Filomat 35:7 (2021), 2189-2208
https://doi.org/10.2298/FIL2107189G

2K

Published by Faculty of Sciences and Mathematics,
University of Nis, Serbia

U
;
gy gy

Available at: http://www.pmf.ni.ac.rs/filomat

&
Ipapor®

Maximal Summability Operators On the Dyadic Hardy Spaces

Ushangi Goginava?®, Salem Ben Said?

?Department of Mathematical Sciences, United Arab Emirates University, P.O. Box No. 15551, Al Ain, Abu Dhabi, UAE

Abstract. It is proved that the maximal operators of subsequences of Nérlund logarithmic means and
Cesaro means with varying parameters of Walsh-Fourier series is bounded from the dyadic Hardy spaces
H, to L,. This implies an almost everywhere convergence for the subsequences of the summability means.

1. Walsh System

We shall denote the set of all non-negative integers by IN, the set of all integers by Z and the set of
dyadic rational numbers in the unit interval I := [0, 1) by Q. In particular, each element of Q has the form
£ for some p,n € N, 0 < p < 2". By a dyadic interval in I we mean one of the form [ L, L

that is, 2" < n < 2M*1. The ¢-algebra generatered by the dyadic intervals {I, (x) : x € I} will be denoted by
A, (n € N). Let

¥ = Z xnz—(;m)
n=0

5 7) for some
ke N, 0 <1< 2% Denote I, :=[0,27"),1, (x) := x + I,. For 0 < n € N denote by |n| := max{j €N:n;# 0},

be the dyadic expansion of x € I, where x,, = 0 or 1 and if x is a dyadic rational number we choose the
expansion which terminate in 0’s.
Denote the dyadic expension of n € N by

n= Z €j (n)2/, ej(n)=0,1

j=0
Denote by + the logical addition on I. That is, for any x, y € Il

x+y:= Z |xn - yn| 2=+,

n=0
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Define the binary operator @ : NXIN—IN by
kon=) lei() - i (m)|2'. M
i=0

It is well-known (see, e.g. [18], p. 5) that
Wingn (X) = Wy (x) Wy (x),x € [0,1),1n,m € IN. (2)
The Rademacher system is defined by
pn (@) :=(-1)" (xel,neN).

The Walsh-Paley system is defined as the sequence of the Walsh-Paley functions:

In|

s @ = [[ (o )" = (D" e LneN).
k=0

The Walsh-Dirichlet kernel is defined by

n-1
D (x)= ) we(x) (neN).
k=0

Recall that (see [18])

3 2",ifx€1n(0)
Dy (x) = { 0, ifxeM\l,(0) - §

Let f € L; (I). The partial sums of the Walsh-Fourier series are defined as follows:

f@wi(x),

gl

SM (X,f) =

1

Il
o

where the number

i) = | fFOw @)dt
/

is said to be the ith Walsh-Fourier coefficient of the function f. Set E,, (x, f) = S« (%, f) .The maximal function
is defined by

E'(x,f)= suﬂg )En (x,f)).

2. Dyadic Hardy Spaces

The norm (or quasinorm) of the space L, (I) is defined by

1/p
”pr = [f |f @ dx] (0<p < +0).

I
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In case p = oo, by LP(I) we mean L*(I), endoved with the supremum norm.
The space weak-L; (II) consists of all measurable functions f for which

e = 502 A (1A > )] < +oo.

The notiation a < b in the proofs stands for a < ¢ - b, where c is an absolute constant.
Let f € Ly (). For 0 < p < oo the Hardy space H,(Il) consists all functions for which

1Al =1

A bounded measurable function a is a p-atom, if there exists a dyadicinterval I, such that

a)fazO;
T

b) llalleo < 1177;
c)suppaC L
An operator T be called p-quasi-local if there exist a constant ¢, > 0 such that for every p-atom a

flTalp <¢p < oo,

I

E* (f)”p < oo.

where [ is the support of the atom. We shall need the following

Theorem W1 1 (Weisz [23]). Suppose that the operator T is o-sublinear and p-quasi-local for each O <p < 1. If T
is bounded from Loo(I) to Lo (1), then

ITAll, < eollfll, € By @)

for every 0 < p < oo . In particular for f € L1(ll), it holds

”Tf”weakll(]l) S C”f”l '

3. Norlund Logarithmic means

In the literature, there is the notion of Riesz’s logarithmic means of a Fourier series. The n-th Riesz’s
logarithmic means of the Fourier series of an integrable function f is defined by

R, (5, f) o= le Sk (;(c,f),

" k=1

where I, := Y, _; (1/k).

