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Abstract. Motivated by the open question posed by H. K. XU in [39] (Question 2.8), Belhadj, Ben Amar and
Boumaiza introduced in [5] the concept of Meir-Keeler condensing operator for self-mappings in a Banach
space via an arbitrary measure of weak noncompactness. In this paper, we introduce the concept of Meir-
Keeler condensing operator for nonself-mappings in a Banach space via a measure of weak noncompactness
and we establish fixed point results under the condition of Leray-Schauder type. Some basic hybrid fixed
point theorems involving the sum as well as the product of two operators are also presented. These results
generalize the results on the lines of Krasnoselskii and Dhage. An application is given to nonlinear hybrid
linearly perturbed integral equations and an example is also presented.

1. Introduction

In some applications it is extremely difficult to find self mappings. To overcome such difficulty, we can
refer to the famous Leray-Schauder principle ([32]) which is one of the most important theorems in nonlin-
ear analysis and other variations of this principle ([8], [36]). These theorems are based on the compactness
results and they are useful for giving solutions of nonlinear differential and integral equations in Banach
spaces. In [21], the authors used the concept of Meir-Keeler condensing operator which is introduced in [1]
and they proved fixed point theorems for nonself Meir-Keeler condensing mappings under the conditions
of Leray-Schauder, Rothe and Altman types. They used a measure of noncompactness which can describe
the degree of noncompactness for bounded sets greatly. Because the weak topology is the convenient and
natural setting to investigate the existence problems of fixed points and eigenvectors for operators and
solutions of various kinds of nonlinear differential equations and nonlinear integral equations in Banach
spaces, the above mentioned result cannot be applied and this approach fails. These equations can be trans-
formed into fixed point problems and nonlinear operator equations involving a broader class of nonlinear
operators, in which the operators have the property that the image of any set in a certain sense more weakly
compact than the original set itself. The major problem to face is that an infinite dimensional Banach space
equipped with its weak topology does not admit open bounded sets. As a result, new theory was needed to
complete the picture. The main scope of this paper is to give new existence results for weakly sequentially
continuous nonself-mappings which satisfied a Meir-Keeler codensing property with respect to a measure
of weak noncompactness.
For nonlinear integral equations of mixed type, the study of hybrid fixed point theorems initiated by
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Krasnoselskii [31] and Dhage [16] in a Banach space and a Banach algebra involve the arguments from
geometry and topology. Naturally these results combine two basic fixed point theorems of analysis
and topology namely. We prove in this work a Krasnosel’skii type fixed point theorem for weakly se-
quentially continuous mappings which cover and unify several earlier results from the literature and in
particular the work of [35]. The hybrid fixed point theorem of Dhage, which contains a generalization
of nonlinear D−contraction, concerns the product of two operators and it is applied to the quadratically
perturbed nonlinear integral equations for proving the existence theorems under some standard assump-
tions and since its appearance, it is used to study nonlinear hybrid differential and integral equations
with quadratic perturbations (see [11 − −15] and references therein). In [17], Dhage extented the geo-
metrical condition of nonlinear D−contraction to Meir-Keeler contraction. Meir-Keeler contractive maps
are also source of investigations in metric fixed point theory. For more details, we refer the reader to
[2], [20], [23], [24], [25], [26], [27], [28], [29], [30], and the references therein. In our work, we extend the result
of Dhage to the weak topology setting and since the originalD−contraction condition is not applicable to
nonlinear differential and integral equations we use an equivalent condition proved by Lim ([33]). Finally
we apply the abstract hybrid fixed point theorem to a simple nonlinear hybrid integral equation in order
to prove existence result under some geometrical and toplogical conditions. However, the study may be
extended to other very complex and involved nonlinear integral equations with obvious modifications. We
give also a numerical example to illustrate the abstract idea contained in the existence theorem.

2. Preliminaries

Let E be a Banach space endowed with the norm ‖.‖. We denote by Br the closed ball centered at 0 with
radius r. For a subset C of E, we write C,Cω and co(C) , to denote the closure, the weak closure and the
convex hull of the subset C, respectively. Moreover, we write xn → x and xn ⇀ x to denote the strong
convergence (with respect to the norm of E) and the weak convergence (with respect to the weak topology
of E) of a sequence (xn)n to x. Further denote by Ω(E) the family of all nonempty and bounded subsets of a
Banach space E andW(E) is the subset of Ω(E) consisting of all weakly compact subsets of E. In the sequel
we need the following definition of a measure of weak noncompactness [10].

Definition 2.1. Let E be a Banach space and X1,X2 ∈ Ω(E). A mapping ω : Ω(E) → [0,∞) is said to be a measure of
weak noncompactness if it satisfies the following conditions:

1. Regularity: ω(X1) = 0 if and only if X1 is relatively weakly compact.
2. Monotonicity : If X1 ⊆ X2, then ω(X1) 6 ω(X2).

3. Invariant under closure: ω(X1
ω

) = ω(X1).
4. Invariance under passage to the convex hull : ω(co(X1)) = ω(X1).
5. ω(λX1 + (1 − λ)X2) ≤ λω(X1) + (1 − λ)ω(X2) for λ ∈ [0, 1].
6. Generalized Cantor’s intersection theorem: If (Xn)n>1 is a decreasing sequence of nonempty, bounded and weakly

closed subsets of E with lim
n→+∞

ω(Xn) = 0, then
∞⋂

n=1
Xn , ∅ and ω(

∞⋂
n=1

Xn) = 0 i.e.
∞⋂

n=1
Xn is relatively weakly

compact. We say that a measure of weak noncompactness is regular if it satisfies additionally the following
conditions :

7. The maximum property ω(X1 ∪ X2) = max{ω(X1), ω(X2)}.
8. Algebric semi-additivity : ω(X1 + X2) 6 ω(X1) + ω(X2).
9. Ker(ω) =W(E).

