Filomat 35:7 (2021), 2165–2173 https://doi.org/10.2298/FIL2107165H

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Some Classical Inequalities and their Applications

Mualla Birgül Huban^a, Mehmet Gürdal^b, Havva Tilki^b

^a Isparta University of Applied Sciences, Isparta, Turkey ^bSuleyman Demirel University, Department of Mathematics, 32260, Isparta, Turkey

Abstract. In this paper, we define analogies of classical Hölder-McCarthy and Young type inequalities in terms of the Berezin symbols of operators on a reproducing kernel Hilbert space $\mathcal{H} = \mathcal{H}(\Omega)$. These inequalities are applied in proving of some new inequalities for the Berezin number of operators. We also define quasi-paranormal and absolute-*k*-quasi paranormal operators and study their properties by using the Berezin symbols.

1. Introduction

Let $\mathcal{H} = \mathcal{H}(\Omega)$ be a Hilbert space of complex-valued functions on some set Ω such that $f \to f(\lambda)$ is a continuous functional (evaluation functional) for any λ in Ω . Then, according to the Riesz's representation theorem there exists uniquely $k_{\lambda} \in \mathcal{H}$ such that

$$f(\lambda) = \langle f, k_\lambda \rangle$$

for all $f \in \mathcal{H}$. The function $k_{\lambda}(z), \lambda \in \Omega$, is called the reproducing kernel of the space \mathcal{H} , and $\widehat{k}_{\lambda} := \frac{k_{\lambda}}{\|k_{\lambda}\|}$ is called the normalized reproducing kernel in \mathcal{H} (see [2]). The space \mathcal{H} with the reproducing kernels $k_{\lambda}, \lambda \in \Omega$, is called reproducing kernel Hilbert space (RKHS). For a bounded linear operator A (i.e., for $A \in \mathcal{B}(\mathcal{H})$, the Banach algebra of all bounded linear operators on \mathcal{H}) its Berezin symbol \widetilde{A} is defined by (Berezin [6, 7])

$$\widetilde{A}(\lambda):=\left\langle A\widehat{k}_{\lambda},\widehat{k}_{\lambda}\right\rangle ,\ \lambda\in\Omega.$$

The Berezin number ber (*A*) of operator *A* is the following number:

ber (A) :=
$$\sup_{\lambda \in \Omega} \left| \widetilde{A}(\lambda) \right|$$
.

Received: 07 July 2020; Accepted: 20 December 2020

Email addresses: muallahuban@isparta.edu.tr (Mualla Birgül Huban), gurdalmehmet@sdu.edu.tr (Mehmet Gürdal),

²⁰¹⁰ Mathematics Subject Classification. Primary 47A63; Secondary 26D15, 47B10

Keywords. Reproducing kernel Hilbert space, Berezin symbol, Berezin number, quasi-paranormal operator, Hölder-McCarthy type inequality, Young type inequality

Communicated by Fuad Kittaneh

This paper was supported by TÜBA through Young Scientist Award Program (TÜBA-GEBIP/2015).

havvatilki32@gmail.com (Havva Tilki)

Since $|\widetilde{A}(\lambda)| \leq ||A||$ (by the Cauchy-Schwarz inequality) for all $\lambda \in \Omega$, the Berezin number is a finite number and ber $(A) \leq ||A||$. Recall that

 $W(A) := \{ \langle Ax, x \rangle : x \in \mathcal{H} \text{ and } ||x|| = 1 \}$

is the numerical range of operator A and

$$w(A) := \sup \{ |\langle Ax, x \rangle| : x \in \mathcal{H} \text{ and } ||x|| = 1 \}$$
$$= \sup \{ |\mu| : \mu \in W(A) \}$$

is the numerical radius of A (for more information, see [1, 20–22]). It is well known that

Ber $(A) \subset W(A)$ and ber $(A) \leq w(A)$

for any $A \in \mathcal{B}(\mathcal{H})$. More information about ber (*A*) and relations between ber (*A*), *w* (*A*) and ||A|| can be found in Karaev [16, 18], and also in [3–5, 9–15, 17, 19, 23–25].

