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Abstract. It is proved that the maximal operators of subsequences of Nörlund logarithmic means and
Cesáro means with varying parameters of Walsh-Fourier series is bounded from the dyadic Hardy spaces
Hp to Lp. This implies an almost everywhere convergence for the subsequences of the summability means.

1. Walsh System

We shall denote the set of all non-negative integers by N, the set of all integers by Z and the set of
dyadic rational numbers in the unit interval I := [0, 1) by Q. In particular, each element of Q has the form
p
2n for some p,n ∈ N, 0 ≤ p < 2n. By a dyadic interval in I we mean one of the form

[
l

2k ,
l+1
2k

)
for some

k ∈ N, 0 ≤ l < 2k. Denote In := [0, 2−n), In (x) := x u In. For 0 < n ∈ N denote by |n| := max
{
j ∈N : n j , 0

}
,

that is, 2|n| ≤ n < 2|n|+1.. The σ-algebra generatered by the dyadic intervals {In (x) : x ∈ I} will be denoted by
An (n ∈N). Let

x =

∞∑
n=0

xn2−(n+1)

be the dyadic expansion of x ∈ I, where xn = 0 or 1 and if x is a dyadic rational number we choose the
expansion which terminate in 0′s.

Denote the dyadic expension of n ∈N by

n =

∞∑
j=0

ε j (n) 2 j, ε j (n) = 0, 1.

Denote by u the logical addition on I. That is, for any x, y ∈ I

x u y :=
∞∑

n=0

∣∣∣xn − yn

∣∣∣ 2−(n+1).
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Define the binary operator ⊕ :N×N→N by

k ⊕ n =

∞∑
i=0

|εi (k) − εi (n)| 2i. (1)

It is well-known (see, e.g. [18], p. 5) that

wm⊕n (x) = wm (x) wn (x) , x ∈ [0, 1),n,m ∈N. (2)

The Rademacher system is defined by

ρn (x) := (−1)xn (x ∈ I,n ∈N) .

The Walsh-Paley system is defined as the sequence of the Walsh-Paley functions:

wn (x) :=
∞∏

k=0

(
ρk (x)

)nk = (−1)
|n|∑

k=0
nkxk

(x ∈ I,n ∈N) .

The Walsh-Dirichlet kernel is defined by

Dn (x) =

n−1∑
k=0

wk (x) (n ∈N) .

Recall that (see [18])

D2n (x) =

{
2n, if x ∈ In (0)

0, if x ∈ I\In (0) . (3)

Let f ∈ L1 (I). The partial sums of the Walsh-Fourier series are defined as follows:

SM
(
x, f

)
:=

M−1∑
i=0

f̂ (i) wi (x) ,

where the number

f̂ (i) =

∫
I

f (t) wi (t) dt

is said to be the ith Walsh-Fourier coefficient of the function f . Set En
(
x, f

)
= S2n

(
x, f

)
.The maximal function

is defined by

E∗
(
x, f

)
= sup

n∈N

∣∣∣En
(
x, f

)∣∣∣ .
2. Dyadic Hardy Spaces

The norm (or quasinorm) of the space Lp (I) is defined by

∥∥∥ f
∥∥∥

p :=


∫
I

∣∣∣ f (x)
∣∣∣p dx


1/p (

0 < p < +∞
)
.
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In case p = ∞, by Lp(I) we mean L∞(I), endoved with the supremum norm.
The space weak-L1 (I) consists of all measurable functions f for which∥∥∥ f

∥∥∥
weak−L1(I)

:= sup
λ>0

λ
∣∣∣∣(∣∣∣ f ∣∣∣ > λ)∣∣∣∣ < +∞.

The notiation a . b in the proofs stands for a < c · b, where c is an absolute constant.
Let f ∈ L1 (I). For 0 < p < ∞ the Hardy space Hp(I) consists all functions for which

∥∥∥ f
∥∥∥

Hp
:=

∥∥∥E∗
(

f
)∥∥∥

p < ∞.

A bounded measurable function a is a p-atom, if there exists a dyadic interval I, such that
a)

∫
I

a = 0;

b) ‖a‖∞ ≤ |I|
−1/p;

c) supp a ⊂ I.
An operator T be called p-quasi-local if there exist a constant cp > 0 such that for every p-atom a

∫
I\I

|Ta|p ≤ cp < ∞,

where I is the support of the atom. We shall need the following

Theorem W1 1 (Weisz [23]). Suppose that the operator T is σ-sublinear and p-quasi-local for each 0 < p ≤ 1. If T
is bounded from L∞(I) to L∞(I), then

∥∥∥T f
∥∥∥

p ≤ cp

∥∥∥ f
∥∥∥

p ( f ∈ Hp (I))

for every 0 < p < ∞ . In particular for f ∈ L1(I), it holds

∥∥∥T f
∥∥∥

weak L1(I)
≤ C

∥∥∥ f
∥∥∥

1
.

3. Nörlund Logarithmic means

In the literature, there is the notion of Riesz’s logarithmic means of a Fourier series. The n-th Riesz’s
logarithmic means of the Fourier series of an integrable function f is defined by

Rn
(
x, f

)
:=

1
ln

n∑
k=1

Sk
(
x, f

)
k

,

where ln :=
∑n

k=1 (1/k).
Riesz’s logarithmic means with respect to the trigonometric system was studied by a lot of authors. This

means with respect to the Walsh and Vilenkin systems was discussed by Simon [19], Blahota, Gát [4], Gát
[7], Gát, Goginava [9], Tephnadze [20], Person, Tephnadze and Wall [17].