Riesz’s logarithmic means with respect to the trigonometric system was studied by a lot of authors. This
means with respect to the Walsh and Vilenkin systems was discussed by Simon [19], Blahota, Gat [4], G4t
[7], Gat, Goginava [9], Tephnadze [20], Person, Tephnadze and Wall [17].

Let {gx : k > 0} be a sequence of nonnegative numbers. The nth Nérlund means for the Fourier series of
f is defined by

n

-1
Qn—ksk(f)/
k=0

1
Qn
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where

Q= Z k-

k=1
If gr = k, then we get the Norlund logarithmic means

n

;, (x,f) - %Z Sk(f/l,{f)

-1
n
k=0

In this paper we call it logarithmic mean altough, it is a kind of "reverse” Riesz’s logarithmic mean.
It is easy to see that

ta(x, f) = ff(t)F,, (x+1t)dt,
T

where by F, (t) we denote nth logarithmic kernel, i. e.

n—-1

1 Dy (¢ = 1
Fn(t) ::l_ k_(k),lnzz%
k=1

n
™ k=0

The Fejér kernel is defined by

K, (t) := %Z Dy ().
k=1

Forn =Y, ¢;(n)2/,¢j(n) = 0,1 we define
=0

k
n (k) := Zg,- ()2,

j=0

It is easy to see that n (|n]) = n.
For a non-negative integer 7 let us denote the dyadic variation

V() =) lei (n) = €1 ()] + €0 (m).
i=0

We define the weighted version of variation of an n € IN with binary coefficients (¢x (1) : k € IN) by

]

L(n) =) lex (1) = cicen (m)] L.
k=1

Set for positive reals K the subset of natural numbers
LKzz{ne]N:MSK}.
In|
It is known [17] that if n; < nj;; and
sup V(nj) < o0, (4)
i

then a. e. S, (f) — f. On the other hand, Konyagin [14] proved that the condition (4) is not necessary for
a. e. convergence of subsequence of partial sums. Moreover, he gave negative answer to the question of
Balashov and proved the validity of the following theorem.
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Theorem K 1 (Konyagin [14]). Suppose {ns} is an increasing sequence of natural numbers, ks = [log2 nA] +1,
and 2% is a divider of nay1 for all A. Then S, (f) — f a. e. for any function f € Ly (II).

A .
For instance, for the sequence {14}, n4 := 24 Y. 4, such that sup V (n4) = oo, satisfies the hypotheses of
i=0 na
the theorem.
Almost ewerywhere convergence of {t,a (f) : A > 1} with respect to Walsh-Paley system was studied by
first author [11]. In particular, the following is proved

Theorem G11. Let f € Ly (). Then tya (x, f) = f(x)asA - coa.e. x e L

In[16], Nagy established a similar result for the Walsh-Kaczmarz system. Memic¢ [15] improved Theorem
G1. However, a divergence on the set with positive measure for the whole sequence {t, (f) : n > 1} was
proved by Gat and Goginava [8].

In [12] the following is proved.

Theorem G2 1. Let f € Ly () and K > 0. Then . lim t,(x, f) = f(x)fora. e x el
KIN—00

We define the maximal operator
t. (x; f) := sup (|f*F,1 )(x).
nelLg

In this section it is proved that the maximal operator of subsequences of Norlund logarithmic means of
Walsh-Fourier series is bounded from the dyadic Hardy spaces H), to L,. This implies an almost everywhere
convergence for the subsequences of the summability means.