In this paper, we will use some known operator inequalities to prove some new inequalities for the Berezin number of operators acting on the RKHS $\mathcal{H} = \mathcal{H}(\Omega)$. Some other related questions also will be studied. In general, the present paper is motivated by the paper of Garayev [16], where the McCarthy, Hölder-McCarthy and Kantorovich operator inequalities were extensively used to get some new inequalities for the Berezin number of operators and their powers. Recall that for any positive operator A (i.e., $\langle Ax, x \rangle \ge 0$ for any $x \in \mathcal{H}$, shortly $A \ge 0$), there exists a unique positive operator R such that $R^2 = A$ (denoted by $R = A^{\frac{1}{2}}$). An operator $T \in \mathcal{B}(\mathcal{H})$ can be decomposed into T = UP, where U is a partial isometry and $P = |T| := (T^*T)^{\frac{1}{2}}$ (moduli of operator T) with ker (T) = ker (P) and the last condition uniquely determines U and P of the polar decomposition T = UP (see Furuta [8]). In general, we will refer to the book of Furuta [8] for main definitions and notations.

2. Hölder-McCarthy Type Inequalities and Berezin number

In this section, by using the Hölder-McCarthy inequality, we prove some inequalities for the Berezin number of some operators on the RKHS \mathcal{H} .

Theorem 2.1. Let $A \in \mathcal{B}(\mathcal{H})$ be a positive operator. Then :

1) ber $(A^{\mu}) \ge$ ber $(A)^{\mu}$ for any $\mu > 1$.

2) ber $(A^{\mu}) \leq ber (A)^{\mu}$ for any $\mu \in [0, 1]$.

3) If A is invertible, then ber $(A^{\mu}) \ge ber (A)^{\mu}$ for any $\mu < 0$.

Proof. First we prove 2). Indeed, assume that 2) holds for some $\alpha, \beta \in [0, 1]$. Then we only have to prove 2) holds for $\frac{\alpha+\beta}{2} \in [0, 1]$ by continuity of an operator. In fact, we have for any $\lambda \in \Omega$ that

$$\begin{split} & \left| \left\langle A^{\frac{\alpha+\beta}{2}} \widehat{k}_{\lambda}, \widehat{k}_{\lambda} \right\rangle \right|^{2} \\ &= \left| \left\langle A^{\frac{\alpha}{2}} \widehat{k}_{\lambda}, A^{\frac{\beta}{2}} \widehat{k}_{\lambda} \right\rangle \right|^{2} (by \ Cauchy-Schwarz \ inequality) \\ &\leq \left\langle A^{\alpha} \widehat{k}_{\lambda}, \widehat{k}_{\lambda} \right\rangle \left\langle A^{\beta} \widehat{k}_{\lambda}, \widehat{k}_{\lambda} \right\rangle (by \ assumption) \\ &\leq \left\langle A \widehat{k}_{\lambda}, \widehat{k}_{\lambda} \right\rangle^{\alpha+\beta} , \end{split}$$

so that $\widetilde{A^{\frac{\alpha+\beta}{2}}}(\lambda) \leq \widetilde{A}(\lambda)^{\frac{\alpha+\beta}{2}}$ holds for $\frac{\alpha+\beta}{2} \in [0,1]$. This implies the desired inequality ber $(A^{\mu}) \leq \text{ber}(A)^{\mu}$ for any $\mu \in [0,1]$.

1) Let $\mu > 1$. Then $\frac{1}{\mu} \in [0, 1]$. For any $\lambda \in \Omega$

$$\begin{split} \left\langle A\widehat{k}_{\lambda},\widehat{k}_{\lambda}\right\rangle &= \left\langle A^{\mu\frac{1}{\mu}}\widehat{k}_{\lambda},\widehat{k}_{\lambda}\right\rangle \\ &\leq \left\langle A^{\mu}\widehat{k}_{\lambda},\widehat{k}_{\lambda}\right\rangle^{\frac{1}{\mu}} \ by \ 2), \end{split}$$

hence $\langle A^{\mu} \widehat{k}_{\lambda}, \widehat{k}_{\lambda} \rangle \geq \langle A \widehat{k}_{\lambda}, \widehat{k}_{\lambda} \rangle^{\mu}$ *for any* $\mu > 1$ *, which shows that* ber $(A^{\mu}) \geq \text{ber}(A)^{\mu}$ *for any* $\mu > 1$ *, as desired.* 3) *Since* A *is invertible, we have the following for any* $\lambda \in \Omega$ *that*

$$1 = \left\|\widehat{k}_{\lambda}\right\|^{4} = \left|\left\langle A^{\frac{1}{2}}\widehat{k}_{\lambda}, A^{-\frac{1}{2}}\widehat{k}_{\lambda}\right\rangle\right|^{2}$$

$$\leq \left\|A^{\frac{1}{2}}\widehat{k}_{\lambda}\right\|^{2} \left\|A^{-\frac{1}{2}}\widehat{k}_{\lambda}\right\|^{2}$$

$$= \left\langle A\widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle \left\langle A^{-1}\widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle$$

$$= \widetilde{A}(\lambda) \widetilde{A^{-1}}(\lambda),$$

and hence

 $1 \le \widetilde{A}(\lambda) \widetilde{A^{-1}}(\lambda) \text{ for any } \lambda \in \Omega, \tag{1}$

which gives us

$$\operatorname{ber}(A)\operatorname{ber}(A^{-1}) \ge 1,$$

or equivalently

$$\operatorname{ber}\left(A^{-1}\right) \geq \operatorname{ber}\left(A\right)^{-1}.$$