Let
{
qk : k ≥ 0

}
be a sequence of nonnegative numbers. The nth Nörlund means for the Fourier series of

f is defined by

1
Qn

n−1∑
k=0

qn−kSk( f ),
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where

Qn :=
n∑

k=1

qk.

If qk = k, then we get the Nörlund logarithmic means

tn
(
x, f

)
:=

1
ln

n−1∑
k=0

Sk
(
x, f

)
n − k

.

In this paper we call it logarithmic mean altough, it is a kind of ”reverse” Riesz’s logarithmic mean.
It is easy to see that

tn
(
x, f

)
=

∫
I

f (t) Fn (x u t) dt,

where by Fn (t) we denote nth logarithmic kernel, i. e.

Fn (t) :=
1
ln

n−1∑
k=0

Dk (t)
n − k

, ln =

n∑
k=1

1
k
.

The Fejér kernel is defined by

Kn (t) :=
1
n

n∑
k=1

Dk (t) .

For n =
∞∑
j=0
ε j (n) 2 j, ε j (n) = 0, 1 we define

n (k) :=
k∑

j=0

ε j (n) 2 j.

It is easy to see that n (|n|) = n.
For a non-negative integer n let us denote the dyadic variation

V (n) :=
∞∑

i=0

|εi (n) − εi+1 (n)| + ε0 (n) .

We define the weighted version of variation of an n ∈Nwith binary coefficients (εk (n) : k ∈N) by

L (n) :=
|n|∑

k=1

|εk (n) − εk+1 (n)| ln(k).

Set for positive reals K the subset of natural numbers

LK :=
{

n ∈N :
L (n)
|n|
≤ K

}
.

It is known [17] that if n j < n j+1 and

sup
j

V
(
n j

)
< ∞, (4)

then a. e. Sn j

(
f
)
→ f . On the other hand, Konyagin [14] proved that the condition (4) is not necessary for

a. e. convergence of subsequence of partial sums. Moreover, he gave negative answer to the question of
Balashov and proved the validity of the following theorem.
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Theorem K 1 (Konyagin [14]). Suppose {nA} is an increasing sequence of natural numbers, kA :=
[
log2 nA

]
+ 1,

and 2kA is a divider of nA+1 for all A. Then SnA

(
f
)
→ f a. e. for any function f ∈ L1 (I).

For instance, for the sequence {nA} ,nA := 2A2
A∑

i=0
4i, such that sup

nA

V (nA) = ∞, satisfies the hypotheses of

the theorem.
Almost ewerywhere convergence of

{
t2A

(
f
)

: A ≥ 1
}

with respect to Walsh-Paley system was studied by
first author [11]. In particular, the following is proved

Theorem G1 1. Let f ∈ L1 (I). Then t2A
(
x, f

)
→ f (x) as A→∞ a. e. x ∈ I.

In [16], Nagy established a similar result for the Walsh-Kaczmarz system. Memić [15] improved Theorem
G1. However, a divergence on the set with positive measure for the whole sequence

{
tn

(
f
)

: n ≥ 1
}

was
proved by Gát and Goginava [8].

In [12] the following is proved.

Theorem G2 1. Let f ∈ L1 (I) and K > 0. Then lim
LK3n→∞

tn
(
x, f

)
= f (x) for a. e. x ∈ I.

We define the maximal operator

t∗
(
x; f

)
:= sup

n∈LK

(∣∣∣ f ∗ Fn

∣∣∣) (x) .

In this section it is proved that the maximal operator of subsequences of Nörlund logarithmic means of
Walsh-Fourier series is bounded from the dyadic Hardy spaces Hp to Lp. This implies an almost everywhere
convergence for the subsequences of the summability means.

Theorem 3.1. Let p > 0. Then there exists a positive constant cp such that∥∥∥t∗
(

f
)∥∥∥

p ≤ cp

∥∥∥∣∣∣ f ∣∣∣∥∥∥Hp

(∣∣∣ f ∣∣∣ ∈ Hp, p > 0
)

and ∥∥∥t∗
(

f
)∥∥∥

weak−L1(I)
.

∥∥∥ f
∥∥∥

1
.

Corollary 3.2 (see [12]). Let f ∈ L1 (I). Then

lim
LK3n→∞

tn
(
x, f

)
= f (x) for a. e. x ∈ I.

Theorem 3.3. Let {mA : A ∈N} be a subsequence for which there does not exist K such that {mA : A ∈N} < LK for
all K ∈N, i. e. the condition

sup
A

1
|mA|

|mA |∑
k=1

|εk (mA) − εk+1 (mA)| lmA(k) = ∞

holds. The operator tmA

(
f
)

is not bounded from the dyadic Hardy spaces H1 (I) to the space L1 (I).

Proof. [Proof of Theorem 3.1] The following representation is known (see [12])

lnFn (t) = H(1)
n (t) + H(2)

n (t) ,
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where

H(1)
n (t) =: wn (t)

 |n|∑
j=1

ε j (n) D2 j (t)ρ j (t) ln( j)

 ,

H(2)
n (t) =:

 |n|∑
j=1

ε j (n)
2 j∑

k=1

Dk (t)
k + n

(
j − 1

)  |n|∏
s= j+1

(
ρs (t)

)εs(n) .

