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Abstract. In this paper, we define analogies of classical Holder-McCarthy and Young type inequalities
in terms of the Berezin symbols of operators on a reproducing kernel Hilbert space H = H (Q). These
inequalities are applied in proving of some new inequalities for the Berezin number of operators. We also

define quasi-paranormal and absolute-k-quasi paranormal operators and study their properties by using
the Berezin symbols.

1. Introduction

Let H = H(Q) be a Hilbert space of complex-valued functions on some set Q such that f — f(A)isa

continuous functional (evaluation functional) for any A in Q. Then, according to the Riesz’s representation
theorem there exists uniquely k, € H such that

f) =(fka)

for all f € H. The function k) (z),A € Q, is called the reproducing kernel of the space H, and k= “’;—:”
is called the normalized reproducing kernel in H (see [2]). The space H with the reproducing kernels
ka, A € Q, is called reproducing kernel Hilbert space (RKHS). For a bounded linear operator A (i.e., for

A € B(H), the Banach algebra of all bounded linear operators on H) its Berezin symbol A is defined by
(Berezin [6, 7])

A(A) = (Aky, k), AeQ.
The Berezin number ber (A) of operator A is the following number:

ber (A) := sup ’;f(/\)| .
AeQ
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Since ‘g (/\)| < ||A|| (by the Cauchy-Schwarz inequality) for all A € (), the Berezin number is a finite number
and ber (A) < ||A]|. Recall that

W (A) := {{Ax,x) : x € H and ||x]| = 1}
is the numerical range of operator A and
w (A) = sup {[{Ax, x)| : x € H and ||x]| = 1}
= sup{M HTRS W(A)}
is the numerical radius of A (for more information, see [1, 20-22]). It is well known that
Ber (A) ¢ W(A) and ber (A) < w (A)

for any A € B(H). More information about ber (4) and relations between ber (A), w(A) and ||A|| can be
found in Karaev [16, 18], and also in [3-5, 9-15, 17, 19, 23-25].

In this paper, we will use some known operator inequalities to prove some new inequalities for the
Berezin number of operators acting on the RKHS H = H(Q). Some other related questions also will be
studied. In general, the present paper is motivated by the paper of Garayev [16], where the McCarthy;,
Holder-McCarthy and Kantorovich operator inequalities were extensively used to get some new inequalities
for the Berezin number of operators and their powers. Recall that for any positive operator A (i.e., (Ax, x) > 0
forany x € H, shortly A > 0), there exists a unique positive operator R such that R* = A (denoted by R = A?).

An operator T € B(H) can be decomposed into T = UP, where U is a partial isometry and P = |T| := (T*T)%
(moduli of operator T) with ker (T) = ker (P) and the last condition uniquely determines U and P of the
polar decomposition T = UP (see Furuta [8]). In general, we will refer to the book of Furuta [8] for main
definitions and notations.

2. Holder-McCarthy Type Inequalities and Berezin number

In this section, by using the Holder-McCarthy inequality, we prove some inequalities for the Berezin
number of some operators on the RKHS H.

Theorem 2.1. Let A € B(H) be a positive operator. Then :
1) ber (A*) > ber (A)* for any u > 1.
2) ber (A*) < ber (A)! for any p € [0,1].
3) If A is invertible, then ber (A*) > ber (A)" for any u < 0.

Proof. First we prove 2). Indeed, assume that 2) holds for some a, p € [0,1] . Then we only have to prove 2) holds for

a+p

—- € [0,1] by continuity of an operator. In fact, we have for any A € CQ that

o)

- KA%'EA,AQ'IZA>

2

2
(by Cauchy-Schwarz inequality)

< <A“’k\;\,’k\,\> <A/3’k\,1,’k}> (by assumption)

—~ —~\a+f

< (Al k)

so that A#(A) < Z(A)# holds for %ﬁ € [0,1]. This implies the desired inequality ber (A*) < ber (A)" for any
ue[0,1].
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1) Let > 1. Then % €[0,1]. Forany A € Q
(Aky ki) = (A"¥k, K0 )
< (AHB,’JQA)i by 2),

hence <A”’I€A,’l-€;\> > <A’I€,\,7<\A>“ for any p > 1, which shows that ber (A*) > ber (A)! for any u > 1, as desired.
3) Since A is invertible, we have the following for any A € () that

1=[] = [tk a-R)
<[afiall e
= (Aky, k) (A7, k)
=AA)ATTA),
and hence
1<AWATQ) forany A € Q, )
which gives us
ber (A) ber (A1) > 1,
or equivalently
ber (A7) > ber (A)™",
Case: i € (=00, —1) . Then we have the following for any A € Q that