Case: $\mu \in (-\infty, -1)$ *. Then we have the following for any* $\lambda \in \Omega$ *that*

$$\begin{split} \left\langle A^{\mu}\widehat{k}_{\lambda},\widehat{k}_{\lambda}\right\rangle &= \left\langle A^{-|\mu|}\widehat{k}_{\lambda},\widehat{k}_{\lambda}\right\rangle \\ &\geqslant \left\langle A^{-1}\widehat{k}_{\lambda},\widehat{k}_{\lambda}\right\rangle^{\mu} \ (by \ 1) \ since \ \left|\mu\right| > 1) \\ &\geqslant \left\langle A\widehat{k}_{\lambda},\widehat{k}_{\lambda}\right\rangle^{-|\mu|} \ (by \ (1)) \\ &= \left\langle A\widehat{k}_{\lambda},\widehat{k}_{\lambda}\right\rangle^{\mu} \end{split}$$

which implies that $\operatorname{ber}(A^{\mu}) \ge \operatorname{ber}(A)^{\mu}$, as desired.

Case: $\mu \in [-1, 0)$ *. For every* $\lambda \in \Omega$ *we have*

$$\begin{split} \widetilde{A}^{\mu}\left(\lambda\right) &= \left\langle A^{\mu}\widehat{k}_{\lambda}, \widehat{k}_{\lambda} \right\rangle = \left\langle A^{-|\mu|}\widehat{k}_{\lambda}, \widehat{k}_{\lambda} \right\rangle \\ &\geq \left\langle A^{|\mu|}\widehat{k}_{\lambda}, \widehat{k}_{\lambda} \right\rangle^{-1} (by \ (1)) \\ &\geq \left\langle A\widehat{k}_{\lambda}, \widehat{k}_{\lambda} \right\rangle^{-|\mu|} = \left\langle A\widehat{k}_{\lambda}, \widehat{k}_{\lambda} \right\rangle^{\mu} = \left(\widetilde{A} \left(\lambda\right)\right)^{\mu}, \end{split}$$

and the last inequality follows by 2) since $|\mu| \in [0, 1]$ and taking inverses of both sides. The theorem is proved. \Box

Next result proves the equivalence of Hölder-McCarthy type inequality and Young type inequality.

Theorem 2.2. For a positive operator $A \in \mathcal{B}(\mathcal{H})$ and $\mu \in [0,1]$ the following inequalities are equivalent: Hölder-McCarthy type inequality:

$$\widetilde{A}(\lambda)^{\mu} \ge \widetilde{A^{\mu}}(\lambda) \text{ for all } \lambda \in \Omega.$$
(2)

Young type inequality:

$$[\mu A + I - \mu]^{\sim} \geqslant \overline{A^{\mu}}.$$
(3)

Proof. Let us define a scalar function

 $f(t) := \mu t + 1 - \mu - t^{\mu}$

for positive numbers *t* and $\mu \in [0, 1]$. Then it is easy to see that *f*(*t*) is a nonnegative convex function with the minimum value *f*(1) = 0, so we have

$$\mu a + 1 - \mu \ge a^{\mu} \tag{4}$$

for positive *a* and $\mu \in [0, 1]$.

(2) \Rightarrow (3). Replacing *a* by $\widetilde{A}(\lambda) \ge 0$ and $\mu \in [0, 1]$ in (4), we obtain

 $\mu \widetilde{A}(\lambda) + 1 - \mu \ge A(\lambda)^{\mu} \ge \widetilde{A^{\mu}}(\lambda)$ by (2),

so we have (3).