Theorem 3.1. Let p > 0. Then there exists a positive constant c, such that

LA, < e llAlll, (11 € Hpp>0)

and

. (f)”weak—Ll(]I) S ||f”1 ’

Corollary 3.2 (see [12]). Let f € Ly (). Then
lim t,(x, f)=f(x) fora.e xel
Lgan—oo

Theorem 3.3. Let {ma : A € IN} be a subsequence for which there does not exist K such that {ma : A € N} ¢ Lx for
all K € N, i. e. the condition

4]

sup — ) lex (ma) = €1 M) Ly = 00
Ap |mA| ; + ma (k)

holds. The operator ty,, (f) is not bounded from the dyadic Hardy spaces Hj (I) to the space Ly (D).

Proof. [Proof of Theorem 3.1] The following representation is known (see [12])

LE, () = HY (1) + H (1),
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where

In|
HY (8) = w, () [Z ¢ (m Dy () p; (1) l"(f)]’

=1

||

n|
205|300 % o [T o

s=j+1

Hence, we have

(1) 2
f*Fn(x)=(f*hll" )(x)+[f*hl[” ]<x>.

It is easy to see that

n

w, OHP () = Y &) Dy () = Dy (D)1
j=1
n|—1
-y (e]- (1)L~ o1 () ln(m))Dz,ﬂ 0
=1
+&pu| (1) LyupyDos (£) = €1 (1) Ly D2 (£)
-1
= ) (&0 = €51 ) Ly Dase ()
j=1
|n|-1
Z €j+1 (1’1)( n(j) ~ n(]+1))D2] 1 (B
-1
+€|n|( 1) (1) Lygup D1 (£) = €1 (1) Lya)Da (£) -
Consequently,
|H (1)
Ly
1 |n|-1
< = ) lei ) = ejua )]0,y Do ()
n ]:1
|n|-1
+ Z €j+1 (n) (ln(j+1) — Zn(])) Dy (£)
j=1

Il

e
=
—

~~
~

2194
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Let n € L. Then we can write

|(f *Py) (x)|
|n|-1
< zl Y [ejm) = €1 ()1, (f * Do) ()
n j=1
1 In]
i Z ej(n) (ln(j+1) - ln(j)) (f * Dy1) (%)
n j=1
» SN (1) 0

+ L0 (1. D) 0

|n|-1
<E (x,f){ Z |<E] — Ejs1 (Tl)l ln(j)

||

+% Z & (n) (ln(j+1) - Zn(])) + 2}

j=1
< LgE” (x, f) .
Since (see [18, 23])

p S Cp “fHHp (p>0),

and
E (f)”weakal(]I) <

we have
sup|(f + P || << [Iflly,  (f € Hop > 0)
nelg M

and

<7l

sup |(F * Pu)

weak—L1(I)

Now, we can write

52 1

Iy l

Z Dy ()
k+n(j-1)|
Using Abel’s transformation we obtain
Z Dy ()
k+n(j—1)

¥ ( 1 1 )kK )
= . - . k
H\k+n(j-1) k+1+n(j-1)

2j
(1)

Ky (t).

2195

©)

(10)
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Consequently,

|H? (x)|

IA

1 || 2-1 1 1
z‘}zgf(”) (k+n(j—1) _k+1+n(j—1))k|Kk(x)|

n == k=1

n

1
+Z_Zf T ( )KZ/' (x)

n
HY (1) + HP (x).
Since (see [18], p. 46)
s—=1 i
K (x)| <3-27° 2Dy x+2]1)
i=0 j=0

when 271 <] < 25, We have

[H; (x)

3 In| j
DL},
n =1

s=1 [=2571

2°-1

IA

—_

1 1
l+n(j—1)_l+1+n(j—1))
k
X 2Dy (x+277)
k=0 r=0

In] j

j(n) ( : 1 1' )
n e 21 +n(j-1) 25+n(]—1)

k
X Z 2Dy (x+277Y).

—_

S—

™

It is well known (see [18], p. 47) that if j € IN then

2" D2](x)+22 ’Dz,( 211“)].