In [10] De Blasi introduced the following example of a measure of weak noncompactness:

β(M) = inf{r > 0 : there exists a set N ∈ W(E) such that M ⊆ N + Br}

for M ∈ Ω(E). Note that the De Blasi measure of weak noncompactness β is regular ([10]).
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Definition 2.2. [7] Let C be a nonempty subset of Banach space E. We say that T : C → E is condensing with
respect to the measure of weak noncompactness ω if T(X) is bounded, and

ω(T(X)) < ω(X),

for all bounded subset X of C with ω(X) > 0.

Definition 2.3. [7] Let E be a Banach space. An operator T : E→ E is said to be weakly compact if T(C) is relatively
weakly compact for every bounded subset C ⊂ E.

Definition 2.4. Let E be a Banach space. An operator T : E→ E is said to be weakly sequentially continuous on E,
if for every (xn)n with xn ⇀ x, we have Txn ⇀ Tx.

We recall the weak version of the Schauder-Tikhonov fixed point principle which was obtained by Arino,
Gautier and Penot:

Theorem 2.5. [4] Let C be a nonempty, convex and weakly compact subset of a Banach space E and T : C → C a
weakly sequentially continuous operator. Then T has at least one fixed point in the set C.

Definition 2.6. Let C be a nonempty subset of a Banach space E andω an arbitrary measure of weak noncompactness
on E. We say that an operator T : C → E is a Meir-Keeler condensing operator if for any ε > 0, there exists δ > 0
such that

ε 6 ω(X) < ε + δ ⇒ ω(T(X)) < ε, (1)

for all bounded subset X of C.

The concept of Meir–Keeler condensing operator was introduced recently in [5] for self-mapping T :
C→ C and the following fixed point theorem was proved.

Theorem 2.7. ([5])Let C be a nonempty, bounded, closed, and convex subset of a Banach space E and ω be an
arbitrary measure of weak noncompactness on E. If T : C → C is a weakly sequentially continuous and Meir-keeler
condensing, then T has at least one fixed point and the set of all fixed points of T in C is weakly compact.

In [33], Lim introduced the notions of L-function and strictly L-function which are important to study
Meir–Keeler condensing operator and in [5], Belhadj et al. gave a sufficient and necessary condition for
Meir–Keeler condensing operator by virtue of L-function.

Definition 2.8. ϕ : R+ → R+ is called an L-function if ϕ(0) = 0, ϕ(s) >0 for s ∈ (0,+∞), and for every s ∈ (0,+∞)
there exists δ > 0 such that ϕ(t) ≤ s for t ∈ [s, s + δ]. If ϕ(t) ≤ s is replaced with ϕ(t) < s for t ∈ [s, s + δ], we say that
ϕ is a strictly L-function

Proposition 2.9. ([5]). Let C be a nonempty and bounded subset of a Banach space E, ω an arbitrary measure of
weak noncompactness and T : C → C a mapping. Then T is a Meir-Keeler condensing operator if and only if there
exists an L-function ϕ such that

ω(T(X)) < ϕ(ω(X)),

for all X ∈ Ω(E) with X ⊂ C and ω(X) , 0.
Moreover, if there exists a strictly L−function θ such that ω(T(X)) ≤ θ(ω(X)) for all X ∈ Ω(E) with X ⊂ C and
ω(X) , 0, then T : C→ C is Meir-Keeler condensing.

Using Theorem 2.7 and Proposition 2.9, Belhadj, Ben Amar and Boumaiza state in [5] the following fixed
point result.

Corollary 2.10. Let C be a nonempty, bounded, closed and convex subset of a Banach space E,ω an arbitrary measure
of weak noncompactness and T : C→ C a mapping. Assume that T is weakly sequentially continuous such that

ω(T(X)) < ϕ(ω(X)) or ω(T(X)) ≤ θ(ω(X))

for X ⊆ C, where ϕ is an L-function and θ is a strictly L−function. Then, T has at least one fixed point and the set of
all fixed points of T in C is weakly compact.
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Definition 2.11. [12] An upper semi-continuous and nondecreasing function ψ : R+ → R+ is called aD−function
if ψ(0) = 0. The class of allD−functions on R+ is denoted byD.

Definition 2.12. [16] An operator T : X→ X is calledD−Lipschitz if there exists aD−function ψT ∈ D such that

‖Tx − Ty‖ ≤ ψT(‖x − y‖)

for all elements x, y ∈ X. Furthermore, if ψT(r) < r for r > 0, then T is called a nonlinear D−contraction on X. The
class of allD−functions satisfying the condition of nonlinearD−contraction is denoted byDR.

Definition 2.13. [17] A function ψ : R+ → R+ is called a DL−function if it is D−function as well as strictly
L−function. The class ofDL−functions is denoted byDL.

Remark 2.14. It is clear that if ψ ∈ DR, then ψ ∈ DL, but the converse may not be true.

3. Fixed Point Results for Meir-Keeler condensing operators

In this section we prove our main result for nonself Meir-Keeler condensing operator which is a gener-
alization of the notion of Meir-Keeler contraction introduced by Meir and Keeler in 1969([34]).