(3) \Rightarrow (2). We may assume $\mu \in (0, 1]$. In (3), replace A by $k^{\frac{1}{\mu}}A$ for a positive number k, then

$$\mu k^{\frac{1}{\mu}} \widetilde{A}(\lambda) + 1 - \mu \ge k \widetilde{A^{\mu}}(\lambda) \tag{5}$$

for $\lambda \in \Omega$ by (3). We put $k = \widetilde{A}(\lambda)^{-\mu}$ in (5) if $\widetilde{A}(\lambda) \neq 0$, then we have

$$\mu \widetilde{A}\left(\lambda\right)^{-1}\widetilde{A}\left(\lambda\right)+1-\mu \geq \widetilde{A}\left(\lambda\right)^{-\mu}\widetilde{A^{\mu}}\left(\lambda\right),$$

that is $A(\lambda)^{\mu} \ge \widetilde{A^{\mu}}(\lambda)$ for all $\lambda \in \Omega$ and we get (2). If $\widetilde{A}(\lambda) = 0$, then it means that $A^{\frac{1}{2}}\widehat{k_{\lambda}} = 0$, so $A^{\mu}\widehat{k_{\lambda}} = 0$ for $\mu \in (0, 1]$ by the induction and continuity of A, and thus we have (2). The theorem is proved. \Box

Proposition 2.3. Let $A \in \mathcal{B}(\mathcal{H})$ be a positive invertible operator and $B \in \mathcal{B}(\mathcal{H})$ be an invertible operator. Then for any real number μ , we have

ber
$$((BAB^*)^{\mu}) = ber \left(BA^{\frac{1}{2}} \left(A^{\frac{1}{2}} B^* BA^{\frac{1}{2}} \right)^{\mu-1} A^{\frac{1}{2}} B^* \right).$$
 (6)

Proof. Let $BA^{\frac{1}{2}} = UP$ be the polar decomposition of $BA^{\frac{1}{2}}$, where *U* is unitary and $P = |BA^{\frac{1}{2}}|$. Then it is easy to see that:

$$(BAB^*)^{\mu} = (UP^2U^*)^{\mu} = BA^{\frac{1}{2}}P^{-1}P^{2\mu}P^{-1}A^{\frac{1}{2}}B^{\mu}$$
$$= BA^{\frac{1}{2}}(A^{\frac{1}{2}}B^*BA^{\frac{1}{2}})^{\mu-1}A^{\frac{1}{2}}B^*.$$

Now (6) is immediate from this equality. \Box

3. Paranormal operators and related problems

Recall that an operator *A* on a Hilbert space *H* is called paranormal if $||A^2x|| \ge ||Ax||^2$ for every unit vector $x \in H$.

Definition 3.1. We will say that A is a quasi-paranormal operator on a RKHS $\mathcal{H} = \mathcal{H}(\Omega)$, if $\left\|A^2 \widehat{k_\lambda}\right\| \ge \left\|A \widehat{k_\lambda}\right\|^2$ for any $\lambda \in \Omega$.

Definition 3.2. An operator T belongs to class $\widetilde{\mathcal{A}}$ if $|\widetilde{T^2}| \ge |\widetilde{T}|^2$.

Definition 3.3. For each k > 0, an operator *T* is absolute-*k*-quasi-paranormal if

$$\left\| |T|^{k} \, \widehat{Tk_{\lambda}} \right\| \ge \left\| T\widehat{k_{\lambda}} \right\|^{k+1} \tag{7}$$

for every $\lambda \in \Omega$.

It follows from these definitions that: (a) If *A* is quasi-paranormal, then

$$\operatorname{ber}\left(\left|A^{2}\right|^{2}\right) \geq \operatorname{ber}\left(\left|A\right|^{2}\right)^{2};$$

(b) If *A* belongs to class $\widetilde{\mathcal{A}}$, then

$$\operatorname{ber}\left(\left|A^{2}\right|\right) \geq \operatorname{ber}\left(\left|A\right|^{2}\right);$$

(c) If *A* is absolute-*k*-quasi-paranormal, then

 $\operatorname{ber}(||A|^{k}A|^{2}) \ge \operatorname{ber}(|A|)^{k+1}.$

In this section, to prove some inequalities for the Berezin number of such operators, we need to other properties of these operators.

Proposition 3.4. Every operator in $\widetilde{\mathcal{A}}$ is a quasi-paranormal operator on a RKHS.

Proof. Suppose $A \in \widetilde{\mathcal{A}}$, i.e.,

$$\left|\widetilde{A^2}\right| \ge \left|\widetilde{A}\right|^2. \tag{8}$$

Then for every $\lambda \in \Omega$, we have $|A^2|(\lambda) \ge |A|^2(\lambda)$, and therefore it follows from the proof of Theorem 2.1 that

$$\begin{split} \left\| A^{2}\widehat{k_{\lambda}} \right\|^{2} &= \left\langle A^{2}\widehat{k_{\lambda}}, A^{2}\widehat{k_{\lambda}} \right\rangle = \left\langle \left(A^{2}\right)^{*}A^{2}\widehat{k_{\lambda}}, \widehat{k_{\lambda}} \right\rangle \\ &= \left\langle \left|A^{2}\right|^{2}\widehat{k_{\lambda}}, \widehat{k_{\lambda}} \right\rangle \\ &\geq \left\langle \left|A^{2}\right|\widehat{k_{\lambda}}, \widehat{k_{\lambda}} \right\rangle^{2} \text{ (see the proof of Theorem 2.1, 1))} \\ &\geq \left\langle \left|A\right|^{2}\widehat{k_{\lambda}}, \widehat{k_{\lambda}} \right\rangle^{2} \text{ (by (8))} \\ &= \left\| A\widehat{k_{\lambda}} \right\|^{4}. \end{split}$$