Hence, we have

f ∗ Fn (x) =

 f ∗
H(1)

n

ln

 (x) +

 f ∗
H(2)

n

ln

 (x) . (5)

It is easy to see that

wn (t) H(1)
n (t) =

|n|∑
j=1

ε j (n) (D2 j+1 (t) −D2 j (t)) ln( j)

=

|n|−1∑
j=1

(
ε j (n) ln( j) − ε j+1 (n) ln( j+1)

)
D2 j+1 (t)

+ε|n| (n) ln(|n|)D2|n|+1 (t) − ε1 (n) ln(1)D2 (t)

=

|n|−1∑
j=1

(
ε j (n) − ε j+1 (n)

)
ln( j)D2 j+1 (t)

+

|n|−1∑
j=1

ε j+1 (n)
(
ln( j) − ln( j+1)

)
D2 j+1 (t)

+ε|n| (n) (n) ln(|n|)D2|n|+1 (t) − ε1 (n) ln(1)D2 (t) .

Consequently,

∣∣∣H(1)
n (t)

∣∣∣
ln

(6)

≤
1
ln

|n|−1∑
j=1

∣∣∣ε j (n) − ε j+1 (n)
∣∣∣ ln( j)D2 j+1 (t)

+

|n|−1∑
j=1

ε j+1 (n)
(
ln( j+1) − ln( j)

)
D2 j+1 (t)

+ε|n| (n) (n) ln(|n|)D2|n|+1 (t) + ε1 (n) ln(1)D2 (t) .
= : Pn (t)
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Let n ∈ LK. Then we can write∣∣∣( f ∗ Pn
)

(x)
∣∣∣

≤
1
ln

|n|−1∑
j=1

∣∣∣ε j (n) − ε j+1 (n)
∣∣∣ ln( j)

(
f ∗D2 j+1

)
(x)

+
1
ln

|n|∑
j=1

ε j (n)
(
ln( j+1) − ln( j)

) (
f ∗D2 j+1

)
(x)

+
ε|n| (n) (n) ln(|n|)

ln
(

f ∗D2|n|+1
)

(x)

+
ε1 (n) ln(1)

ln
(

f ∗D2
)

(x)

≤ E∗
(
x, f

)  1
ln

|n|−1∑
j=1

∣∣∣ε j (n) − ε j+1 (n)
∣∣∣ ln( j)

+
1
ln

|n|∑
j=1

ε j (n)
(
ln( j+1) − ln( j)

)
+ 2


. LKE∗

(
x, f

)
.

Since (see [18, 23])∥∥∥E∗
(

f
)∥∥∥

p ≤ cp

∥∥∥ f
∥∥∥

Hp

(
p > 0

)
, (7)

and ∥∥∥E∗
(

f
)∥∥∥

weak−L1(I)
≤ c

∥∥∥ f
∥∥∥

1
, (8)

we have∥∥∥∥∥∥sup
n∈LK

∣∣∣( f ∗ Pn
)

(x)
∣∣∣∥∥∥∥∥∥

p

≤ cp

∥∥∥ f
∥∥∥

Hp

(
f ∈ Hp, p > 0

)
(9)

and ∥∥∥∥∥∥sup
n∈LK

∣∣∣( f ∗ Pn
)∣∣∣∥∥∥∥∥∥

weak−L1(I)

.
∥∥∥ f

∥∥∥
1
. (10)

Now, we can write∣∣∣H(2)
n (t)

∣∣∣
ln

≤
1
ln

|n|∑
j=1

ε j (n)

∣∣∣∣∣∣∣
2 j∑

k=1

Dk (t)
k + n

(
j − 1

) ∣∣∣∣∣∣∣ .
Using Abel’s transformation we obtain

2 j∑
k=1

Dk (t)
k + n

(
j − 1

)
=

2 j
−1∑

k=1

(
1

k + n
(
j − 1

) − 1
k + 1 + n

(
j − 1

) ) kKk (t)

+
2 j

2 j + n
(
j − 1

)K2 j (t) .
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Consequently,∣∣∣H(2)
n (x)

∣∣∣ (11)

≤
1
ln

|n|∑
j=1

ε j (n)
2 j
−1∑

k=1

(
1

k + n
(
j − 1

) − 1
k + 1 + n

(
j − 1

) ) k |Kk (x)|

+
1
ln

|n|∑
j=1

ε j (n)
2 j

2 j + n
(
j − 1

)K2 j (x)

= : H(21)
n (x) + H(22)

n (x) .

Since (see [18], p. 46)

|Kl (x)| ≤ 3 · 2−s
s−1∑
i=0

i∑
j=0

2 jD2i

(
x u 2− j−1

)
(12)

when 2s−1
≤ l < 2s. We have∣∣∣H(21)

n (x)
∣∣∣ (13)

≤
3
ln

|n|∑
j=1

ε j (n)
j∑

s=1

2s
−1∑

l=2s−1(
1

l + n
(
j − 1

) − 1
l + 1 + n

(
j − 1

) )
×

s−1∑
k=0

k∑
r=0

2rD2k

(
x u 2−r−1

)
=

3
ln

|n|∑
j=1

ε j (n)
j∑

s=1

(
1

2s−1 + n
(
j − 1

) − 1
2s + n

(
j − 1

) )

×

s−1∑
k=0

k∑
r=0

2rD2k

(
x u 2−r−1

)
.