Theorem 3.1. Let K be a nonempty closed convex set in a Banach space E. In addition, let U be a weakly open subset
of K and x0 ∈ U, T : Uω → E be a weakly sequentially continuous mapping such that T(Uω) is bounded. If T is a
Meir-Keeler condensing operator and satisfies Leray–Schauder condition

(1 − λ)x0 + λTx , x, for all x ∈ ∂KU and λ ∈ (0, 1), (2)

where ∂KU is the weak boundary of U relative to K, then T has at least one fixed point in Uω, and the set of all fixed
points of T is weakly compact.

Proof
Step 1: We have x , (1 − λ)x0 + λTx, for all x ∈ ∂KU and λ ∈ (0, 1). We observe that this supposition is
satisfied also for λ = 0 (since x0 ∈ U). If it is satisfied for λ = 1, then in this case we have a fixed point in
∂KU and there is nothing to prove. In conclusion, we can consider x , (1 − λ)x0 + λTx for all x ∈ ∂KU and
λ ∈ [0, 1]. Let Σ be the set defined by

Σ = {x ∈ Uω : (1 − λ)x0 + λT(x) = x, λ ∈ [0, 1]},

The set Σ is non-empty since x0 ∈ Σ. The weak sequentially continuity of T implies that Σ is weakly
sequentially closed. For that, let (xn)n be a sequence of Σ such that xn ⇀ x ∈ Uω. For all n ∈ N, there exists
a λn ∈ [0, 1] such that xn = (1−λn)x0 +λnT(xn). Since (λn)n ⊂ [0, 1], we can extract a subsequence (λn j ) j such
that λn j −→ λ ∈ [0, 1]. Since T is weakly sequentially continuous, then T(xn j ) ⇀ T(x). Consequently,

(1 − λn j )x0 + λn j T(xn j ) ⇀ (1 − λ)x0 + λT(x).

Hence x = (1 − λ)x0 + λT(x) and x ∈ Σ. Thus, Σ is weakly sequentially closed.
We now claim that Σ is relatively weakly compact. Clearly,

Σ ⊆ co(T(Σ) ∪ {x0}). (3)

Thus,

ω(Σ) 6 ω(co(T(Σ) ∪ {x0})) 6 ω(T(Σ)). (4)

Suppose ω(Σ) = ε0 > 0 and let δ = δ(ε) > 0 be chosen according to (1). Since T is a Meir-Keeler condensing
operator, then

ω(T(Σ)) < ε0 = ω(Σ).
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which is a contradiction. Hence, ω(Σ) = 0, and therefore Σω is weakly compact. This proves our claim.
Now let x ∈ Σω. Since Σω is weakly compact by the Eberlein-Smulian theorem [18], there exists a sequence
(xn)n in Σ which converges weakly to x. Since Σ is weakly sequentially closed, we have x ∈ Σ. Thus, Σω = Σ.
Hence, Σ is weakly closed and therefore weakly compact. From our assumptions we have Σ ∩ (K \U) = ∅.
Since E endowed with its weak topology is a Hausdorff locally convex space then there exists a weakly
continuous mapping ρ : K → [0, 1] with ρ(x) = 1 for x ∈ Σ and ρ(x) = 0 for x ∈ K \ U (see [22] p. 146). Put
D = coω{T(U

ω
) ∪ {x0}}which is a bounded convex closed set, and define T̃ as

T̃(x) =

(1 − ρ(x))x0 + ρ(x)T(x) if x ∈ D ∩Uω,

0 if x ∈ D \Uω.

Because ∂KU = ∂KUω, ρ is weakly continuous and T is weakly sequentially continuous, we have that
T̃ : D→ D is weakly sequentially continuous.
Step 3: By the definition of Meir-Keeler condensing operator we can define a function α : (0,∞) → (0,∞),
such that

ε ≤ ω(X) < ε + 2α(ε)⇒ ω(T(X)) < ε, for ε ∈ (0,∞). (5)

Using such α, we define a nondecreasing function β : (0,∞)→ [0,∞) as

β(t) = inf{ξ : t ≤ ξ + α(ξ)}

As t ≤ t + α(t), we have

β(t) ≤ t, for t ∈ (0,∞). (6)

Now define a function ϕ from [0,∞) into itself as

ϕ(t) =


0 if t = 0,
β(t) if t > 0 and min{ξ > 0 : t ≤ ξ + α(ξ)} exists,
β(t) + t

2
otherwise.

similar to the proofs of Theorem 2.6 in [1], we can prove that ϕ is an L-function (i.e. there exists δ1(ε) > 0
such that ε ≤ t ≤ ε + δ1(ε)⇒ ϕ(t) ≤ ε) and

ω(T(X)) < ϕ(ω(X)), (7)

for nonrelatively weakly compact set X ⊂ Uω.
Step 4: We show that for ε > 0 there exists δ > 0 such that when ε 6 ω(S) < ε+ δ,we have ω(T(S∩Uω)) < ε
for nonrelatively weakly compact set S ⊂ D with ω(S ∩Uω) > 0. Let

A = {ξ > 0 : ω(S ∩Uω) ≤ ξ + α(ξ)}, B = {ξ > 0 : ω(S) ≤ ξ + α(ξ)}.

It follows from ω(S), ω(S ∩Uω) ∈ (0,+∞) and

ω(S ∩Uω) 6 ω(S ∩Uω) + α(ω(S ∩Uω)), ω(S) ≤ ω(S) + α(ω(S)),

that ω(S ∩Uω) ∈ A and ω(S) ∈ B, hence both A and B are nonempty. Here we discuss the different cases.