Hence

 $\left\|A^2 \widehat{k}_{\lambda}\right\| \geq \left\|A \widehat{k}_{\lambda}\right\|^2$

for every $\lambda \in \Omega$, so that *A* is quasi-paranormal, which proves the proposition. \Box

Definition 3.5. For each k > 0, we say that an operator A belongs to class $\widetilde{\mathcal{A}}(k)$ if

$$\left(\left(A^* |A|^{2k} A\right)^{\frac{1}{k+1}}\right)^{\sim} \ge \widetilde{|A|^2}.$$

The proof of Theorem 2.1 allows us also prove the following.

Proposition 3.6. (a) Every quasi-paranormal operator on a RKHS $\mathcal{H} = \mathcal{H}(\Omega)$ is an absolute-k-quasi-paranormal operator for $k \ge 1$.

(b) For each k > 0, every class $\widetilde{\mathcal{A}}(k)$ operator is an absolute-k-quasi-paranormal operator.

Proof. (a) Suppose that *A* is a quasi-paranormal operator on a RKHS $\mathcal{H} = \mathcal{H}(\Omega)$. Then, for any $\lambda \in \Omega$ and $k \ge 1$, we have

$$\begin{split} \left\| |A|^{k} \widehat{Ak_{\lambda}} \right\|^{2} &= \left\langle |A|^{2k} \widehat{Ak_{\lambda}}, \widehat{Ak_{\lambda}} \right\rangle \\ &\geq \left\langle |A|^{2} \widehat{Ak_{\lambda}}, \widehat{Ak_{\lambda}} \right\rangle^{k} \left\| \widehat{Ak_{\lambda}} \right\|^{2(1-k)} \text{ (see the proof of Theorem 2.1, 1))} \\ &= \left\| A^{2} \widehat{k_{\lambda}} \right\|^{2k} \left\| \widehat{Ak_{\lambda}} \right\|^{2(1-k)} \\ &\geq \left\| \widehat{Ak_{\lambda}} \right\|^{4k} \left\| \widehat{Ak_{\lambda}} \right\|^{2(1-k)} \text{ (by quasi-paranormality of } A) \\ &\geq \left\| \widehat{Ak_{\lambda}} \right\|^{2(k+1)}, \end{split}$$

and hence

$$\left\|\left|A\right|^{k} \widehat{Ak_{\lambda}}\right\| \geq \left\|\widehat{Ak_{\lambda}}\right\|^{k+1}$$

for all $\lambda \in \Omega$ and $k \ge 1$, so that *A* is absolute-*k*-quasi-paranormal operator for $k \ge 1$.

(b) Let $A \in \mathcal{A}(k)$ for k > 0, that is

$$\left(A^* |A|^{2k} A\right)^{\frac{1}{k+1}} \widetilde{} \ge |A|^2 \text{ for } k > 0.$$
 (9)

Then for any $\lambda \in \Omega$,

$$\begin{split} \left\| |A|^{k} \widehat{Ak_{\lambda}} \right\|^{2} &= \left\langle A^{*} |A|^{2k} \widehat{Ak_{\lambda}}, \widehat{k_{\lambda}} \right\rangle \\ &\geq \left\langle \left(A^{*} |A|^{2k} A \right)^{\frac{1}{k+1}} \widehat{k_{\lambda}}, \widehat{k_{\lambda}} \right\rangle^{k+1} \\ &\geq \left\langle |A|^{2} \widehat{k_{\lambda}}, \widehat{k_{\lambda}} \right\rangle^{k+1} \text{ (by (9))} \\ &= \left\| \widehat{Ak_{\lambda}} \right\|^{2(k+1)}, \end{split}$$

from which

$$\left\| |A|^k \widehat{Ak_\lambda} \right\| \ge \left\| \widehat{Ak_\lambda} \right\|^{k+1}$$
 for all $\lambda \in \Omega$,

so that *A* is absolute-*k*-quasi-paranormal operator for k > 0. This completes the proof. \Box

As further extension of previous results, we prove the following result.

