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Abstract. In this paper, we define analogies of classical Hölder-McCarthy and Young type inequalities
in terms of the Berezin symbols of operators on a reproducing kernel Hilbert space H = H (Ω) . These
inequalities are applied in proving of some new inequalities for the Berezin number of operators. We also
define quasi-paranormal and absolute-k-quasi paranormal operators and study their properties by using
the Berezin symbols.

1. Introduction

Let H = H(Ω) be a Hilbert space of complex-valued functions on some set Ω such that f → f (λ) is a
continuous functional (evaluation functional) for any λ in Ω. Then, according to the Riesz’s representation
theorem there exists uniquely kλ ∈ H such that

f (λ) =
〈

f , kλ
〉

for all f ∈ H . The function kλ (z) , λ ∈ Ω, is called the reproducing kernel of the space H , and k̂λ := kλ
‖kλ‖

is called the normalized reproducing kernel in H (see [2]). The space H with the reproducing kernels
kλ, λ ∈ Ω, is called reproducing kernel Hilbert space (RKHS). For a bounded linear operator A (i.e., for
A ∈ B(H), the Banach algebra of all bounded linear operators on H) its Berezin symbol Ã is defined by
(Berezin [6, 7])

Ã(λ) :=
〈
Âkλ, k̂λ

〉
, λ ∈ Ω.

The Berezin number ber (A) of operator A is the following number:

ber (A) := sup
λ∈Ω

∣∣∣∣Ã (λ)
∣∣∣∣ .
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Since
∣∣∣∣Ã (λ)

∣∣∣∣ ≤ ‖A‖ (by the Cauchy-Schwarz inequality) for all λ ∈ Ω, the Berezin number is a finite number
and ber (A) ≤ ‖A‖ . Recall that

W (A) :=
{
〈Ax, x〉 : x ∈ H and ‖x‖ = 1

}
is the numerical range of operator A and

w (A) := sup
{
|〈Ax, x〉| : x ∈ H and ‖x‖ = 1

}
= sup

{∣∣∣µ∣∣∣ : µ ∈W (A)
}

is the numerical radius of A (for more information, see [1, 20–22]). It is well known that

Ber (A) ⊂W (A) and ber (A) ≤ w (A)

for any A ∈ B(H). More information about ber (A) and relations between ber (A) , w (A) and ‖A‖ can be
found in Karaev [16, 18], and also in [3–5, 9–15, 17, 19, 23–25].

In this paper, we will use some known operator inequalities to prove some new inequalities for the
Berezin number of operators acting on the RKHS H = H(Ω). Some other related questions also will be
studied. In general, the present paper is motivated by the paper of Garayev [16], where the McCarthy,
Hölder-McCarthy and Kantorovich operator inequalities were extensively used to get some new inequalities
for the Berezin number of operators and their powers. Recall that for any positive operator A (i.e., 〈Ax, x〉 ≥ 0
for any x ∈ H , shortly A ≥ 0), there exists a unique positive operator R such that R2 = A (denoted by R = A

1
2 ).

An operator T ∈ B(H) can be decomposed into T = UP, where U is a partial isometry and P = |T| := (T∗T)
1
2

(moduli of operator T) with ker (T) = ker (P) and the last condition uniquely determines U and P of the
polar decomposition T = UP (see Furuta [8]). In general, we will refer to the book of Furuta [8] for main
definitions and notations.

2. Hölder-McCarthy Type Inequalities and Berezin number

In this section, by using the Hölder-McCarthy inequality, we prove some inequalities for the Berezin
number of some operators on the RKHSH .

Theorem 2.1. Let A ∈ B(H) be a positive operator. Then :
1) ber (Aµ) ≥ ber (A)µ for any µ > 1.
2) ber (Aµ) ≤ ber (A)µ for any µ ∈ [0, 1] .
3) If A is invertible, then ber (Aµ) ≥ ber (A)µ for any µ < 0.