• If both min A and min B exist, by the definition of ϕ and by β is nondecreasing we have

ϕ(ω(S ∩Uω)) = β(ω(S ∩Uω)) ≤ β(ω(S)) = ϕ(ω(S)),
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• If min A exists but min B does not exist we have ϕ(ω(S ∩Uω)) = β(ω(S ∩Uω)) from (6) if follows that
β(ω(S ∩Uω)) ≤ β(ω(S)) ≤ ω(S), and hence

ϕ(ω(S ∩Uω)) 6
β(ω(S)) + ω(S)

2
= ϕ(ω(S)).

• If both min A and min B do not exist we have

ϕ(ω(S ∩Uω)) =
β(ω(S ∩Uω) + ω(S ∩Uω)

2
≤
β(ω(S)) + ω(S)

2
= ϕ(ω(S)).

• If min A does not exist but min B exists we have

ϕ(ω(S ∩Uω)) =
β(ω(S ∩Uω)) + ω(S ∩Uω)

2
6 β(ω(S)) = ϕ(ω(S))

In all above cases, we have

ϕ(ω(S ∩Uω)) ≤ ϕ(ω(S)). (8)

On account of (7), (8) and since ϕ is L-function, we have that when ε 6 ω(S) < ε + δ1(ε),

ω(T(S ∪Uω)) < ϕ(ω(S ∩Uω)) ≤ ϕ(ω(S)) ≤ ε.

Now we deal with the last case
• If min A does not exist but min B exists, however

ω(S ∩Uω) > β(ω(S)). (9)

Since β(ω(S)) ∈ B we have

ω(S) 6 β(ω(S)) + α(β(ω(S))). (10)

So

β(ω(S)) < ω(S ∩Uω) ≤ ω(S) ≤ β(ω(S)) + α(β(ω(S))) < β(ω(S)) + 2α(β(ω(S))) (11)

From (5) and (11) follows

ω(T(S ∩Uω)) < β(ω(S)) < ω(S ∩Uω) < ω(S), (12)

therefore according to (12), ε ≤ ω(S) < ε + 2α(ε) implies

ω(T(S ∩Uω)) < ω(S ∩Uω) < ε + 2α(ε). (13)

If ω(T(S ∩ Uω)) ≥ ε, by (13) we have ε ≤ ω(S ∩ Uω)) < ε + 2α(ε), hence according to (5) we have
ω(T(S ∩ Uω)) < ε which is a contradiction. So ω(T(S ∩ Uω)) < ε. In a word, we can take δ =
min{δ1(ε), 2α(ε)} > 0, where δ1(ε) and α(ε) appeared in step 3.

Step 5: Now we prove that T̃ : D → D is a Meir-Keeler condensing operator. For ε > 0 and a
nonrelatively weakly compact set S ⊂ D, we treat it in the following two situations.

(i) If ω(S ∩Uω) = 0, i.e., S ∩Uω is a relatively weakly compact set, the weakly sequentially continuity of
T̃ implies that T̃(S∩Uω) is relatively weakly compact and ω(T̃(S∩Uω) = 0 < ε. Then by the definition
of T̃ we have

ω(T̃(S)) = ω(T̃((S ∩Uω) ∪ (S \Uω)))

= ω({T̃(S ∩Uω) ∪ {x0}}) (14)

≤ ω(T̃(S ∩Uω)) < ε.
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(ii) If ω(S ∩Uω) > 0, for x ∈ S ∩Uω we have

(1 − ρ(x))x0 + ρ(x)T(x) ∈ coω{T(S ∩Uω) ∪ {x0}},

since ρ(x) ∈ [0, 1]. Therefore

coω{T̃(S) ∪ {x0}} = coω{T̃(S ∩Uω) ∪ {x0}}

= coω{{(1 − ρ(x))x0 + ρ(x)T(x) : x ∈ S ∩Uω ∪ {x0}}}

⊂ coω{coω{T(S ∩Uω) ∪ {x0}} ∪ {x0}}

= coω{T(S ∩Uω) ∪ {x0}}

and

ω(T̃(S)) = ω({T̃(S) ∪ {x0})

= ω(coω(T̃(S) ∪ {x0}) (15)

6 ω(coω{T(S ∩Uω) ∪ {x0}})

= ω({T(S ∩Uω) ∪ {x0}})

= ω(T(S ∩Uω)).

By (15) and step 4, when ε 6 ω(S) < ε + δ we have

ω(T̃(S) 6 ω(T(S ∩Uω)) < ε.

Hence T̃ is a Meir-Keeler condensing operator.

Step 6: An application of a Theorem 2.7 yields that T̃ has a fixed point in D. Let x∗ be one of these fixed
points, then x∗ ∈ Uω and (1 − ρ(x∗))x0 + ρ(x∗)T(x∗) = x∗ which implies x∗ ∈ Σ and ρ(x∗) = 1. Therefore
T(x∗) = x∗ and T has fixed points in Uω.
Step 7: We prove that the set of all fixed points of T is weakly compact.
Let F = {x ∈ Uω : Tx = x} and ε0 = ω(F). If ε0 > 0, there exists δ′ > 0 such that

ε0 6 ω(F) < ε0 + δ′ ⇒ ω(T(F)) < ε0,

since T is Meir–Keeler condensing. However ε0 = ω(F) = ω(T(F)) < ε0 is a contradiction, hence ε0 = 0
and F is relatively weakly compact. Now taking into account any weakly convergent sequence (xn)n ⊂ F
and xn ⇀ x, we have x ∈ Uω because Uω is closed. The weakly sequentially continuity of T implies that
xn = T(xn) ⇀ T(x) and T(x) = x which means that x ∈ F, then F is weakly sequentially closed. Since Fω is
weakly compact, by the Eberlein-Smulian theorem ([18], Theorem 8.12.4, p. 549), there exists a sequence
(xn)n ⊂ F such that xn ⇀ x, so x ∈ F. Hence Fω = F and F is weakly closed. Therefore, F is weakly compact.
This completes the proof.