2171

Theorem 3.7. Let $A \in \mathcal{B}(\mathcal{H}(\Omega))$ be an absolute-k-quasi-paranormal operator for k > 0. Then for every $\lambda \in \Omega$,

$$F(\ell) = \left\| |A|^{\ell} \widehat{Ak_{\lambda}} \right\|^{\frac{1}{\ell+1}}$$

is increasing for $\ell > k > 0$ *, and the following inequality holds:*

$$F(\ell) \geq \left\| \widehat{Ak_{\lambda}} \right\|,$$

i.e., *A* is absolute- ℓ -quasi-paranormal operator for $\ell \ge k > 0$.

Proof. Assume that *A* is an absolute-*k*-quasi-paranormal operator on $\mathcal{H} = \mathcal{H}(\Omega)$ for k > 0, i.e.,

$$\left\||A|^{k} \widehat{Ak_{\lambda}}\right\| \ge \left\|\widehat{Ak_{\lambda}}\right\|^{k+1} \tag{10}$$

for every $\lambda \in \Omega$. Clearly, (10) holds if and only if

$$F(k) = \left\| \left| A \right|^k \widehat{Ak_{\lambda}} \right\|^{\frac{1}{k+1}} \ge \left\| \widehat{Ak_{\lambda}} \right\|$$

for any $\lambda \in \Omega$. Then for every $\lambda \in \Omega$ and any ℓ such that $\ell \ge k > 0$, we have

$$F(\ell) = \left\| |A|^{\ell} \widehat{Ak_{\lambda}} \right\|^{\frac{1}{\ell+1}} = \left\langle |A|^{2\ell} \widehat{Ak_{\lambda}}, \widehat{k_{\lambda}} \right\rangle^{\frac{1}{2(\ell+1)}}$$

$$\geq \left\{ \left\langle |A|^{2k} \widehat{Ak_{\lambda}}, \widehat{Ak_{\lambda}} \right\rangle^{\frac{1}{k}} \left\| \widehat{Ak_{\lambda}} \right\|^{2\left(1-\frac{1}{k}\right)} \right\}^{\frac{1}{2(\ell+1)}}$$

$$\geq \left\{ \left\| \widehat{Ak_{\lambda}} \right\|^{\frac{2\ell(k+1)}{k}} \left\| \widehat{Ak_{\lambda}} \right\|^{2\left(1-\frac{1}{k}\right)} \right\}^{\frac{1}{2(\ell+1)}} \text{ (by (10))}$$

$$= \left\| \widehat{Ak_{\lambda}} \right\|,$$

and hence

$$F(\ell) = \left\| |A|^{\ell} \widehat{Ak_{\lambda}} \right\|^{\frac{1}{\ell+1}} \ge \left\| \widehat{Ak_{\lambda}} \right\|$$
(11)

for every $\lambda \in \Omega$ and $\ell \ge k$, so that *A* is absolute- ℓ -quasi-paranormal for $\ell \ge k > 0$.

Now we prove that, $F(\ell)$ is increasing for $\ell \ge k > 0$. Indeed, for any $\lambda \in \Omega$, *m* and ℓ such that $m \ge \ell \ge k > 0$, we have:

$$\begin{split} F(m) &= \left\| |A|^m \widehat{Ak_{\lambda}} \right\|^{\frac{1}{m+1}} = \left\langle |A|^{2m} \widehat{Ak_{\lambda}}, \widehat{Ak_{\lambda}} \right\rangle^{\frac{1}{2(m+1)}} \\ &= \left\{ \left\langle |A|^{2\ell} \widehat{Ak_{\lambda}}, \widehat{Ak_{\lambda}} \right\rangle^{\frac{m}{\ell}} \left\| \widehat{Ak_{\lambda}} \right\|^{2\left(1-\frac{m}{\ell}\right)} \right\}^{\frac{1}{2(m+1)}} \\ &= \left\{ \left\| |A|^{\ell} \widehat{Ak_{\lambda}} \right\|^{\frac{2m}{\ell}} \left\| \widehat{Ak_{\lambda}} \right\|^{2\left(1-\frac{m}{\ell}\right)} \right\}^{\frac{1}{2(m+1)}} \\ &\geq \left\{ \left\| |A|^{\ell} \widehat{Ak_{\lambda}} \right\|^{\frac{2m}{\ell}} \left\| |A|^{\ell} \widehat{Ak_{\lambda}} \right\|^{\frac{2}{\ell+1}\left(1-\frac{m}{\ell}\right)} \right\}^{\frac{1}{2(m+1)}} \text{ (by (11))} \\ &= \left\| |A|^{\ell} \widehat{Ak_{\lambda}} \right\|^{\frac{1}{\ell+1}} = F(\ell) \,, \end{split}$$

hence $F(m) \ge F(\ell)$, that is $F(\ell)$ is increasing for $\ell \ge k > 0$. This proves the theorem. \Box

Corollary 3.8. $F(\ell) \ge \sqrt{\operatorname{ber}(|A|^2)}$ for $\ell \ge k > 0$.