It is well known (see [18], p. 47) that if j ∈N then

K2 j (x) =
1
2

2− jD2 j (x) +

j∑
l=0

2l− jD2 j

(
x u

1
2l+1

) . (14)

In particular, K2n ≥ 0 everywhere on I. Then we have

H(22)
n (x) ≤

1
2ln

|n|∑
j=1

ε j (n) 2− jD2 j (x) (15)

+
1

2ln

|n|∑
j=1

ε j (n)
j∑

l=0

2l− jD2 j

(
x u

1
2l+1

)
.
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Combining (11), (13) and (15) we have∣∣∣H(2)
n (x)

∣∣∣ (16)

.
1
ln

|n|∑
j=1

ε j (n)
j∑

s=1

(
1

2s−1 + n
(
j − 1

) − 1
2s + n

(
j − 1

) )

×

s∑
k=0

k∑
r=0

2rD2k

(
x u 2−r−1

)
= : Qn (x) .

We can write(
f ∗Qn

)
(x)

= f ∗

 c
ln

|n|∑
j=1

ε j (n)
j∑

s=1

(
1

2s−1 + n
(
j − 1

) − 1
2s + n

(
j − 1

) )

×

s∑
k=0

k∑
r=0

2rD2k

(
· u 2−r−1

) (x) .

First, we prove that the operator f ∗Qn is bounded from L∞(I) to L∞(I). Indeed, since

sup
n∈N
‖Qn‖1

. sup
n∈N

1
ln

|n|∑
j=1

ε j (n)
j∑

s=1

2s
2s
−1∑

k=2s−1

(
1

k + n
(
j − 1

) − 1
k + 1 + n

(
j − 1

) )

. sup
n∈N

1
ln

|n|∑
j=1

ε j (n)
j∑

s=1

2s
−1∑

k=2s−1

k
(

1
k + n

(
j − 1

) − 1
k + 1 + n

(
j − 1

) )

. sup
n∈N

1
ln

|n|∑
j=1

ε j (n)
2 j
−1∑

k=1

k(
k + n

(
j − 1

))2

. sup
n∈N

1
ln

|n|∑
j=1

ε j (n)
2 j
−1∑

k=1

 1
k + n

(
j − 1

) +
n
(
j − 1

)(
k + n

(
j − 1

))2


. sup

n∈N

1
ln

|n|∑
j=2

ε j (n)
(
ln( j) − ln( j−1) + 1

)
≤ c < ∞.

we obtain that

sup
n∈N

∥∥∥ f ∗Qn

∥∥∥
∞
≤ c

∥∥∥ f
∥∥∥
∞
.

Hence, the operator f ∗Qn is bounded from L∞(I) to L∞(I).
We suppose that f ∈ Hp (I). Let function a be an Hp atom. It means that either a is constant or there is an

interval IN(u) such that supp(a) ⊂ IN(u), ‖a‖∞ ≤ 2N/p and
∫

a = 0. Without lost of generality we can suppose
that u = 0. Consequently, for any function 1which isAN-measurable we have that

∫
a1 = 0. We prove that
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the operator sup
n>N

(
f ∗Qn

)
(x) is Hp-quasi local. That is,

∫
IN

(
sup
n>N
|a ∗Qn|

)p

≤ cp. (17)

Let x ∈ IN. Then we can write

|(a ∗Qn) (x)|

=

∣∣∣∣∣∣∣∣∣
1
ln

∫
IN

a (t)

 |n|∑
j=N+1

ε j (n)
j∑

s=N+1(
1

2s−1 + n
(
j − 1

) − 1
2s + n

(
j − 1

) )
×

s∑
k=N+1

k∑
r=0

2rD2k

(
x u t u 2−r−1

) dt

∣∣∣∣∣∣∣
≤

2N/p

ln

|n|∑
j=N+1

ε j (n)
j∑

s=N+1(
1

2s−1 + n
(
j − 1

) − 1
2s + n

(
j − 1

) )
×

s∑
k=N+1

k∑
r=0

2r
∫
IN

D2k

(
x u t u 2−r−1

)
dt

=
2N/p

ln

|n|∑
j=N+1

ε j (n)
j∑

k=N+1

j∑
s=k+1(

1
2s−1 + n

(
j − 1

) − 1
2s + n

(
j − 1

) )
×

k∑
r=0

2r
∫
IN

D2k

(
x u t u 2−r−1

)
dt

≤
2N/p

ln

|n|∑
j=N+1

ε j (n)
(

1
2N + n

(
j − 1

) − 1
n
(
j
) )

×

j∑
k=N+1

k∑
r=0

2r
∫
IN

D2k

(
x u t u 2−r−1

)
dt

=
2N/p

ln

|n|∑
j=N+1

ε j (n)
(

1
2N + n

(
j − 1

) − 1
n
(
j
) )

×

 j∑
r=N+1

j∑
k=r

+

N∑
r=0

j∑
k=N+1

 2r
∫
IN

D2k

(
x u t u 2−r−1

)
dt.
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Since

j∑
r=N+1

j∑
k=r

2r
∫
IN

D2k

(
x u t u 2−r−1

)
dt = 0

(
x ∈ IN

)
,

we have

|a ∗Qn|

≤
2N/p

ln

|n|∑
j=N+1

ε j (n)
(
j −N

) ( 1
2N + n

(
j − 1

) − 1
n
(
j
) )

×

N∑
r=0

2r1IN(2−r−1) (x) .