=0

Ky (x) =

In particular, Ko» > 0 everywhere on I. Then we have

||

1
H?x) < —
21, £
j=1
|

1| j

1 1
EZSJ(TI)Zz ]Dz,-(x+zlj).
j=1

" 1=0

& (1)27/Dy (¥)

2196

(11)

(12)

(13)

(14)

(15)
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Combining (11), (13) and (15) we have

N

1 / 1 1
ngf(”)z(zs Tvn(-1) 2+n(j-1)

k
X Z 2Dy (x+277Y)

We can write

(f * Qu) (x)
n|
c 1 1
(E =1 é](n)Z(ZS Tan(j-1) 2+n(j-1)
s k
X ZZVD +2 = 1)](9:).
k=0 r=0
First, we prove that the operator f * Q, is bounded from L« (Il) to L (II). Indeed, since
sup [|Qnlly
nelN
In| j -1
1 1 1
< sup — ei(n)y 2° ( - - - )
neﬂl\?ln; J ; S \k+n(j-1) k+1+n(j-1)
In| i1
1 1 1
< sup — ei(n) k( - - - )
neﬁln; / ;kZZS_l k+n(j—-1) k+1+n(j-1)
In| 2/-1
1 k
S sup— ej(n) B
neNln;‘ kzl‘(k+n(]—1))
In| 2/-1 .
1 1 n(j-1)
< sup — ei(n) - +
neﬁln; ! kzl(kw(f—l) (k+n(j-1))
1 n|
< sup— e-(n)(ln Vol +1)
e I O TR
< ¢c<oo.

we obtain that
supl|f + Qu[|, < /A
nelN

Hence, the operator f * Q, is bounded from Lo, (I) to Lo (I).

2197

(16)

We suppose that f € H, (). Let function a be an H, atom. It means that either a is constant or there is an
interval Iy (i) such that supp(a) C In(u), llall < 2N/ and ['a = 0. Without lost of generality we can suppose
that u = 0. Consequently, for any function g which is Ay-measurable we have that f ag = 0. We prove that
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the operator sup (f * Q) (x) is Hy-quasi local. That is,
n>N

P
f(sup |a = Qn|) < ¢p.
n>N

In

Let x € Iy. Then we can write

(@ * Qn) (x)]
] j
= llfa(t)[z ej(n) Z
n e j=N+1 s=N+1

(25-1 +rlz<j—1) B 2s+n1(j—1>)

S

k
X Z 2Dy (xJ'rtJ'rZ_"l)Jdt

k=N+1 r=0
N/p |n| j
< 21 Y e Y,
" jEN+1 s=N+1
1 B 1
2 1+n(-1) 25+n(j—-1)
s k
r i+ o1
X Z ZZ szk(x+t+2 )dt
k=N+17=0
ON/p n] j j
= T X am) )
j=N+1 k=N+1 s=k+1
1 B 1
2 l+n(j-1) 2+n(j-1)
k
xZTfDZk (x+t4+27)dt
r=0 In
L2 u g'(n)( 1 1 )
= T\ G=1) " n ()

mi=N+1

j k
x Z]: 2rfD2k (x+t4+27")at
k=N+1 r=0 I

oN/p 1 !
= TZ gj(n)(2N+n(j—1)_n(j))

2’ f Dy (x+t+277")dt.

In

2198

(17)
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Since
i

Y ZerDzk(x—irt—irZ_r_l)dt:O (xely),

r=N+1 k=r

In
we have
|a * Qul
oN/p 1 1
< =0 ' =N - - —
S ]-:NZ:f] mu )(2N+n<]—1> n(;))
N
x Z 2711N(z+1) ().
r=0
Since
] 1 1
j_NZif] W )(2N+”(f— 1) n(]'))
ul 1 1
< n ( : -— )
j—;:l 2N+n(]_1) }’l(])
]
S SN
we have

N/p N
0 Qul < T ) 21 oy @),
r=0

where 1 is characteristic function of the set E and consequently,

N ¢
fsup|a*Qn|Pg N E erflzN(zm) <cp.
r=0

v n=N .
IN IN

Hence,

sgﬂ13|f>eQn| SCP“f”H,, (feH,p>0)

p

and

|7l

weak—Li ()

sup |f * Qn|
nelN

Since

|f * Ea| () <[] Pu + |f] * Qus
from (9), (10), (18) and (19) we have

i‘EJLP|f*Fn| SCp|||f|||HV ()f|er,p>o)

p

2199

(18)