Corollary 3.2. Let K be a closed convex set in Banach space E, U be a weakly open set in K and x0 ∈ U. If T : Uω → E
is bounded weakly sequentially continuous and satisfies ω(T(X)) ≤ θ(ω(X)) for each bounded set X ⊂ Uω, θ is a
strictly L-function, moreover Leray–Schauder condition (2) holds, then T has at least one fixed point in Uω, and the
set of all fixed points of T is weakly compact.

Proof. An application of Proposition 2.9 yields that T is a Meir-Keeler condensing operator. The result
follows from Theorem 3.1.

A priori estimate theorem is also obtained.
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Theorem 3.3. Let T : E→ E be a weakly sequentially continuous mapping and Meir-Keeler condensing operator. If
the set

D = {x ∈ E : x = λTx, 0 ≤ λ ≤ 1}

is bounded, then T has fixed point in BR = {x ∈ E : ‖x‖ ≤ R}, where R = sup{‖x‖ : x ∈ D}, especially, R is an
arbitrary positive number when D = ∅.

Proof. For any positive integer k let Bk = {x ∈ E : ‖x‖ < R + 1
k }. Let Uk be a weakly open set in Bk and

0 ∈ Uk. Obviously x , λTx for all x ∈ ∂Uk (where ∂Uk is the weak boundary of Uk in Bk) and λ ∈ [0, 1].
Hence by Theorem 3.1, T has a fixed point xk in Uk, that is, xk = Txk, k ∈ N. Denote S = {x1, x2, . . . , xk, . . . },
then S is relatively weakly compact set by Theorem 3.1. and thus, by the Eberlein Smulian theorem, there
exists a weakly convergent subsequence xki ⇀ x∗. By virtue of the weakly sequentially continuity of T and
‖xk‖ ≤ R + 1

k ,Txki = xki implies that x∗ = Tx∗ and ‖x∗‖ ≤ lim inf ‖xk‖ ≤ R.

4. Hybrid fixed point theorems

4.1. Krasnosel’skii type

In this section we prove the Krasnoselskii hybrid fixed point theorem involving the sum of two operators
in a Banach space.

Theorem 4.1. Let M be a nonempty bounded convex closed subset of a Banach space X and assume that A,B : M→ X
are two weakly sequentially continuous mappings. Suppose that (I−B)−1 is well defined on (I−B)(M) and the following
conditions hold:

1. A(M) ⊆ (I − B)(M),
2. ∀ε ≥ 0,∃δ > 0 such that ω(Sn+1) < ε when ε ≤ ω(Sn) < ε + δ for n = 1, 2, · · · ; here S1 = M and

Sn+1 = co((I − B)−1ASn), for n = 1, 2, · · · ; and ω is an arbitrary measure of weak noncompactness.

Then there exists x ∈M with x = Ax + Bx.

Proof. Notice that A(M) ⊆ (I − B)M, so (I − B)−1AM ⊆ M. This implies S2 ⊆ S1. Proceeding by induction we
obtain Sn+1 ⊆ Sn. If there exists an integer N ≥ 0 such that ω(SN) = 0 and then lim

n→+∞
ω(Sn) = 0. If not, then

ω(Sn) , 0 for all n ≥ 0. Define εn = ω(Sn) and let δn = δn(εn) > 0 be chosen according to assumption (2). By
the definition of εn, we have

εn+1 = ω(Sn+1) < εn.

Since {εn}n≥0 is a positive decreasing sequence of real numbers, there exists r ≥ 0 such that εn → r as n→∞.
We show that r = 0. Suppose the contrary, then there there exists N0 such that

n > N0 =⇒ r ≤ εn < r + δ(r),

then, we get εn+1 < r. This is absurd, so r = 0.Consequently, by condition (6) in the definition of the measure
of weak noncompactness, we deduce that the set S∞ = ∩∞n=1Sn is nonempty, weakly closed convex. Further,
since ω(S∞) ≤ ω(Sn) for all n ≥ 1, then S∞ ∈ kerω and it follows that it is weakly compact. Also, since

(I − B)−1ASn ⊆ (I − B)−1ASn−1 ⊆ co(I − B)−1ASn−1 = Sn ∀n,

we have (I − B)−1AS∞ ⊂ S∞. Next, let us show that (I − B)−1A : S∞ → S∞ is weakly sequentially continuous.
To do so, let (xn)n be a sequence in S∞ which converges weakly to x. Since (I − B)−1AS∞ is relatively weakly
compact, it follows by the Eberlein Smulian’s theorem that there exists a subsequence (xnk ) of (xn)n such
that (I − B)−1A(xnk ) ⇀ y. The weakly sequentially continuity of B leads to B(I − B)−1A(xnk ) ⇀ By. Also from
the equality B(I − B)−1A = −A + (I − B)−1A, it results that

−A(xnk ) + (I − B)−1A(xnk ) ⇀ −A(x) + y
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So, y = (I−B)−1Ax.We claim that (I−B)−1A(xn) ⇀ (I−B)−1A(x). Suppose that this is not the case, then there
exists a subsequence (xϕ1(n))n and a week neighborhood Vω of (I−B)−1A(x) such that (I−B)−1A(xϕ1(n)) < Vω,
for all n ∈ N. On the other hand, we have xϕ1(n) ⇀ x, than arguing as before, we find a subsequence
(xϕ1(ϕ2(n)))n such that (I−B)−1A(xϕ1(ϕ2(n))) converges weakly to (I−B)−1Ax,which is a contradiction and hence
(I − B)−1A : S∞ → S∞ is weakly sequentially continuous. Now, a use of the standard Arino-Gautier-Penot
fixed point theorem gives us the desired result.