Proof. First we prove 2). Indeed, assume that 2) holds for some α, β ∈ [0, 1] . Then we only have to prove 2) holds for
α+β

2 ∈ [0, 1] by continuity of an operator. In fact, we have for any λ ∈ Ω that∣∣∣∣∣〈A
α+β

2 k̂λ, k̂λ
〉∣∣∣∣∣2

=

∣∣∣∣∣〈A
α
2 k̂λ,A

β
2 k̂λ

〉∣∣∣∣∣2 (by Cauchy-Schwarz inequality)

≤

〈
Aα̂kλ, k̂λ

〉 〈
Aβ̂kλ, k̂λ

〉
(by assumption)

≤

〈
Âkλ, k̂λ

〉α+β
,

so that Ã
α+β

2 (λ) ≤ Ã(λ)
α+β

2 holds for α+β
2 ∈ [0, 1] . This implies the desired inequality ber (Aµ) ≤ ber (A)µ for any

µ ∈ [0, 1] .
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1) Let µ > 1. Then 1
µ ∈ [0, 1] . For any λ ∈ Ω〈

Âkλ, k̂λ
〉

=
〈
Aµ 1

µ k̂λ, k̂λ
〉

≤

〈
Aµ̂kλ, k̂λ

〉 1
µ by 2),

hence
〈
Aµ̂kλ, k̂λ

〉
>

〈
Âkλ, k̂λ

〉µ
for any µ > 1, which shows that ber (Aµ) > ber (A)µ for any µ > 1, as desired.

3) Since A is invertible, we have the following for any λ ∈ Ω that

1 =
∥∥∥∥̂kλ

∥∥∥∥4
=

∣∣∣∣〈A
1
2 k̂λ,A−

1
2 k̂λ

〉∣∣∣∣2
≤

∥∥∥∥A
1
2 k̂λ

∥∥∥∥2 ∥∥∥∥A−
1
2 k̂λ

∥∥∥∥2

=
〈
Âkλ, k̂λ

〉 〈
A−1̂kλ, k̂λ

〉
= Ã (λ) Ã−1 (λ) ,

and hence

1 ≤ Ã (λ) Ã−1 (λ) for any λ ∈ Ω, (1)

which gives us

ber (A) ber
(
A−1

)
> 1,

or equivalently

ber
(
A−1

)
> ber (A)−1 .

Case: µ ∈ (−∞,−1) . Then we have the following for any λ ∈ Ω that〈
Aµ̂kλ, k̂λ

〉
=

〈
A−|µ|̂kλ, k̂λ

〉
>

〈
A−1̂kλ, k̂λ

〉µ
(by 1) since

∣∣∣µ∣∣∣ > 1)

>
〈
Âkλ, k̂λ

〉−|µ|
(by (1))

=
〈
Âkλ, k̂λ

〉µ
which implies that ber (Aµ) > ber (A)µ, as desired.

Case: µ ∈ [−1, 0) . For every λ ∈ Ω we have

Ãµ (λ) =
〈
Aµ̂kλ, k̂λ

〉
=

〈
A−|µ|̂kλ, k̂λ

〉
>

〈
A|µ|̂kλ, k̂λ

〉−1
(by (1))

>
〈
Âkλ, k̂λ

〉−|µ|
=

〈
Âkλ, k̂λ

〉µ
=

(
Ã (λ)

)µ
,

and the last inequality follows by 2) since
∣∣∣µ∣∣∣ ∈ [0, 1] and taking inverses of both sides. The theorem is proved.

Next result proves the equivalence of Hölder-McCarthy type inequality and Young type inequality.
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Theorem 2.2. For a positive operator A ∈ B(H) and µ ∈ [0, 1] the following inequalities are equivalent:
Hölder-McCarthy type inequality:

Ã (λ)µ > Ãµ (λ) for all λ ∈ Ω. (2)

Young type inequality:[
µA + I − µ

]∼ > Ãµ. (3)

Proof. Let us define a scalar function

f (t) := µt + 1 − µ − tµ

for positive numbers t and µ ∈ [0, 1]. Then it is easy to see that f (t) is a nonnegative convex function with
the minimum value f (1) = 0, so we have

µa + 1 − µ > aµ (4)

for positive a and µ ∈ [0, 1] .

(2)⇒ (3). Replacing a by Ã (λ) > 0 and µ ∈ [0, 1] in (4), we obtain

µÃ (λ) + 1 − µ > A (λ)µ > Ãµ (λ) by (2),

so we have (3).

