all path components of X. Since every Peano space is pathwise connected, for each $n \in \mathbb{N}$, Y_n is pathwise connected. Therefore, for each $n \in \mathbb{N}$, there exists $K_{i_n} \in \mathcal{K}$ such that $Y_n \subseteq K_{i_n}$. Thus $X = \bigcup_{n \in \mathbb{N}} Y_n \subseteq \bigcup_{n \in \mathbb{N}} K_{i_n} \subseteq X$. Hence \mathcal{K} is countable. \Box

Lemma 3.5. If X is a σ -Peano space, then X has a countable network consisting of pathwise connected subsets of X.

Proof. Let $X = \bigcup Y_n$, where each Y_n is a Peano subspace of X. Since every Peano space is locally pathwise connected and second countable, for each $n \in \mathbb{N}$, Y_n has a countable base \mathbb{B}_n consisting of pathwise connected sets. We show that the countable collection $\mathbb{B} = \bigcup_{n \in \mathbb{N}} \mathbb{B}_n$ forms a network for X. Let U be an open set in X and $x \in U$. So $x \in Y_n$ for some $n \in \mathbb{N}$ and $U \cap Y_n$ is open in Y_n containing x. Therefore, there exists $B \in \mathbb{B}_n$ such that $x \in B \subseteq U \cap Y_n \subseteq U$. Hence \mathbb{B} is a network for X. \Box

Theorem 3.6. For a Hausdorff space X, the following are equivalent:

- (a) The space $P_{ph}(X)$ is separable.
- (b) The space $P_h(X)$ is separable.
- (c) X is the continuous image of a countable topological sum of Peano spaces.
- (d) X is a σ -Peano space.

Proof. (*a*) \Rightarrow (*b*) It follows from the fact that $P_h(X) \leq P_{ph}(X)$.

 $(b) \Rightarrow (c)$ Let $P_h(X)$ be separable and $\mathcal{F} = \{f_n : n \in N\}$ be a countable dense subset of $P_h(X)$. Then by the above discussion for each $n \in \mathbb{N}$, $Y_n = f_n(I)$ is a Peano space. Now define $Y = \bigoplus_{n \in \mathbb{N}} Y_n$ and define a map $\phi : Y \to X$ by $\phi(y) = y$ for each $y \in Y_n$. It is easy to see that ϕ is a continuous map. To show ϕ is surjective, take $x \in X$. Since \mathcal{F} is dense in $P_h(X)$, there exists $n \in \mathbb{N}$ such that $f_n \in [I, x]^-$. Thus $x \in Y_n \subseteq Y$.

 $(c) \Rightarrow (d)$ Let *X* be the continuous image of a countable topological sum of Peano spaces. So there exists a sequence $\{Z_n\}$ of Peano spaces and a map $\phi : \bigoplus_{n \in \mathbb{N}} Z_n \to X$ such that ϕ is a continuous surjection. Since continuous image of a Peano space is Peano, for each $n \in \mathbb{N}$, $\phi(Z_n)$ is a Peano subspace in *X*. Now we show that $\cup \phi(Z_n) = X$. Let $x \in X$. Since ϕ is surjective, there exists $n \in \mathbb{N}$ such that $x \in \phi(Z_n)$. Thus $X = \cup \phi(Z_n)$. Hence *X* is a σ -Peano space.

 $(d) \Rightarrow (a)$ Let $X = \bigcup_{n=1}^{\infty} Y_n$, where Y_n is a Peano subspace of X, and let $\mathcal{Y} = \{Y_n : n \in \mathbb{N}\}$. By using Lemma 3.4, we have the countable family \mathcal{G} of all the path components of X. By Lemma 3.5, there exists a countable network $\mathcal{K} = \{K_n : n \in \mathbb{N}\}$ of pathwise connected subsets of X. For each $K_n \in \mathcal{K}$, fix two members k_n^1 and k_n^2 . Let $C = \{[p,q] : p,q \in \mathbb{Q} \cap [0,1], p < q\}$ and let \hat{C}^n be the set of $([p_1,q_1], \ldots, [p_n,q_n]) \in C^n$ such that $p_1 < q_1 < p_2 < q_2 < \ldots < p_n < q_n$. For $m, n \in \mathbb{N}$, let \mathcal{J}_n^m denote the collection of all subsets of the set $\{1, 2, \ldots, m + n\}$ of cardinality m.