B, )

(A, k) = (A
> <A‘17<\A,7c\;\>y (by 1) since |y| >1)
> (A

—_—

o) M ay )
- (AB,B)“

which implies that ber (A*) > ber (A)", as desired.
Case: u € [-1,0). For every A € ) we have

A () = (AT B = (A MR, T
> (AW, by (1)
> (A B M = (A6 R = (A
and the last inequality follows by 2) since 'y| € [0,1] and taking inverses of both sides. The theorem is proved. [

Next result proves the equivalence of Holder-McCarthy type inequality and Young type inequality.
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Theorem 2.2. For a positive operator A € B(H) and u € [0,1] the following inequalities are equivalent:
Holder-McCarthy type inequality:

AA) > Al (A) forall A € Q. )
Young type inequality:
[UA +1-u]” > AK. (©)

Proof. Let us define a scalar function

fO=put+1-p—t*

for positive numbers t and u € [0, 1]. Then it is easy to see that f () is a nonnegative convex function with
the minimum value f (1) = 0, so we have

pua+1—p>at (4)

for positivea and u € [0,1].
(2) = (3). Replacing a by A (A) > 0and p € [0,1] in (4), we obtain

AN +1—pu> AN > AL () by (2),

so we have (3).
(3) = (2). We may assume u € (0,1]. In (3), replace A by ki A for a positive number k, then

pki A (L) +1— i > kAF (A) )
for 1 € Qby (3). We putk = A (1) in (5) if A () # 0, then we have
PANTTAN) +1-pu> AN AR,

thatis A (A)! > At (A) for all A € Q) and we get (2). If ;f(/\) = 0, then it means that Aﬁc\,\ =0, so AF‘B = 0 for
u € (0,1] by the induction and continuity of A, and thus we have (2). The theorem is proved. [J

Proposition 2.3. Let A € B(H) be a positive invertible operator and B € B(H) be an invertible operator. Then for
any real number u, we have

ber (BAB")") = ber (BA% (atpBal) ™ A} B*). ©)

Proof. Let BA?Z = UP be the polar decomposition of BAz, where U is unitary and P = |BA%| . Then it is easy
to see that:
(BAB) = (upzu*)“ = BA:P 'p#P AP
-1
= BA} (AIB'BA})" AlB'.

Now (6) is immediate from this equality. [



M. B. Huban et al. / Filomat 35:7 (2021), 2165-2173 2169

3. Paranormal operators and related problems

Recall that an operator A on a Hilbert space H is called paranormal if ||A2x|| > ||Ax|[* for every unit vector
x € H.

_ —~ 2
Definition 3.1. We will say that A is a quasi-paranormal operator on a RKHS H = H (QQ), if”AzkA“ > ||AkA|| for
any A € Q.

Definition 3.2. An operator T belongs to class A if |T2( > |TP.

Definition 3.3. For each k > 0, an operator T is absolute-k-quasi-paranormal if

o

(7)
for every A € Q).

It follows from these definitions that:
(a) If A is quasi-paranormal, then

ber ((A2|2) > ber (IAIZ)2 ;

(b) If A belongs to class ?I, then
ber (|A2)) > ber (lAlz);

(c) If A is absolute-k-quasi-paranormal, then
ber ((|A|kA|2) > ber (JA)! .

In this section, to prove some inequalities for the Berezin number of such operators, we need to other
properties of these operators.

Proposition 3.4. Every operator in Aisa quasi-paranormal operator on a RKHS.
Proof. Suppose A € Aie.,
42| > 1AP. 8)

Then for every A € Q, we have |A2| A) > IXIE (A), and therefore it follows from the proof of Theorem 2.1
that

[a%,|| = (4%, %) = ((42) 4%, %)
= (| % k)
> (|A%[k, K1) (see the proof of Theorem 2.1, 1))
> (1APTLK) (by 8)
=[]
Hence
o] = ki

for every A € Q, so that A is quasi-paranormal, which proves the proposition. [
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Definition 3.5. For each k > 0, we say that an operator A belongs to class Ak) if
((A* AP A)m) > AP
The proof of Theorem 2.1 allows us also prove the following.

Proposition 3.6. (1) Every quasi-paranormal operator on a RKHS H = H (Q) is an absolute-k-quasi-paranormal
operator for k > 1.

(b) For each k > 0, every class Ak operator is an absolute-k-quasi-paranormal operator.