Remark 4.2. 1. The measure of weak noncompactness in Theorem 4.1 is arbitrary.
2. Theorem 4.1 is a generalization of Theorem 3.1 in [35].

4.2. Dhage type
We study now the second important type of hybrid fixed point results. Since the product of two sequen-

tially weakly continuous functions is not necessarily sequentially weakly continuous, we will introduce:

Definition 4.3. We will say that the Banach algebra X satisfies condition (P) if

(P)
{

For any sequences {xn} and {yn} in X such that xn ⇀ x and yn ⇀ y,
then xnyn ⇀ xy;

Note that, every finite dimensional Banach algebra satisfies condition (P). Even, if X satisfies condition (P) then
C(K,X) is also Banach algebra satisfying condition (P), where K is a compact Hausdorff space.

Theorem 4.4. Let S be a nonempty, bounded, closed, and convex subset of a Banach algebra X satisfying the condition
(P) and let A : X→ X and B : S→ X be two operators satisfying the following conditions

1. A and B are sequentially weakly continuous,
2. there exist D−functions ϕA and ϕB such that ω(D(Ω) ≤ ϕD(ω(Ω)), for D = A and B for all non weakly

relatively compact set Ω ⊂ X,
3. for ε > 0 there exists a number δ > 0 such that MAϕB(r) + MBϕA(r) + ϕA(r)ϕB(r) < ε for all r ∈ [ε, ε + δ[,

where MB = sup{‖Bx‖; x ∈ S} and MA = sup{‖Ax‖; x ∈ S}
4. A(S) and B(S) are bounded,
5. for all x ∈ S,A(x)B(x) ∈ S.

Then the equation x = A(x)B(x) has at least one solution in S and the set of all fixed points of AB in S is weakly
compact.

Proof. The mapping AB : S → S is well defined. In view of assumption (1), condition (P) guarantees that
AB is weakly sequentially continuous. Let now ε > 0 and let a non weakly relatively compact set Ω ⊂ S.
When ε ≤ ω(Ω) < ε + δ we have (since A(Ω)B(Ω) is bounded)

ω(A(Ω)B(Ω)) ≤ ‖A(Ω)‖ω(B(Ω)) + ω(A(Ω))‖B(Ω)‖ + ω(A(Ω))ω(B(Ω))
≤ ‖A(Ω)‖ϕB(ω(Ω)) + ‖B(Ω)‖ϕA(ω(Ω)) + ϕA(ω(Ω))ϕB(ω(Ω))
< ε. by assumption (3)

Thus, the mapping AB is Meir-Keller condensing. From Theorem 2.7, AB has a fixed point and the set of all
fixed points of this mapping in S is weakly compact.

Theorem 4.5. Let S be a nonempty, bounded, closed, and convex subset of a Banach algebra X. Let A,C : X → X
and B : S→ X be three operators such that

1. A and C are D−Lipschitzians with the D−functions ϕA and ϕC respectively,
2. A is regular on X, i.e., A maps X into the set of all invertible elements of X,
3. B is sequentially weakly continuous and B(S) is relatively weakly compact,
4. ( I−C

A )−1 is sequentially weakly continuous on B(S),
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5. for ε > 0 there exists a number δ > 0 such that MBϕA(r) + ϕC(r) < ε for all r ∈ [ε, ε + δ[, where MB =
sup{‖Bx‖; x ∈ S}.

6. x = AxBy + Cx =⇒ x ∈ S, for all y ∈ S.

Then the equation x = A(x)B(x) + C(x) has at least one solution in S.

Remark 4.6. Recently, some fixed point theorems involving three operators in Banach algebras were established for
completely continuous maps. Because every totally bounded subset of X is relatively weakly compact, Theorem 2.8 in
[11] follows as a sequence of Theorem 4.5. Further, Theorem 4.5 is a generalization of many knows results of Dhage
([12–15]) in the weak topology setting and under weaker contraction condition. In Theorem 4.5, the continuity is not
required.

Proof. Let y be fixed in S and define the mapping

Ny :X→ X,
x 7→ Ny(x) = AxBy + Cx.

Let x1, x2 ∈ X, by assumption (1), we have

‖Ny(x1) −Ny(x2)‖ ≤ ‖Ax1By − Ax2By‖ + ‖Cx1 − Cx2‖

≤ ‖Ax1 − Ax2‖‖By‖ + ‖Cx1 − Cx2‖

≤MBϕA(‖x1 − x2‖) + ϕC(‖x1 − x2‖)
≤ ϕ(‖x1 − x2‖)

where, ϕ(r) = MBϕA(r) +ϕC(r) is aDL−function onR+.Hence Ny is a Meir-Keeler contraction on X and by
Meir-Keeler fixed point theorem, Ny has a unique fixed point, say xy ∈ X. Then, we have

Ny(xy) = AxyBy + Cxy = xy.

By virtue of the hypothesis (6), xy ∈ S. Therefore, the mapping ( I−C
A )−1 is well defined on B(S) and

( I−C
A )−1B(S) ⊂ S. Since ( I−C

A )−1 and B are sequentially weakly continuous, so, by composition we have
( I−C

A )−1B is sequentially weakly continuous. Finally, we claim that ( I−C
A )−1B(S) is relatively weakly compact.