(19)
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and

<Al -

weak—Li (I)

sup | f* Fn|
nelg
Which complete the proof of Theorem 3.1. [J
Proof. [Proof of Theorem 3.3] Set

fa := Dyjsjir = Dojuy-
Then it is easy to see that

sup |Sar (f4)] = Dy
nelN

and consequently,

1£ally, = sup Sz G| = [Dgall, = 1.
nelN 1
Set
my =2l 4 gy,
where
[mal-1 ‘
qa = Z é']‘(mA)ZJ.
]':
Then we can write
2lmal 4g, -1
; (f):i iA Sk (fa)
mNA = My —k
k=2lmal+1

It is easy to see that
Sc(fa) = Sk(Dyuper = Dyl
= Dy- D2|,,,A| .

Hence, we have

2lmal g, -1
1 S Dy=D

by (fa) = — ), ——24

lmA map — k
k=2lmal+1

ga-1
Z Dy glnal = Dojmal

l ma —k
ma k=1 A
941
Wyl Dy
B l -k
ma qa

From the condition of Theorem 3.3 we conclude that
sup [[tu, (fa)]]; = sup [[Fu[|, = oo.
AelN AelN

Theorem 3.3 is proved. [

2200



U. Goginava, S. Ben Said / Filomat 35:7 (2021), 2189-2208 2201
4. Cesaro Means with Varying Parameters

The (C, a;) means of the Walsh-Fourier series of the function f is given by

n n-1
142 1 ap— 1 ay e
o (f,x) = YCR An,jlsf(f’x) = YCR ZAnflfjf(]) w;(x),
n—1 j=1 n—1 j=0

where

_ A+ay)...m+ay)

n
Ay o

foranyne N, a, # -1,-2, ...
It is known that [26]

n

_ _ o
A=Y AT Ay = S, (20)
e a, +n

The (C, ;) kernel is defined by

n n—1

1 4 1
Ky = o= Y ADy = Y Ao,
n-1 j=1 n-1 j=0

The following estimations was proved by Akhobadze [2, 3] : Let k,n € IN. Then

e (l+ay)@+a)k™ < Al <ca(1+a,) 2+ a,)k™, (21)
when -2 < a,<-1;

o (1+a,) k™ < AZ” < (1+a,)k™, when —1<a, <0; (22)

c1 (@A) k™ < A" <ca (d) k™, when 0 < a, < d. (23)

The idea of Cesaro means with variable parameters of numerical sequences is due to Kaplan [13] and the
introduction of these (C, a,;) means of Fourier series is due to Akhobadze (see [3] or [2]) who investigated
the behavior of the L;-norm convergence of ¢y, (f) — f for the trigonometric system.

The first result with respect to the a.e. convergence of the Walsh-Fejér means oy" (f) for all integrable
function f with constant sequence @, = @ > 0 is due to Fine [5] (see also Weisz [22]). On the rate of

convergence of Cesaro means in this constant case see the paper of Yano [25], Fridli [? ].

[ee]

Forn := Z £ (n) 2 (&;(n) = 0,1,i € IN) set two variable function

i=0
P(n,a):= Zei (n) 2% (neN),a :={a,:neN}.
i=0

The function P (1, &) was introduced by Abu Joudeh and Gatin [1]. Alsoset forsequencea := {a, : n € N}
and positive reals K the subset of natural numbers

Pk (a) == {n eN: P;T;a) SK}.

The a.e. divergence of Cesaro means with varying parameters of Walsh-Fourier series was investigated
by Tetunashvili [21]. Abu Joudeh and Gat in [1] proved the almost everywhere convergence (with some
restrictions) of the Cesaro (C, a,) means of integrable functions. In particular, the following is proved
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Theorem JG 1. Suppose that o, € (0,1). Let f € Ly (). Then we have the almost everywhere convergence
on" (f) — f provided that Px (a) 5 n — co.