The following lemma is well known (see, for instance, [8]).

Lemma 3.9. Let a and b be positive real numbers. Then,

$$a^{\lambda}b^{\mu} \leq \lambda a + \mu b$$

holds for $\lambda > 0$ and $\mu > 0$ such that $\lambda + \mu = 1$.

Our next result characterizes absolute-*k*-quasi-paranormal operators *A* on the RKHS $\mathcal{H} = \mathcal{H}(\Omega)$.

Theorem 3.10. For each k > 0, an operator A on H is absolute-k-quasi-paranormal if and only if

$$\left(A^* |A|^{2k} A - (k+1) \alpha^k |A|^2 + k \alpha^{k+1}\right)^{\sim} \ge 0$$

holds for all $\alpha > 0$.

Proof. \Rightarrow . Suppose that *A* is absolute-*k*-quasi-paranormal for *k* > 0, i.e.,

$$\left\| |A|^{k} \widehat{Ak_{\lambda}} \right\| \ge \left\| \widehat{Ak_{\lambda}} \right\|^{k+1}$$
(12)

for every $\lambda \in \Omega$. Inequality (12) holds if and only if

 $\left\|\left|A\right|^{k}Ak_{\lambda}\right\|^{\frac{1}{k+1}}\left\|k_{\lambda}\right\|^{\frac{k}{k+1}} \ge \left\|Ak_{\lambda}\right\|$

for all $\lambda \in \Omega$, or equivalently

$$\left\langle A^* \left| A \right|^{2k} A k_{\lambda}, k_{\lambda} \right\rangle^{\frac{1}{k+1}} \left\langle k_{\lambda}, k_{\lambda} \right\rangle^{\frac{k}{k+1}} \ge \left\langle \left| A \right|^2 k_{\lambda}, k_{\lambda} \right\rangle$$

for all $\lambda \in \Omega$. By Lemma 3.9, we have:

$$\langle A^* |A|^{2k} A k_{\lambda}, k_{\lambda} \rangle^{\frac{1}{k+1}} \langle k_{\lambda}, k_{\lambda} \rangle^{\frac{k}{k+1}}$$

$$= \left\{ \left(\frac{1}{\alpha} \right)^k \langle A^* |A|^{2k} A k_{\lambda}, k_{\lambda} \rangle \right\}^{\frac{1}{k+1}} \{ \alpha \langle k_{\lambda}, k_{\lambda} \rangle \}^{\frac{k}{k+1}}$$

$$\leq \frac{1}{k+1} \frac{1}{\alpha^k} \langle A^* |A|^{2k} A k_{\lambda}, k_{\lambda} \rangle + \frac{k}{k+1} \alpha \langle k_{\lambda}, k_{\lambda} \rangle$$

$$(13)$$

for all $\lambda \in \Omega$ and $\alpha > 0$, so that (12) ensures the following inequality by (13) :

$$\frac{1}{k+1}\frac{1}{\alpha^{k}}\left\langle A^{*}\left|A\right|^{2k}Ak_{\lambda},k_{\lambda}\right\rangle +\frac{k}{k+1}\alpha\left\langle k_{\lambda},k_{\lambda}\right\rangle \geq\left\langle \left|A\right|^{2}k_{\lambda},k_{\lambda}\right\rangle$$

$$(14)$$

for all $\lambda \in \Omega$ and $\alpha > 0$.

Conversely, (14) implies (12) by putting $\alpha = \left\{ \frac{\langle A^* | A |^{2k} A k_{\lambda}, k_{\lambda} \rangle}{\langle k_{\lambda}, k_{\lambda} \rangle} \right\}^{\frac{1}{k+1}}$; in case $\langle A^* | A |^{2k} A k_{\lambda}, k_{\lambda} \rangle = 0$, let $\alpha \to 0$. Hence (14) holds if and only if

$$\left(A^* |A|^{2k} A - (k+1) \alpha^k |A|^2 + k \alpha^{k+1}\right)^{\sim} \ge 0$$

holds for all $\alpha > 0$, which completes the proof of the theorem. \Box

Since absolute-1-quasi-paranormal is quasi-paranormal, the following is immediate from Theorem 3.10.