Since
|n|∑

j=N+1

ε j (n)
(
j −N

) ( 1
2N + n

(
j − 1

) − 1
n
(
j
) )

≤ |n|
|n|∑

j=N+1

(
1

2N + n
(
j − 1

) − 1
n
(
j
) )

≤
|n|
2N ,

we have

|a ∗Qn| ≤
2N/p

2N

N∑
r=0

2r1IN(2−r−1) (x) ,

where 1E is characteristic function of the set E and consequently,∫
IN

sup
n≥N
|a ∗Qn|

p
≤

2N

2Np

N∑
r=0

2rp
∫
IN

1IN(2−r−1) ≤ cp.

Hence,∥∥∥∥∥∥sup
n∈N

∣∣∣ f ∗Qn

∣∣∣∥∥∥∥∥∥
p

≤ cp

∥∥∥ f
∥∥∥

Hp

(
f ∈ Hp, p > 0

)
(18)

and ∥∥∥∥∥∥sup
n∈N

∣∣∣ f ∗Qn

∣∣∣∥∥∥∥∥∥
weak−L1(I)

.
∥∥∥ f

∥∥∥
1
. (19)

Since ∣∣∣ f ∗ Fn

∣∣∣ (x) ≤
∣∣∣ f ∣∣∣ ∗ Pn +

∣∣∣ f ∣∣∣ ∗Qn,

from (9), (10), (18) and (19) we have∥∥∥∥∥∥sup
n∈LK

∣∣∣ f ∗ Fn

∣∣∣∥∥∥∥∥∥
p

≤ cp

∥∥∥∣∣∣ f ∣∣∣∥∥∥Hp

(∣∣∣ f ∣∣∣ ∈ Hp, p > 0
)
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and ∥∥∥∥∥∥sup
n∈LK

∣∣∣ f ∗ Fn

∣∣∣∥∥∥∥∥∥
weak−L1(I)

.
∥∥∥ f

∥∥∥
1
.

Which complete the proof of Theorem 3.1.

Proof. [Proof of Theorem 3.3] Set

fA := D2|mA |+1 −D2|mA | .

Then it is easy to see that

sup
n∈N

∣∣∣S2n
(

fA
)∣∣∣ = D2|mA |

and consequently,∥∥∥ fA
∥∥∥

H1
=

∥∥∥∥∥∥sup
n∈N

∣∣∣S2n
(

fA
)∣∣∣∥∥∥∥∥∥

1

=
∥∥∥D2|mA |

∥∥∥
1

= 1.

Set

mA = 2|mA | + qA,

where

qA :=
|mA |−1∑

j=0

ε j (mA) 2 j.

Then we can write

tmA

(
fA

)
=

1
lmA

2|mA |+qA−1∑
k=2|mA |+1

Sk
(

fA
)

mA − k
.

It is easy to see that

Sk
(

fA
)

= Sk

(
D2|mA |+1 −D2|mA |

)
= Dk −D2|mA | .

Hence, we have

tmA

(
fA

)
=

1
lmA

2|mA |+qA−1∑
k=2|mA |+1

Dk −D2|mA |

mA − k

=
1

lmA

qA−1∑
k=1

Dk+2|mA | −D2|mA |

mA − k

=
w2|mA |

lmA

qA−1∑
k=1

Dk

qA − k
.

From the condition of Theorem 3.3 we conclude that

sup
A∈N

∥∥∥tmA

(
fA

)∥∥∥
1

= sup
A∈N

∥∥∥FmA

∥∥∥
1

= ∞.

Theorem 3.3 is proved.
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4. Cesàro Means with Varying Parameters

The (C, αn) means of the Walsh-Fourier series of the function f is given by

σαn
n ( f , x) =

1
Aαn

n−1

n∑
j=1

Aαn−1
n− j S j( f , x) =

1
Aαn

n−1

n−1∑
j=0

Aαn
n−1− j f̂

(
j
)

w j (x) ,

where

Aαn
n :=

(1 + αn) . . . (n + αn)
n!

for any n ∈N, αn , −1,−2, ....
It is known that [26]

Aαn
n =

n∑
k=0

Aαn−1
k ,Aαn−1

n =
αn

αn + n
Aαn

n . (20)

The (C, αn) kernel is defined by

Kαn
n =

1
Aα

n−1

n∑
j=1

Aαn−1
n− j D j =

1
Aαn

n−1

n−1∑
j=0

Aαn
n− j−1w j.

The following estimations was proved by Akhobadze [2, 3] : Let k,n ∈N. Then

c1 (1 + αn) (2 + αn) kαn < Aαn
k < c2 (1 + αn) (2 + αn) kαn , (21)

when − 2 < αn < −1;

c1 (1 + αn) kαn < Aαn
k < c2 (1 + αn) kαn , when − 1 < αn < 0; (22)

c1 (d) kαn < Aαn
k < c2 (d) kαn , when 0 < αn ≤ d. (23)

The idea of Cesàro means with variable parameters of numerical sequences is due to Kaplan [13] and the
introduction of these (C, αn) means of Fourier series is due to Akhobadze (see [3] or [2]) who investigated
the behavior of the L1-norm convergence of σαn

n
(

f
)
→ f for the trigonometric system.