(3)⇒ (2). We may assume µ ∈ (0, 1] . In (3), replace A by k
1
µ A for a positive number k, then

µk
1
µ Ã (λ) + 1 − µ > kÃµ (λ) (5)

for λ ∈ Ω by (3). We put k = Ã (λ)−µ in (5) if Ã (λ) , 0, then we have

µÃ (λ)−1 Ã (λ) + 1 − µ > Ã (λ)−µ Ãµ (λ) ,

that is A (λ)µ > Ãµ (λ) for all λ ∈ Ω and we get (2). If Ã (λ) = 0, then it means that A
1
2 k̂λ = 0, so Aµ̂kλ = 0 for

µ ∈ (0, 1] by the induction and continuity of A, and thus we have (2). The theorem is proved.

Proposition 2.3. Let A ∈ B(H) be a positive invertible operator and B ∈ B(H) be an invertible operator. Then for
any real number µ, we have

ber
(
(BAB∗)µ

)
= ber

(
BA

1
2

(
A

1
2 B∗BA

1
2

)µ−1
A

1
2 B∗

)
. (6)

Proof. Let BA
1
2 = UP be the polar decomposition of BA

1
2 , where U is unitary and P =

∣∣∣BA
1
2

∣∣∣ . Then it is easy
to see that:

(BAB∗)µ =
(
UP2U∗

)µ
= BA

1
2 P−1P2µP−1A

1
2 B∗

= BA
1
2

(
A

1
2 B∗BA

1
2

)µ−1
A

1
2 B∗.

Now (6) is immediate from this equality.
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3. Paranormal operators and related problems

Recall that an operator A on a Hilbert space H is called paranormal if
∥∥∥A2x

∥∥∥ ≥ ‖Ax‖2 for every unit vector
x ∈ H.

Definition 3.1. We will say that A is a quasi-paranormal operator on a RKHSH = H (Ω) , if
∥∥∥∥A2̂kλ

∥∥∥∥ ≥ ∥∥∥∥Âkλ
∥∥∥∥2

for
any λ ∈ Ω.

Definition 3.2. An operator T belongs to class Ã if
∣̃∣∣T2

∣∣∣ ≥ |̃T|2.
Definition 3.3. For each k > 0, an operator T is absolute-k-quasi-paranormal if∥∥∥∥|T|k T̂kλ

∥∥∥∥ ≥ ∥∥∥∥T̂kλ
∥∥∥∥k+1

(7)

for every λ ∈ Ω.

It follows from these definitions that:
(a) If A is quasi-paranormal, then

ber
(∣∣∣A2

∣∣∣2) ≥ ber
(
|A|2

)2
;

(b) If A belongs to class Ã, then

ber
(∣∣∣A2

∣∣∣) ≥ ber
(
|A|2

)
;

(c) If A is absolute-k-quasi-paranormal, then

ber
(∣∣∣|A|k A

∣∣∣2) ≥ ber (|A|)k+1 .

In this section, to prove some inequalities for the Berezin number of such operators, we need to other
properties of these operators.

Proposition 3.4. Every operator in Ã is a quasi-paranormal operator on a RKHS.

Proof. Suppose A ∈ Ã, i.e.,∣̃∣∣A2
∣∣∣ ≥ |̃A|2. (8)

Then for every λ ∈ Ω, we have
∣̃∣∣A2

∣∣∣ (λ) ≥ |̃A|2 (λ) , and therefore it follows from the proof of Theorem 2.1
that ∥∥∥∥A2̂kλ

∥∥∥∥2
=

〈
A2̂kλ,A2̂kλ

〉
=

〈(
A2

)∗
A2̂kλ, k̂λ

〉
=

〈∣∣∣A2
∣∣∣2 k̂λ, k̂λ

〉
≥

〈∣∣∣A2
∣∣∣ k̂λ, k̂λ〉2

(see the proof of Theorem 2.1, 1))

≥

〈
|A|2 k̂λ, k̂λ

〉2
(by (8) )

=
∥∥∥∥Âkλ

∥∥∥∥4
.

Hence∥∥∥∥A2̂kλ
∥∥∥∥ ≥ ∥∥∥∥Âkλ

∥∥∥∥2

for every λ ∈ Ω, so that A is quasi-paranormal, which proves the proposition.
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Definition 3.5. For each k > 0, we say that an operator A belongs to class Ã (k) if((
A∗ |A|2k A

) 1
k+1

)∼
≥ |̃A|2.

The proof of Theorem 2.1 allows us also prove the following.