Corollary 3.11. An operator A is quasi-paranormal if and only if

$$\left(A^{*2}A^2 - 2\alpha A^*A + \alpha^2\right)^{\sim} \ge 0$$

holds for all $\alpha > 0$ *.*

Acknowledgement

The authors would like to express their hearty thanks to the anonymous reviewer for his/her valuable comments.

References

- A. Abu-Omar and F. Kittaneh, Numerical radius inequalities for products and commutators of operators, Houston J. Math., 41(4) (2015), 1163–1173.
- [2] N. Aronzajn, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68(1950), 337-404.
- [3] M. Bakherad, Some Berezin Number Inequalities for Operator Matrices, Czech. Math. J., 68 (2018), 997–1009..
- [4] M. Bakherad and M.T. Garayev, Berezin number inequalities for operators, Concr. Oper., 6 (2019), 33–43.
- [5] H. Başaran, M. Gürdal and A.N. Güncan, Some operator inequalities associated with Kantorovich and Hölder-McCarthy inequalities and their applications, Turkish J. Math., 43(1) (2019), 523–532.
- [6] F.A. Berezin, Covariant and contravariant symbols for operators, Math. USSR-Izv., 6(1972), 1117–1151.
- [7] F.A. Berezin, Quantization, Math. USSR-Izv., 8(1974), 1109–1163.
- [8] T. Furuta, Invitation to Linear Operators, Taylor & Francis, London, p.266, 2001.
- [9] M. Gürdal, M. Garayev, S. Saltan and U. Yamancı, On some numerical characteristics of operators, Arab J. Math. Sci., 21(1) (2015), 118–126.
- [10] M. Garayev, F. Bouzeffour, M. Gürdal and C.M. Yangöz, Refinements of Kantorovich type, Schwarz and Berezin number inequalities, Extracta Math., 35(1) (2020), 1–20.
- [11] M.T. Garayev, M. Gürdal and M.B. Huban, Reproducing kernels, Engliš algebras and some applications, Studia Math., 232(2) (2016), 113–141.
- [12] M.T. Garayev, M. Gürdal and A. Okudan, Hardy-Hilbert's inequality and power inequalities for Berezin numbers of operators, Math. Inequal. Appl., 19(3) (2016), 883–891
- [13] M.T. Garayev, M. Gürdal and S. Saltan, Hardy type inequality for reproducing kernel Hilbert space operators and related problems, Positivity, 21(4) (2017), 1615–1623.
- [14] M.T. Garayev, M. Gürdal and U. Yamancı and B. Halouani, Boundary behaivor of Berezin symbols and related results, Filomat, 33(14) (2019), 4433–4439.
- [15] M. Garayev, S. Saltan, F. Bouzeffour and B. Aktan, Some inequalities involving Berezin symbols of operator means and related questions, RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., 114(85) (2020), 1–17.
- [16] M.T. Garayev, Berezin symbols, Hölder-McCarthy and Young inequalities and their applications, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 43(2) (2017), 287–295.
- [17] M. Hajmohamadi, R. Lashkaripour and M. Bakherad, Improvements of Berezin number inequalities, Linear Multilinear Algebra, 68(6) (2020), 1218–1229.
- [18] M.T. Karaev, Reproducing kernels and Berezin symbols techniques in various questions of operator theory, Complex Anal. Oper. Theory, 7(4) (2013), 983–1018.
- [19] M.T. Karaev and S. Saltan, Some results on Berezin symbols, Complex Variables: Theory and Appl., 50 (2005), 185–193.
- [20] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math., 168 (1) (2005), 73-80.
- [21] F. Kittaneh, M.S. Moslehian and T. Yamazaki, Cartesian decomposition and numerical radius inequalities, Linear Algebra Appl., 471 (2015), 46–53.
- [22] S. Sahoo, N. Das and D. Mishra, Numerical radius inequalities for operator matrices, Adv. Oper. Theory, 4 (2019), 197–214.
- [23] U. Yamancı and M. Gürdal, On numerical radius and Berezin number inequalities for reproducing kernel Hilbert space, New York J. Math., 23 (2017), 1531–1537.
- [24] U. Yamancı, M. Gürdal and M.T. Garayev, Berezin Number Inequality for Convex Function in Reproducing Kernel Hilbert Space, Filomat, 31(18) (2017), 5711–5717.
- [25] U. Yamancı, R. Tunç and M. Gürdal, Berezin numbers, Grüss type inequalities and their applications, Bull. Malays. Math. Sci. Soc., 43 (2020), 2287–2296.