In this section we define the weighted version of variation of an n € IN with binary coefficients
(ex (n) : k e N) by

V,0):= ) lei(n) =~ ein (2 (1€ N).
i=0

Set for sequence « := {a,, : n € IN} and positive reals K the subset of natural numbers

VK(CK):={TIEN:%;O()SK<OO}.

It is easy to see that Px(a) & Vi (a). On the other hand, if a, — 0, then there exists K such that
2" — 1 € Vg (a) for all n, but there does not exists K, such that 2" — 1 € P («) for all n.
The boundedness of maximal operators of subsequences of (C, @) — means of partial sums of Walsh-

Fourier series from the Hardy space H, into the space L, is studied in [10]. In particular, the following is
proved.

Theorem GG2 1. Let p > 0. Then there exists a positive constant c, such that

S G Hf”Hp (f € Hp)‘

sup |f « [k
NelN I
Weisz [24] generalized Theorem GG2 for both the Cesaro and Riesz means by taking the supremum

over all indicies n € IN,. Here IN,, denotes the set of all n = 2" + --. + 2" with a fixed parameter v. In
particular, the following is proved.

Theorem W2 1. Let p > 0. Then there exists a positive constant c, such that

sup |f * Kz|

nePx(a)

<o llll,, (<)

p

In this section we are going to improve Theorem W2. We prove that the maximal operator of subse-
quences of Cesaro means with varying parameters of Walsh-Fourier series is bounded from the dyadic
Hardy spaces H, to L,. This implies an almost everywhere convergence for the subsequences of the
summability means.

Theorem 4.1. Let p > 0. Then there exists a positive constant c, such that

sup |fKlll <o, (Ifl € Hy)
VlEVK(Ué) p

and
wp [l selfl, (et
neVg(a) weak_Ly ()

Corollary 4.2. Let f € Ly (). Then

lim oy (x,f)=f(x) fora.e. xel

Vi(a)an—oo
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Remark 4.3. We suspect that Theorem 3.1 and Theorem 4.1 will be valid in the case when f € H, () (p > 0), but we
could not proved these.

Now, we prove Theorem 4.1.

Proof. We can write

||

K = A(Z”l ZO‘ & () Wyeo_q ZA% 4 JK; 24)
5=
1 n|
@ & (1) Wy 1An _125K2>
n—1 s=0
1 n|

[4%
o &s (n) wye_ 1An(”) D2

n-1 s=0
TV 4 TP 4 7O

and

sup (f* |T,(13)|) < ckE* (%, f)
nelN

Then from (7) and (8) we have

suﬂg(f*|T’(73)|) gcp“f”Hp (feH, p>0) (25)
ne p
and
sup (f* |T§3)|) <c Hf”1 (f € Ly (). (26)
nelN weak_L (I)

It is easy to see that (see (20))

||

|T511>)_A% Zés(n)z ml K

n-1 s=0

then, from (12) we have

1l
n] Zs: 1
< - & (n) —
Az 1 s=0 | =1 2
2/ -1 k
Z w ZszDzk (x+277)
j=2-1 k=0 r=0

In|

nil

— Z . (m) A% Dy (¥)
n-1 s=0

||

1
oA A 122[)25( 2l+1)
n

-1 s=0
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Now, we discuss the operator sup ( f* T, ) First, we show that the operator is bounded from L. (I) to

Leo(I). Indeed, since (see [18]) sup ||K [y < 2 and from (22), (23) we have

sup [T,
In|
1 al!
< sup — &s (n) 5
neN “3y-1 5o 1=1
2!-1 -1 k
DI I R T
j=2k k=0 r=0 Y
1 n]
+sup —7- & (n)AZ(”) ’ f Dos (x) dx
nelN n-1 s=0
I
1 |n| s
ap—1 1 )
tsupaa— ) e A L )2 f Dz (x 21+1)dx
n-1 s=0 =0 it

N

A

IN

which implies the boundedness of operator sup ( f*

1
+su
e AT
[n]
su
o AT L
n]
+sup —
nelN s=0
€< oo,

ree 2 & () (Aa” - A;Zn 1))

nelN

Tn) from the space L (I) to the space Loo(I).