Proposition 3.6. (a) Every quasi-paranormal operator on a RKHS H = H (Ω) is an absolute-k-quasi-paranormal
operator for k ≥ 1.

(b) For each k > 0, every class Ã (k) operator is an absolute-k-quasi-paranormal operator.

Proof. (a) Suppose that A is a quasi-paranormal operator on a RKHSH = H (Ω) . Then, for any λ ∈ Ω and
k ≥ 1, we have∥∥∥∥|A|k Âkλ

∥∥∥∥2
=

〈
|A|2k Âkλ, Âkλ

〉
≥

〈
|A|2 Âkλ, Âkλ

〉k ∥∥∥∥Âkλ
∥∥∥∥2(1−k)

(see the proof of Theorem 2.1, 1))

=
∥∥∥∥A2̂kλ

∥∥∥∥2k ∥∥∥∥Âkλ
∥∥∥∥2(1−k)

≥

∥∥∥∥Âkλ
∥∥∥∥4k ∥∥∥∥Âkλ

∥∥∥∥2(1−k)
(by quasi-paranormality of A)

≥

∥∥∥∥Âkλ
∥∥∥∥2(k+1)

,

and hence∥∥∥∥|A|k Âkλ
∥∥∥∥ ≥ ∥∥∥∥Âkλ

∥∥∥∥k+1

for all λ ∈ Ω and k ≥ 1, so that A is absolute-k-quasi-paranormal operator for k ≥ 1.
(b) Let A ∈ Ã (k) for k > 0, that is((

A∗ |A|2k A
) 1

k+1
)∼
≥ |̃A|2 for k > 0. (9)

Then for any λ ∈ Ω,∥∥∥∥|A|k Âkλ
∥∥∥∥2

=
〈
A∗ |A|2k Âkλ, k̂λ

〉
≥

〈(
A∗ |A|2k A

) 1
k+1 k̂λ, k̂λ

〉k+1

≥

〈
|A|2 k̂λ, k̂λ

〉k+1
(by (9) )

=
∥∥∥∥Âkλ

∥∥∥∥2(k+1)
,

from which∥∥∥∥|A|k Âkλ
∥∥∥∥ ≥ ∥∥∥∥Âkλ

∥∥∥∥k+1
for all λ ∈ Ω,

so that A is absolute-k-quasi-paranormal operator for k > 0. This completes the proof.

As further extension of previous results, we prove the following result.
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Theorem 3.7. Let A ∈ B (H (Ω)) be an absolute-k-quasi-paranormal operator for k > 0. Then for every λ ∈ Ω,

F (`) =
∥∥∥∥|A|` Âkλ

∥∥∥∥ 1
`+1

is increasing for ` > k > 0, and the following inequality holds:

F (`) ≥
∥∥∥∥Âkλ

∥∥∥∥ ,
i.e., A is absolute-`-quasi-paranormal operator for ` ≥ k > 0.

Proof. Assume that A is an absolute-k-quasi-paranormal operator onH = H (Ω) for k > 0, i.e.,∥∥∥∥|A|k Âkλ
∥∥∥∥ ≥ ∥∥∥∥Âkλ

∥∥∥∥k+1
(10)

for every λ ∈ Ω. Clearly, (10) holds if and only if

F (k) =
∥∥∥∥|A|k Âkλ

∥∥∥∥ 1
k+1
≥

∥∥∥∥Âkλ
∥∥∥∥

for any λ ∈ Ω. Then for every λ ∈ Ω and any ` such that ` ≥ k > 0, we have

F (`) =
∥∥∥∥|A|` Âkλ

∥∥∥∥ 1
`+1

=
〈
|A|2` Âkλ, k̂λ

〉 1
2(`+1)

≥

{〈
|A|2k Âkλ, Âkλ

〉 1
k
∥∥∥∥Âkλ

∥∥∥∥2(1− 1
k )
} 1

2(`+1)

≥

{∥∥∥∥Âkλ
∥∥∥∥ 2`(k+1)

k
∥∥∥∥Âkλ

∥∥∥∥2(1− 1
k )
} 1

2(`+1)

(by (10) )