Proof. (a) Suppose that A is a quasi-paranormal operator on a RKHS H = H (Q) . Then, for any A € Q and
k > 1, we have

|||A|"A'1€A||2 = (|AP* ARy, ARy )
> <|A|2 A/k\/\,A/k\A>k HAE (see the proof of Theorem 2.1, 1))

112 PR
= [l lax

||2(1—k)

— (]2(1-k)
Ak)\” (by quasi-paranormality of A)

— ||2k+1)
2 ]

-

and hence

— — k+1
it ]

forall A € Q and k > 1, so that A is absolute-k-quasi-paranormal operator for k > 1.
(b) Let A € A (k) for k > 0, that is

((A* AP A)ﬁ)w > |AP fork > 0. )
Then for any A € Q,
|||A|k A'IZA”2 = (A" 1A ARy )
1 __\k#1
> <(A* AP ) kA,k,\>

> <|A|2/I€/\/7€)\>k+l (by (9))
-
= ||Ak, ,

from which
[t 4% = ||A'IZAHk+1 forall A € Q,

so that A is absolute-k-quasi-paranormal operator for k > 0. This completes the proof. [

As further extension of previous results, we prove the following result.
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Theorem 3.7. Let A € B(H (Q)) be an absolute-k-quasi-paranormal operator for k > 0. Then for every A € (2,

F(0) = | k||

is increasing for € > k > 0, and the following inequality holds:

F) > HA’EA )

i.e., A is absolute-C-quasi-paranormal operator for £ > k > 0.

Proof. Assume that A is an absolute-k-quasi-paranormal operator on H = H (Q) for k > 0, i.e.,

e Ak = .| (10)
for every A € Q. Clearly, (10) holds if and only if
F ) = |1ar Ak o > ||k
for any A € Q. Then for every A € Q and any ¢ such that £ > k > 0, we have
F(O = A 4R = (i 4R, B) ™
> {(|A|2kAEA,AkA ”2(1_ )}(;)
2t 2(1-1) T
> {Jam ) R e 0o
)
and hence
F(6) = H|A| Al “Ak,\“ (11)

for every A € QY and ¢ > k, so that A is absolute-{-quasi-paranormal for £ > k > 0.
Now we prove that, F({) is increasing for £ > k > 0. Indeed, for any A € Q, m and ¢ such that
m>{€>k>0,we have:

m+1

— —_~
Fm) = [y Al = (1P Ak, Ak, )™

- {(IAF" Ak, Al HAEHZO_% }M
- {HIAV’A’EAHZ? ||Ak/\||2(177 }”

=(1- )}2nx+l ( y (11))

> {H|A|"AE||2’W [ Ak

(’+l

= |1ar” 4k

=F(0),

hence F (m) > F (€), that is F (¢) is increasing for ¢ > k > 0. This proves the theorem. [
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Corollary 3.8. F(£) > yfber (|AP) for € > k > 0.

The following lemma is well known (see, for instance, [8]).
Lemma 3.9. Let a and b be positive real numbers. Then,
a‘b" < Aa+ ub
holds for A > 0 and u > O such that A + pu = 1.
Our next result characterizes absolute-k-quasi-paranormal operators A on the RKHS H = H (Q).

Theorem 3.10. For each k > 0, an operator A on H is absolute-k-quasi-paranormal if and only if
(AT1AP* A - (k + 1) " JAP + ka**1) 20
holds for all & > 0.

Proof. = . Suppose that A is absolute-k-quasi-paranormal for k > 0, i.e.,

ot =

(12)
for every A € Q). Inequality (12) holds if and only if

k B | 12
1T Ak || leall =T > 1Akl

for all A € O, or equivalently

(A AP Ay )™ o K™ > (1A R K

for all A € Q. By Lemma 3.9, we have:
1
(AT 1AP* Ak, k)T Gk k)
1\ . 2k e &
=1(5) (AP Ak k)| e kol (13)
1T k
< g (AT Al ) + e k)
forall A € Qand a > 0, so that (12) ensures the following inequality by (13) :
11
k+1ak

forallA € Qand a > 0.

* k
(A" IAP Ak k) + otk ka) = (AP Ky ) (14)

(AT AP Ak kr )

ﬁ 1 * 2k
G } ; in case <A |A] AkA,kA> =0,leta — 0.

Conversely, (14) implies (12) by putting a = {
Hence (14) holds if and only if

(AT1AP*A - (k + 1) " JAP + ka**1) 20
holds for all @ > 0, which completes the proof of the theorem. [

Since absolute-1-quasi-paranormal is quasi-paranormal, the following is immediate from Theorem 3.10.
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Corollary 3.11. An operator A is quasi-paranormal if and only if
(A2A2 - 20A4"A+0?) 20
holds for all & > 0.
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