We suppose that f € H, (). Let function a be an H, atom. It means that either a is constant or there is an
interval Iy(u) such that supp(a) C In(u), |lalle < 2N/7 and f a = 0. Without lost of generality we can suppose
that u = 0. Consequently, for any function g which is Ay-measurable we have that f ag = 0. We prove that

operator sup ( f* i,) is Hy-quasi local. That is,
nelN

I

In

sup |a * T,,'
n>N

P
)Scp.
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Let x € Iy. Then from (3) we can write

o7,
n| s
= fa(t)[ 6 Z & (n) Z %
e n— 1 s=N+1 I=N+1
2-1 -1k
x Y oavl N Y Dy (xd 427
P B R

n]

1 _ .
2 SAE Z & (n)Az;;)_llDzs (x+1)

n=1 s=N+1
|n| s
_L Al 2Dy (x4t 4 1)t
+2A“" Zss(n) n)lz s | x + +2l+1
n-1 s=N+1 1=0
L2 i WY L
S Gl em)
An 1 s=N+1 I=N+1 2
- Ik
A Y Y [ (e
N-1+]
j=2-1 k=N+1 r=0 e
N-1
2N/p n] . 1 1
+F Z Es(i’l)An() 1 2 Dos x+t+21 1 dt.
n—1 s=N+1 =0 3
Since
21 21
ay—1 _ ay _ A%n
Z A"(s—1>+f - Z (A”(sfl)"'j An(571)+j—1)
j=2-1 j=2-1
— ay _ AQn
- Ns-1)+2!-1 An(g_1)+217171
we have
o< T
oN/p+1 In|
Qp
< A0 Z & (1) Z 21( Moy +21-1 _An<s,1)+2’-1—1)
n-=1 s=N+1 I=N+1
<Y Y [Daririz)a
k=N+1 r=0 I

||

ZN/p » N-1 .
Yo ), s@ATL Y 2, 0 ()
1=0

n—1 s=N+1
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oN/p+1 - (i
R A
T AN Z & (1) Z 21 ( nGs-1)+2!~1 An(sf1)+21‘1—1)
n=1 s=N+1 I=N+1
N -1

X Z 2" Z Dy (x4 t+277)dt
r=0 k=N+1 In

-1 1-1

+ Z 2erD2k x+t+2 i 1)d

r=N+1 =r Iy

a2V &

N-1
n_:l l
e os(a >§ 211N(2+1) (x).
1=0

s=N+1

2’ szk(x-i-t-i-Tr_l)dt:O (xeIy)

o T

n] S

2N 1(,a @
Aa" Z & (n) Z E (An(s—1)+21—1 B An(5,1)+21_1—1)

n—1 s=N+1 I=N+1

XZZV Z szk x+t+2‘r 1)d

r=0 kN+1I

a2 /P
n ZZIINZII)(X

n]

22y am Yy BN

A

N

ap
An—l s=N+1 [=N+1

N
Qn _ AGn r
X (An(s,1)+2]—1 An(57])+2171_1) Z 2 IIN(Z—r—l) (x)
r=0

a,,Z v

Z 2 1IN(2 - 1) (x)

ON/p ‘”'

_ Qan
A% N Z‘ s (1) Z ( fs-1)+2!-1 An(ﬁ 421-1 1)

n-1 s=N+1 [=N+1

N
XY 21 (o) ()
r=0

a2V A
o 22 ) @)
1=0

N
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||

2N/p [24 a
S A% oN Z s () (Am 91 A”(s—1>—1)

n-1 s=N+1

N
X Z 27111\/ (1) (%)
r=0
2y

ZN/P
S S L e

Therefore,
P
f(sup )a *'7:;1) (x)|) dx
. n>N
In
N &
< wm f Ly () ()
- ¥
] X
= ZTP_OZWSCP<OO.
and consequently,
sup (f +T,) 3cp||f|ij (feH, p>0) 27)
nelN P
and
sup (f *Ty) <c|Ifll, (f € Ly (). (28)
nelN weak_L (I)
Since

sup }f*K”|<sup(f )+sup(f*|T£l3)|)

neV(a) nelN
Combining (24), (25), (26), (27) and (28) we complete the proof of Theorem 4.1. [
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