=
∥∥∥∥Âkλ

∥∥∥∥ ,
and hence

F (`) =
∥∥∥∥|A|` Âkλ

∥∥∥∥ 1
`+1
≥

∥∥∥∥Âkλ
∥∥∥∥ (11)

for every λ ∈ Ω and ` ≥ k, so that A is absolute-`-quasi-paranormal for ` ≥ k > 0.
Now we prove that, F (`) is increasing for ` ≥ k > 0. Indeed, for any λ ∈ Ω, m and ` such that

m ≥ ` ≥ k > 0, we have:

F (m) =
∥∥∥∥|A|m Âkλ

∥∥∥∥ 1
m+1

=
〈
|A|2m Âkλ, Âkλ

〉 1
2(m+1)

=

{〈
|A|2` Âkλ, Âkλ

〉 m
`
∥∥∥∥Âkλ

∥∥∥∥2(1− m
` )

} 1
2(m+1)

=

{∥∥∥∥|A|` Âkλ
∥∥∥∥ 2m

`
∥∥∥∥Âkλ

∥∥∥∥2(1− m
` )

} 1
2(m+1)

≥

{∥∥∥∥|A|` Âkλ
∥∥∥∥ 2m

`
∥∥∥∥|A|` Âkλ

∥∥∥∥ 2
`+1 (1− m

` )
} 1

2(m+1)

(by (11) )

=
∥∥∥∥|A|` Âkλ

∥∥∥∥ 1
`+1

= F (`) ,

hence F (m) ≥ F (`) , that is F (`) is increasing for ` ≥ k > 0. This proves the theorem.
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Corollary 3.8. F (`) ≥
√

ber
(
|A|2

)
for ` ≥ k > 0.

The following lemma is well known (see, for instance, [8]).

Lemma 3.9. Let a and b be positive real numbers. Then,

aλbµ ≤ λa + µb

holds for λ > 0 and µ > 0 such that λ + µ = 1.

Our next result characterizes absolute-k-quasi-paranormal operators A on the RKHSH = H (Ω) .

Theorem 3.10. For each k > 0, an operator A onH is absolute-k-quasi-paranormal if and only if(
A∗ |A|2k A − (k + 1)αk

|A|2 + kαk+1
)∼
≥ 0

holds for all α > 0.

Proof. ⇒ . Suppose that A is absolute-k-quasi-paranormal for k > 0, i.e.,∥∥∥∥|A|k Âkλ
∥∥∥∥ ≥ ∥∥∥∥Âkλ

∥∥∥∥k+1
(12)

for every λ ∈ Ω. Inequality (12) holds if and only if∥∥∥|A|k Akλ
∥∥∥ 1

k+1
‖kλ‖

k
k+1 ≥ ‖Akλ‖

for all λ ∈ Ω, or equivalently〈
A∗ |A|2k Akλ, kλ

〉 1
k+1
〈kλ, kλ〉

k
k+1 ≥

〈
|A|2 kλ, kλ

〉
for all λ ∈ Ω. By Lemma 3.9, we have:〈

A∗ |A|2k Akλ, kλ
〉 1

k+1
〈kλ, kλ〉

k
k+1

=

{( 1
α

)k 〈
A∗ |A|2k Akλ, kλ

〉} 1
k+1

{α 〈kλ, kλ〉}
k

k+1 (13)

≤
1

k + 1
1
αk

〈
A∗ |A|2k Akλ, kλ

〉
+

k
k + 1

α 〈kλ, kλ〉

for all λ ∈ Ω and α > 0, so that (12) ensures the following inequality by (13) :

1
k + 1

1
αk

〈
A∗ |A|2k Akλ, kλ

〉
+

k
k + 1

α 〈kλ, kλ〉 ≥
〈
|A|2 kλ, kλ

〉
(14)

for all λ ∈ Ω and α > 0.

Conversely, (14) implies (12) by putting α =
{
〈A∗ |A|2kAkλ,kλ〉
〈kλ,kλ〉

} 1
k+1

; in case
〈
A∗ |A|2k Akλ, kλ

〉
= 0, let α → 0.

Hence (14) holds if and only if(
A∗ |A|2k A − (k + 1)αk

|A|2 + kαk+1
)∼
≥ 0

holds for all α > 0, which completes the proof of the theorem.

Since absolute-1-quasi-paranormal is quasi-paranormal, the following is immediate from Theorem 3.10.
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Corollary 3.11. An operator A is quasi-paranormal if and only if(
A∗2A2

− 2αA∗A + α2
)∼
≥ 0

holds for all α > 0.
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