Let $S_{n,m} = \{(([p_1, q_1], \dots, [p_{n+m}, q_{n+m}]), (K_{t_1}, \dots, K_{t_m}), (Y_{s_1}, \dots, Y_{s_n}), J_n^m, G) \in \hat{C}^{n+m} \times \mathcal{K}^m \times \mathcal{Y}^n \times \mathcal{J}_n^m \times \mathcal{G} : K_{t_r} \subseteq G, Y_{s_l} \subseteq G, \text{ for } 1 \leq l \leq n, 1 \leq r \leq m\}.$

Since every Peano space is pathwise connected and every pathwise connected subset of a space is contained in some path component of the space, for each $n, m \in \mathbb{N}$, $S_{n,m} \neq \emptyset$ and countable. Therefore $S = \bigcup_{n,m \in \mathbb{N}} S_{n,m}$ is countable.

Pick $S \in S$, then there exists $n, m \in \mathbb{N}$ such that $S \in S_{n,m}$ and

$$S = (([p_1, q_1], \dots, [p_{n+m}, q_{n+m}]), (K_{t_1}, \dots, K_{t_m}), (Y_{s_1}, \dots, Y_{s_n}), J_n^m, G)$$

Now we construct a continuous function f_S in P(X). We have K_{t_i} is pathwise connected for $1 \le i \le m$, therefore for each $j \in J_n^m$, there exists a continuous function

$$f_S^j: [p_j, q_j] \to K_{t_{\phi(j)}}$$

such that $f_S^j(p_j) = k_{t_{\phi(j)}}^1$ and $f_S^j(q_j) = k_{t_{\phi(j)}}^2$, where ϕ is a function from J_n^m to $\{1, \ldots, m\}$ defined by $\phi(j)$ = the position of j in the set J_n^m after taking the members of J_n^m in an increasing order.

Since every Peano space is a continuous image of a closed and bounded interval, for each $j \in I_n^m = \{1, 2, ..., m + n\} \setminus J_n^m$, there exists a continuous function

$$f_S^j:[p_j,q_j]\to Y_{s_{\psi(j)}}$$

such that $f_S^j([p_j, q_j]) = Ys_{\psi(j)}$, where ψ is a function from I_n^m to $\{1, ..., n\}$ defined by $\psi(j)$ = the position of j in the set I_n^m after taking the members of I_n^m in an increasing order.

For $1 \le r \le m$, $1 \le l \le n$, we have $K_{t_r} \subseteq G$ and $Y_{s_l} \subseteq G$, and G is pathwise connected. Therefore, for each $1 \le j \le m + n - 1$ there exists a continuous function

$$g_S^j:[q_j,p_{j+1}]\to G$$

such that

and
$$g_{S}^{j}(q_{j}) = f_{S}^{j}(q_{j})$$
$$g_{S}^{j}(p_{j+1}) = f_{S}^{j+1}(p_{j+1}).$$

Define $f_S : [0, 1] \rightarrow X$ by

$$f_{S}(y) = \begin{cases} f_{S}^{j}(y) & y \in [p_{j}, q_{j}], 1 \leq j \leq n+m \\ g_{S}^{j}(y) & y \in [q_{j}, p_{j+1}], 1 \leq j \leq n+m-1 \\ f_{S}^{1}(p_{1}) & y \in [0, p_{1}] \\ f_{S}^{n+m}(q_{n+m}) & y \in [q_{n+m}, 1]. \end{cases}$$

Clearly $f_S \in P(X)$. Now we show that the countable collection $\mathcal{F} = \{f_S : S \in S\}$ is a dense subset of $P_{vh}(X)$.

Let *W* be any open set in $P_{ph}(X)$ and $g \in W$. By Proposition 2.2, there exists $\tilde{W} = [r_{i_1}, V_{i_1}]^+ \cap \ldots \cap [r_{i_m}, V_{i_m}]^+ \cap [U_{l_1}, x_{l_1}]^- \cap \ldots \cap [U_{l_n}, x_{l_n}]^-$ a nonempty basic open set in $P_{ph}(X)$ such that $g \in \tilde{W} \subseteq W$, where for $1 \leq j < k \leq m$ and $1 \leq t < s \leq n$, $r_{i_j} \in [0, 1]$, V_{i_j} is open in *X*, $r_{i_j} < r_{i_k}$, U_{l_t} is open in [0, 1], $x_{l_t} \in X$ and sup $U_{l_t} < \inf U_{l_s}$. We can choose n + m intervals $[p_1, q_1], \ldots, [p_{n+m}, q_{n+m}]$ with rational end points in [0, 1] such that $p_1 < q_1 < \ldots < p_{n+m} < q_{n+m}$ and each U_{l_t} contains exactly one interval and each interval in the remaining *m* intervals contains exactly one r_{i_j} . Take $J_n^m = \{j \in \{1, \ldots, m+n\} : r_{i_s} \in [p_j, q_j]$ for some $s \in \{1, \ldots, m\}$ and $C^{m+n} = ([p_1, q_1], \ldots, [p_{n+m}, q_{n+m}]) \in \hat{C}^{m+n}$.