The first result with respect to the a.e. convergence of the Walsh-Fejér means σαn
n

(
f
)

for all integrable
function f with constant sequence αn = α > 0 is due to Fine [5] (see also Weisz [22]). On the rate of
convergence of Cesàro means in this constant case see the paper of Yano [25], Fridli [? ].

For n :=
∞∑

i=0
εi (n) 2i (εi (n) = 0, 1, i ∈N) set two variable function

P (n, α) :=
∞∑

i=0

εi (n) 2iαn (n ∈N) , α := {αn : n ∈N} .

The function P (n, α) was introduced by Abu Joudeh and Gát in [1]. Also set for sequenceα := {αn : n ∈N}
and positive reals K the subset of natural numbers

PK (α) :=
{

n ∈N :
P (n, α)

nαn
≤ K

}
.

The a.e. divergence of Cesàro means with varying parameters of Walsh-Fourier series was investigated
by Tetunashvili [21]. Abu Joudeh and Gát in [1] proved the almost everywhere convergence (with some
restrictions) of the Cesàro (C, αn) means of integrable functions. In particular, the following is proved
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Theorem JG 1. Suppose that αn ∈ (0, 1). Let f ∈ L1 (I). Then we have the almost everywhere convergence
σαn

n
(

f
)
→ f provided that PK (α) 3 n→∞.

In this section we define the weighted version of variation of an n ∈ N with binary coefficients
(εk (n) : k ∈N) by

V (n, α) :=
∞∑

i=0

|εi (n) − εi+1 (n)| 2iαn (n ∈N) .

Set for sequence α := {αn : n ∈N} and positive reals K the subset of natural numbers

VK (α) :=
{

n ∈N :
V (n, α)

nαn
≤ K < ∞

}
.

It is easy to see that PK (α) ( V2K (α). On the other hand, if αn → 0, then there exists K such that
2n
− 1 ∈ VK (α) for all n, but there does not exists K , such that 2n

− 1 ∈ PK (α) for all n.
The boundedness of maximal operators of subsequences of (C, αn)− means of partial sums of Walsh-

Fourier series from the Hardy space Hp into the space Lp is studied in [10]. In particular, the following is
proved.

Theorem GG2 1. Let p > 0. Then there exists a positive constant cp such that∥∥∥∥∥∥sup
N∈N

∣∣∣ f ∗ ∣∣∣KαN

2N

∣∣∣∣∣∣∥∥∥∥∥∥
p

≤ cp

∥∥∥ f
∥∥∥

Hp

(
f ∈ Hp

)
.

Weisz [24] generalized Theorem GG2 for both the Cesàro and Riesz means by taking the supremum
over all indicies n ∈ Nv. Here Nv denotes the set of all n = 2n1 + · · · + 2nv with a fixed parameter v. In
particular, the following is proved.

Theorem W2 1. Let p > 0. Then there exists a positive constant cp such that∥∥∥∥∥∥ sup
n∈PK(α)

∣∣∣ f ∗ Kαn
n

∣∣∣∥∥∥∥∥∥
p

≤ cp

∥∥∥∣∣∣ f ∣∣∣∥∥∥Hp

(∣∣∣ f ∣∣∣ ∈ Hp

)
.

In this section we are going to improve Theorem W2. We prove that the maximal operator of subse-
quences of Cesàro means with varying parameters of Walsh-Fourier series is bounded from the dyadic
Hardy spaces Hp to Lp. This implies an almost everywhere convergence for the subsequences of the
summability means.

Theorem 4.1. Let p > 0. Then there exists a positive constant cp such that∥∥∥∥∥∥ sup
n∈VK(α)

∣∣∣ f ∗ Kαn
n

∣∣∣∥∥∥∥∥∥
p

≤ cp

∥∥∥∣∣∣ f ∣∣∣∥∥∥Hp

(∣∣∣ f ∣∣∣ ∈ Hp

)
and ∥∥∥∥∥∥ sup

n∈VK(α)

∣∣∣ f ∗ Kαn
n

∣∣∣∥∥∥∥∥∥
weak L1(I)

≤ c
∥∥∥ f

∥∥∥
1

(
f ∈ L1

)
.

Corollary 4.2. Let f ∈ L1 (I). Then

lim
VK(α)3n→∞

σαn
n

(
x, f

)
= f (x) for a. e. x ∈ I.
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Remark 4.3. We suspect that Theorem 3.1 and Theorem 4.1 will be valid in the case when f ∈ Hp (I)
(
p > 0

)
, but we

could not proved these.

Now, we prove Theorem 4.1.