To see this, let {un} be any sequence in S and let

vn = (
I − C

A
)−1Bun.

Since B(S) is relatively weakly compact, there is a renamed subsequence {Bun} weakly converging to an
element w. This fact, together with hypothesis (4) gives that

vn = (
I − C

A
)−1Bun ⇀ (

I − C
A

)−1w.

We infer that ( I−C
A )−1B is sequentially relatively weakly compact. An application of the Eberlein–Šmulian

theorem [9] yields that ( I−C
A )−1B(S) is relatively weakly compact, which gives the result by Theorem 2.5.

5. Application

Let (X, ‖.‖) be a Banach algebra. Let J = [0, 1] the closed and bounded interval in R, the set of all real
numbers. Let E = C(J,X) the Banach algebra of all continuous functions from [0, 1] to X, endowed with
the sup-norm ‖.‖∞, defined by ‖ f ‖∞ = sup{‖ f (t)‖; t ∈ [0, 1]}, for each f ∈ C(J,X). We consider the nonlinear
mixed both quadratic and linearly perturbed functional integral equation:

x(t) = (L1x)(t)
[(

q(t) +

∫ σ(t)

0
p(t, s, x(s), x(λs))ds

)
.u

]
+ (L2x)(t), 0 < λ < 1, (16)
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for all t ∈ J, where u , 0 is a fixed vector of X and the functions L1, q, σ, p,L2, are given, while x = x(t)
is an unknown function. We shall obtain the solution of (16) under some suitable conditions on the
functions involved in (16). Suppose that the functions q, σ, p and the operators L1 and L2 verify the following
conditions:

(H1) L2 : C(J,X)→ C(J,X) is D−Lipschitzian with a D−function ϕL2 with ‖L2x‖∞ < 1.
(H2) σ : J→ J is a continuous and nondecreasing function.
(H3) q : J→ R is a continuous function.
(H4) The operator L1 : C(J,X)→ C(J,X) is such that

(a) L1 is D−Lipschitzian with a D−function ϕL1 ,
(b) L1 is regular on C(J,X),
(c) ( I

L1
)−1 is well defined on C(J,X),

(d) ( I
L1

)−1 is sequentially weakly continuous on C(J,X).
(H5) The function p : J × J × X × X → R is continuous such that for arbitrary fixed s ∈ J and x, y ∈ X, the

partial function t→ p(t, s, x, y) is continuous uniformly for (s, x, y) ∈ J × X × X.
(H6) There exists r0 > 0 such that

(a) |p(t, s, x, y)| ≤ r0 − ‖q‖∞ for each t, s ∈ J; x, y ∈ X such that ‖x‖ ≤ r0 and ‖y‖ ≤ r0,

(b) ‖L1x‖∞ ≤ (1 − ‖L2x‖∞
r0

) 1
‖u‖ for each x ∈ C(J,X),

(c) for all ε > 0, there exists δ > 0 such that r0‖u‖ϕL1 (r) + ϕL2 (r) < ε for all r ∈ [ε, ε + δ[.

Theorem 5.1. Under assumptions (H1)− (H6), Eq. (16) has at least one solution x = x(t) which belongs to the space
C(J,X).

Proof. Let us define the subset S of C(J,X) by

S = {x ∈ C(J,X); ‖x‖∞ ≤ r0}.

Obviously S is nonempty, convex and closed. Let us consider three operators A,B and C defined on C(J,X)
by

(Ax)(t) = (L1x)(t),

(Bx)(t) =

(
q(t) +

∫ σ(t)

0
p(t, s, x(s), x(λs))

)
.u, 0 < λ < 1,

(Cx)(t) = (L2x)(t).

We shall prove that the operators A,B and C satisfy all the conditions of Theorem 4.5.
(i) From assumption (H1) and (H4)(a),A and C are D−Lipschitzian with D−functions ϕA and ϕC.
(ii) From assumption (H4)(b), it follows that A is regular on C(J,X).
(iii) Now, we show that B is sequentially weakly continuous on S. Firstly, we verify that if x ∈ S, then
Bx ∈ C(J,X). Let {tn} be any sequence in J converging to a point t in J. Then

‖(Bx)(tn) − (Bx)(t)‖ ≤

∥∥∥∥∥∥
∫ σ(tn)

0
p(tn, s, x(s), x(λs))ds −

∫ σ(t)

0
p(t, s, x(s), x(λs))ds

∥∥∥∥∥∥ .‖u‖
≤

[∫ σ(tn)

0
|p(tn, s, x(s), x(λs)) − p(t, s, x(s), x(λs))|ds

]
‖u‖

+

[∫ σ(t)

σ(tn)
|p(t, s, x(s), x(λs))|ds

]
‖u‖

≤

[∫ 1

0
|p(tn, s, x(s), x(λs)) − p(t, s, x(s), x(λs))|ds

]
‖u‖

+ (r0 − ‖q‖∞)|σ(tn) − σ(t)|‖u‖.



S. Hadj Amor, A. Traiki / Filomat 35:7 (2021), 2175–2188 2186

Since tn → t, so, (tn, s, x(s), x(λs))→ (t, s, x(s), x(λs)), for all s ∈ J. Taking into account the hypothesis (H5),we
obtain

p(tn, s, x(s), x(λs))→ p(t, s, x(s), x(λs))

in R. Moreover, the use of assumption (H6) leads to

|p(tn, s, x(s), x(λs)) − p(t, s, x(s), x(λs))| ≤ 2(r0 − ‖q‖∞)

for all t, s ∈ J, λ ∈ (0, 1). Consider {
ϕ : J→ R

s→ ϕ(s) = 2(r0 − ‖q‖∞)

Clearly ϕ ∈ L1(J). Therefore, from the dominated convergence theorem and assumption (H2), we obtain
(Bx)(tn) → (Bx)(t) in X. It follows that Bx ∈ C(J,X). Next, we prove B is sequentially weakly continuous on
S. Let {xn} be any sequence in S such that xn ⇀ x ∈ S. So, from assumptions (H5) − (H6) and the dominated
convergence theorem, we get

lim
n→∞

∫ 1

0
p(tn, s, x(s), x(λs)) =

∫ 1

0
p(t, s, x(s), x(λs)).