Since \mathcal{K} is a network for X, for each $1 \leq j \leq m$, there exists $K_{i_j} \in \mathcal{K}$ such that $g(r_{i_j}) \in K_{i_j} \subseteq V_{i_j}$. As $X = \bigcup_{k \in \mathbb{N}} Y_k$, for each $1 \leq t \leq n$, there exists $Y_{l_i} \in \mathcal{Y}$ such that $x_{l_i} \in Y_{l_i}$. Also \mathcal{G} is the countable family of all path components of X, so there exists $G \in \mathcal{G}$ such that $g([0, 1]) \subseteq G$. Therefore, for each $1 \leq j \leq m, 1 \leq t \leq n$, we have $K_{i_j} \subseteq G$ and $Y_{l_i} \subseteq G$.

Take $K^m = (K_{i_1}, \ldots, K_{i_m})$ and $Y^n = (Y_{l_1}, \ldots, Y_{l_n})$ then $S = (C^{m+n}, K^m, Y^n, J_n^m, G) \in S$. Therefore, we have $f_S \in \mathcal{F}$. Now for each $j \in J_n^m$, there is exactly one $u \in \{1, \ldots, m\}$ such that $r_{i_u} \in [p_j, q_j]$. Note that this u denotes the position of j in the set J_n^m after taking the members of J_n^m in an increasing order. Thus $f_S([p_j, q_j]) \subseteq K_{i_u} \subseteq V_{i_u}$. And for each $j \in I_n^m = \{1, 2, \ldots, m+n\} \setminus J_n^m$, there is exactly one $t \in \{1, \ldots, n\}$ such that $[p_j, q_j] \subseteq U_{l_i}$. Note that this t denotes the position of j in the set I_n^m after taking the members of I_n^m in an increasing order. Therefore, $x_{l_i} \in f_S([p_j, q_j]) = Y_{l_i}$. Then $f_S \in \tilde{W} \cap \mathcal{F}$ and hence \mathcal{F} is dense in $P_{ph}(X)$. \Box

Corollary 3.7. If X is a Peano space, then the spaces $P_{vh}(X)$ and $P_h(X)$ are separable.

Example 3.8. (Example 38, page 65 in [8]) Denote the Hilbert Cube by $X = [0, 1]^N$, then X is a Peano space. Hence the spaces $P_h(X)$ and $P_{ph}(X)$ are separable.

References

- [1] R. Engelking, General Topology, Sigma Ser. Pure Math., Heldermann Verlag, Berlin, 1989.
- [2] A. Jindal, The open-point, bi-point-open and bi-compact-open topologies on *C*(*X*), Ph.D. Dissertation, Indian Institute of Technology Delhi, 2016.
- [3] A. Jindal, R.A. McCoy, S. Kundu, The open-point and bi-point-open topologies on C(X), Topology Appl. 187 (2015) 62–74.
- [4] A. Jindal, R.A. McCoy, S. Kundu, The open-point and bi-point-open topologies on C(X): submetrizability and cardinal functions, Topology Appl. 196 (2015) 229–240.
- [5] A. Jindal, V. Jindal, S. Kundu, R.A. McCoy, Completeness properties of the open-point and bi-point-open topologies on C(X), Acta Math. Hungar. 153 (2017) 109–119.
- [6] A. Jindal, R.A. McCoy, S. Kundu, Density of the open-point, bi-point-open, and bi-compact-open topologies on C(X), Topology Proc. 50 (2017) 249–261.
- [7] A. V. Osipov, On separability of the functional space with the open-point and bi-point-open topologies, Acta Math. Hungar. 150 (2016) 167–175.
- [8] L.A. Steen, J.A. Seebach, Jr., Counterexamples in Topology, Dover Publications Inc., Mineola, New York, 1995.
- [9] S. Willard, General Topology, Addison-Wesley, Reading Massachusetts, 1968.