Proof. We can write

Kαn
n =

1
Aαn

n−1

|n|∑
s=0

εs (n) wn(s)−1

2s
−1∑

j=1

Aαn−2
n(s−1)+ j jK j (24)

−
1

Aαn
n−1

|n|∑
s=0

εs (n) wn(s)−1Aαn−1
n(s)−12sK2s

+
1

Aαn
n−1

|n|∑
s=0

εs (n) wn(s)−1Aαn
n(s)−1D2s

= : T(1)
n + T(2)

n + T(3)
n ,

and

sup
n∈N

(
f ∗

∣∣∣T(3)
n

∣∣∣) ≤ cKE∗
(
x, f

)
Then from (7) and (8) we have∥∥∥∥∥∥sup

n∈N

(
f ∗

∣∣∣T(3)
n

∣∣∣)∥∥∥∥∥∥
p

≤ cp

∥∥∥ f
∥∥∥

Hp

(
f ∈ Hp, p > 0

)
(25)

and ∥∥∥∥∥∥sup
n∈N

(
f ∗

∣∣∣T(3)
n

∣∣∣)∥∥∥∥∥∥
weak L1(I)

≤ c
∥∥∥ f

∥∥∥
1

(
f ∈ L1 (I)

)
. (26)

It is easy to see that (see (20))

∣∣∣T(1)
n

∣∣∣ ≤ 2
Aαn

n−1

|n|∑
s=0

εs (n)
2s
−1∑

j=1

Aαn−1
n(s−1)+ j

∣∣∣K j

∣∣∣ ,
then, from (12) we have∣∣∣T(1)

n

∣∣∣ +
∣∣∣T(2)

n

∣∣∣
≤

6
Aαn

n−1

|n|∑
s=0

εs (n)
s∑

l=1

1
2l

×

2l
−1∑

j=2l−1

Aαn−1
n(s−1)+ j

l−1∑
k=0

k∑
r=0

2rD2k

(
x u 2−r−1

)
+

1
2Aαn

n−1

|n|∑
s=0

εs (n) Aαn−1
n(s)−1D2s (x)

+
1

2Aαn
n−1

|n|∑
s=0

εs (n) Aαn−1
n(s)−1

s∑
l=0

2lD2s

(
x u

1
2l+1

)
= : T̃n (x) .
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Now, we discuss the operator sup
n∈N

(
f ∗ T̃n

)
. First, we show that the operator is bounded from L∞(I) to

L∞(I). Indeed, since (see [18]) sup
n
‖Kn‖1 < 2 and from (22), (23) we have

sup
n∈N

∥∥∥T̃n

∥∥∥
1

. sup
n∈N

1
Aαn

n−1

|n|∑
s=0

εs (n)
s∑

l=1

1
2l

×

2l
−1∑

j=2l−1

Aαn−1
n(s−1)+ j

l−1∑
k=0

k∑
r=0

2r
∫
I

D2k

(
x u 2−r−1

)
dx

+ sup
n∈N

1
Aαn

n−1

|n|∑
s=0

εs (n) Aαn−1
n(s)−1

∫
I

D2s (x) dx

+ sup
n∈N

1
Aαn

n−1

|n|∑
s=0

εs (n) Aαn−1
n(s)−1

s∑
l=0

2l
∫
I

D2s

(
x u

1
2l+1

)
dx

. sup
n∈N

1
Aαn

n−1

|n|∑
s=0

εs (n)
2s
−1∑

j=1

Aαn−1
n(s−1)+ j

+ sup
n∈N

1
Aαn

n−1

|n|∑
s=0

εs (n) 2sAαn−1
n(s)−1

. sup
n∈N

1
Aαn

n−1

|n|∑
s=0

εs (n)
(
Aαn

n(s)
− Aαn

n(s−1)

)
+ sup

n∈N

αn

nαn

|n|∑
s=0

εs (n) 2sαn

≤ c < ∞,

which implies the boundedness of operator sup
n∈N

(
f ∗ T̃n

)
from the space L∞(I) to the space L∞(I).

We suppose that f ∈ Hp (I). Let function a be an Hp atom. It means that either a is constant or there is an
interval IN(u) such that supp(a) ⊂ IN(u), ‖a‖∞ ≤ 2N/p and

∫
a = 0. Without lost of generality we can suppose

that u = 0. Consequently, for any function 1which isAN-measurable we have that
∫

a1 = 0. We prove that
operator sup

n∈N

(
f ∗ T̃n

)
is Hp-quasi local. That is,

∫
IN

(
sup
n>N

∣∣∣a ∗ T̃n

∣∣∣)p

≤ cp.
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Let x ∈ IN. Then from (3) we can write

∣∣∣a ∗ T̃n

∣∣∣
=

∣∣∣∣∣∣∣∣∣
∫
IN

a (t)

 6
Aαn

n−1

|n|∑
s=N+1

εs (n)
s∑

l=N+1

1
2l

×

2l
−1∑

j=2l−1

Aαn−1
n(s−1)+ j

l−1∑
k=N+1

k∑
r=0

2rD2k

(
x u t u 2−r−1

)
+

1
2Aαn

n−1

|n|∑
s=N+1

εs (n) Aαn−1
n(s)−1D2s (x u t)

+
1

2Aαn
n−1

|n|∑
s=N+1

εs (n) Aαn−1
n(s)−1

s∑
l=0

2lD2s

(
x u t u

1
2l+1

)
dt

∣∣∣∣∣∣∣
.

2N/p

Aαn
n−1

|n|∑
s=N+1

εs (n)
s∑

l=N+1

1
2l

×

2l
−1∑

j=2l−1

Aαn−1
n(s−1)+ j

l∑
k=N+1

k∑
r=0

2r
∫
IN

D2k

(
x u t u 2−r−1

)
dt

+
2N/p

Aαn
n−1

|n|∑
s=N+1

εs (n) Aαn−1
n(s)−1

N−1∑
l=0

2l
∫
IN

D2s

(
x u t u

1
2l+1

)
dt.