Which implies that limn→∞(Bxn)(t) = (Bx)(t) in X. Since (Bxn)n is bounded by r0‖u‖, then by Theorem , we
obtain that Bxn → Bx. We conclude that B is sequentially weakly continuous on S. We show that B(S) is
relatively weakly compact. By definition,

B(S) = {B(x), ‖x‖∞ ≤ r0}

For all t ∈ J, we have B(S)(t) = {B(x)(t), ‖x‖∞ ≤ r0}. We need now to show that B(S)(t) is sequentially
weakly relatively compact in X. To see this, let {xn} be any sequence in S, we have (Bxn)(t) = rn(t).u, where

rn(t) = q(t) +
∫ 1

0 p(t, s, xn(s), xn(λs))ds. Since {rn(t)} is a real and bounded sequence, then there is a renamed
subsequence such that rn(t) → r(t) in R, and, consequently (Bxn)(t) → (q(t) + r(t)).u in X. We conclude that
B(S)(t) is sequentially relatively compact in X, then B(S)(t) is sequentially relatively weakly compact in X.
We prove now that B(S) is weakly equicontinuous on J. If we take ε > 0, x ∈ S, x∗ ∈ X∗, t, t′ ∈ J such that t ≤ t′

and t′ − t ≤ ε. Then
|x∗((Bx)(t) − (Bx)(t′))| ≤ [ω(p, ε) + (r0 − ‖q‖∞)ω(σ, ε)]‖x∗(u)‖,

where
ω(p, ε) = sup{|p(t, s, x, y) − p(t′, s, x, y)|; t, t′, s ∈ J; |t − t′| ≤ ε; x, y ∈ Br0 }

ω(σ, ε) = sup{|σ(t) − σ(t′)|; t, t′ ∈ J; |t − t′| ≤ ε}.

Taking into account the hypothesis (H5) and in view of the uniform continuity of the function σ on the set
J, it follows that ω(p, ε) → 0 and ω(σ, ε) → 0 as ε → 0. An application of the Arzelà–Ascoli theorem [17],
we conclude that B(S) is sequentially weakly relatively compact in X. Again an application of the result of
Eberlein–Šmulian theorem [10] yields that B(S) is relatively weakly compact.
(iv) It is clear that hypothesisH1,H4(c) andH4(d) imply that ( I−C

A )−1 is sequentially weakly continuous on
B(S).
(v) Finally, we need to prove the hypotheses (6) of Theorem 4.5. To see this, let x ∈ C(J,X) and y ∈ S such
that x = AxBy + Cx, or, equivalently for all t ∈ J,

x(t) = L2x(t) + (L1x)(t)(By)(t).

But, for all t ∈ J, we have
‖x(t)‖ ≤ ‖x(t) − L2x(t)‖ + ‖L2x(t)‖

≤ ‖(L1x)(t)(By)(t)‖ + ‖L2x(t)‖
≤ ‖(L1x)‖∞r0‖u‖ + ‖L2x‖∞
≤ r0.
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From the last inequality and taking the supremum over t, we obtain ‖x‖∞ ≤ r0, and, consequently x ∈ S.
We conclude that the operators A,B and C satisfy all the requirements of Theorem 4.5. Thus, an application
of it yields that equation (16) has a solution in the space C(J,X).

Example 5.2. Consider the Banach algebra E = C([0, 1],R) of all continuous real-valued on J = [0, 1] with norm
‖x‖∞ = supt∈[0,1] |x(t)|. In this case X = R. We consider the following nonlinear integral equation

x(t) = f (t, x(t)) +

(
q(t) +

∫ t

0
p(t, s, x(s), x(λs))ds

)
, t ∈ J, (17)

with f (t, x) is given by

f (t, x) =

{
ln(1 + x

4 ), if − 3 ≤ x ≤ 3
ln 7

4 , otherwise

To show that equation (17) has a solution in E, we will verify that all conditions of Theorem 5.1 are satisfied. If we
compare equation (16) with equation (17), we obtain a = 1,u = 1,L1 = Id,L2(t, x(t)) = f (t, x(t)) and σ(t) = t. Let
x, y ∈ R+, then by definition of the function f , we obtain

| f (t, x) − f (t, y)| = |ln(1 +
x
4

) − ln(1 +
y
4

)|

= ln

1 + x
4

1 +
y
4


= ln

(
1 +

x − y
4 + y

)
≤ ln

(
1 +
|x − y|
4 + y

)
≤ ϕ(|x − y|)

for all t ∈ [0, 1], where ϕ(r) = ln(1 + r) is aDL−function on R+. If now x, y ∈ R \ (−3, 3), then also we have

| f (t, x) − f (t, y)| = 0 ≤ ϕ(|x − y|)

for all t ∈ [0, 1], where ϕ(r) = ln(1 + r) and that ϕ ∈ DL. So, all the conditions of Theorem 5.1 are satisfied.
Consequently, the equation (17) has a solution defined on [0, 1].
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