Since

2l
−1∑

j=2l−1

Aαn−1
n(s−1)+ j =

2l
−1∑

j=2l−1

(
Aαn

n(s−1)+ j − Aαn
n(s−1)+ j−1

)
= Aαn

n(s−1)+2l−1
− Aαn

n(s−1)+2l−1−1

we have

∣∣∣a ∗ T̃(1)
n

∣∣∣
≤

2N/p+1

Aαn
n−1

|n|∑
s=N+1

εs (n)
s∑

l=N+1

1
2l

(
Aαn

n(s−1)+2l−1
− Aαn

n(s−1)+2l−1−1

)
×

l∑
k=N+1

k∑
r=0

2r
∫
IN

D2k

(
x u t u 2−r−1

)
dt

+
2N/p

Aαn
n−1

|n|∑
s=N+1

εs (n) Aαn−1
n(s)−1

N−1∑
l=0

2l1IN(2−l−1) (x)



U. Goginava, S. Ben Said / Filomat 35:7 (2021), 2189–2208 2206

=
2N/p+1

Aαn
n−1

|n|∑
s=N+1

εs (n)
s∑

l=N+1

1
2l

(
Aαn

n(s−1)+2l−1
− Aαn

n(s−1)+2l−1−1

)

×


N∑

r=0

2r
l−1∑

k=N+1

∫
IN

D2k

(
x u t u 2−r−1

)
dt

+

l−1∑
r=N+1

2r
l−1∑
k=r

∫
IN

D2k

(
x u t u 2−r−1

)
dt


+
αn2N/p

nαn

|n|∑
s=N+1

2s(αn−1)
N−1∑
l=0

2l1IN(2−l−1) (x) .

Since

l−1∑
r=N+1

2r
l−1∑
k=r

∫
IN

D2k

(
x u t u 2−r−1

)
dt = 0

(
x ∈ IN

)
we get

∣∣∣a ∗ T̃(1)
n

∣∣∣
.

2N/p

Aαn
n−1

|n|∑
s=N+1

εs (n)
s∑

l=N+1

1
2l

(
Aαn

n(s−1)+2l−1
− Aαn

n(s−1)+2l−1−1

)
×

N∑
r=0

2r
l∑

k=N+1

∫
IN

D2k

(
x u t u 2−r−1

)
dt

+
αn2N/p

2N

N−1∑
l=0

2l1IN(2−l−1) (x)

.
2N/p

Aαn
n−1

|n|∑
s=N+1

εs (n)
s∑

l=N+1

(l −N)
2l

×

(
Aαn

n(s−1)+2l−1
− Aαn

n(s−1)+2l−1−1

) N∑
r=0

2r1IN(2−r−1) (x)

+
αn2N/p

2N

N−1∑
l=0

2l1IN(2−l−1) (x)

.
2N/p

Aαn
n−12N

|n|∑
s=N+1

εs (n)
s∑

l=N+1

(
Aαn

n(s−1)+2l−1
− Aαn

n(s−1)+2l−1−1

)
×

N∑
r=0

2r1IN(2−r−1) (x)

+
αn2N/p

2N

N−1∑
l=0

2l1IN(2−l−1) (x)
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.
2N/p

Aαn
n−12N

|n|∑
s=N+1

εs (n)
(
Aαn

n(s)−1 − Aαn
n(s−1)−1

)
×

N∑
r=0

2r1IN(2−r−1) (x)

+
αn2N/p

2N

N−1∑
l=0

2l1IN(2−l−1) (x)

.
2N/p

2N

N∑
r=0

2r1IN(2−r−1) (x) .

Therefore, ∫
IN

(
sup
n>N

∣∣∣a ∗ T̃(1)
n (x)

∣∣∣)p

dx

≤
2N

2Np

N∑
r=0

2rp
∫
IN

1IN(2−r−1) (x) dx

=
1

2Np

N∑
r=0

2rp
≤ cp < ∞.

and consequently,∥∥∥∥∥∥sup
n∈N

(
f ∗ T̃n

)∥∥∥∥∥∥
p

≤ cp

∥∥∥ f
∥∥∥

Hp

(
f ∈ Hp, p > 0

)
(27)

and ∥∥∥∥∥∥sup
n∈N

(
f ∗ T̃n

)∥∥∥∥∥∥
weak L1(I)

≤ c
∥∥∥ f

∥∥∥
1

(
f ∈ L1 (I)

)
. (28)

Since

sup
n∈VK(α)

∣∣∣ f ∗ Kαn
n

∣∣∣ ≤ sup
n∈N

(
f ∗ T̃n

)
+ sup

n∈N

(
f ∗

∣∣∣T(3)
n

∣∣∣)
Combining (24), (25), (26), (27) and (28) we complete the proof of Theorem 4.1.
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[22] F. Weisz, Cesàro summability of one- and two-dimensional Walsh-Fourier series. Anal. Math. 22 (1996), no. 3, 229–242.
[23] F. Weisz, Summability of multi-dimensional Fourier series and Hardy spaces. Mathematics and its Applications, 541. Kluwer

Academic Publishers, Dordrecht, 2002.
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