Some Classical Inequalities and their Applications

Mualla Birgül Huban ${ }^{\text {a }}$, Mehmet Gürdal ${ }^{\text {b }}$, Havva Tilki ${ }^{\text {b }}$
${ }^{a}$ Isparta University of Applied Sciences, Isparta, Turkey
${ }^{b}$ Suleyman Demirel University, Department of Mathematics, 32260, Isparta, Turkey

Abstract

In this paper, we define analogies of classical Hölder-McCarthy and Young type inequalities in terms of the Berezin symbols of operators on a reproducing kernel Hilbert space $\mathcal{H}=\mathcal{H}(\Omega)$. These inequalities are applied in proving of some new inequalities for the Berezin number of operators. We also define quasi-paranormal and absolute- k-quasi paranormal operators and study their properties by using the Berezin symbols.

1. Introduction

Let $\mathcal{H}=\mathcal{H}(\Omega)$ be a Hilbert space of complex-valued functions on some set Ω such that $f \rightarrow f(\lambda)$ is a continuous functional (evaluation functional) for any λ in Ω. Then, according to the Riesz's representation theorem there exists uniquely $k_{\lambda} \in \mathcal{H}$ such that

$$
f(\lambda)=\left\langle f, k_{\lambda}\right\rangle
$$

for all $f \in \mathcal{H}$. The function $k_{\lambda}(z), \lambda \in \Omega$, is called the reproducing kernel of the space \mathcal{H}, and $\widehat{k}_{\lambda}:=\frac{k_{\lambda}}{\left\|k_{\lambda}\right\|}$ is called the normalized reproducing kernel in \mathcal{H} (see [2]). The space \mathcal{H} with the reproducing kernels $k_{\lambda}, \lambda \in \Omega$, is called reproducing kernel Hilbert space (RKHS). For a bounded linear operator A (i.e., for $A \in \mathcal{B}(\mathcal{H})$, the Banach algebra of all bounded linear operators on \mathcal{H}) its Berezin symbol \widetilde{A} is defined by (Berezin [6, 7])

$$
\widetilde{A}(\lambda):=\left\langle A \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle, \lambda \in \Omega
$$

The Berezin number ber (A) of operator A is the following number:

$$
\operatorname{ber}(A):=\sup _{\lambda \in \Omega}|\widetilde{A}(\lambda)| .
$$

[^0]Since $|\widetilde{A}(\lambda)| \leq\|A\|$ (by the Cauchy-Schwarz inequality) for all $\lambda \in \Omega$, the Berezin number is a finite number and $\operatorname{ber}(A) \leq\|A\|$. Recall that

$$
W(A):=\{\langle A x, x\rangle: x \in \mathcal{H} \text { and }\|x\|=1\}
$$

is the numerical range of operator A and

$$
\begin{aligned}
w(A) & :=\sup \{|\langle A x, x\rangle|: x \in \mathcal{H} \text { and }\|x\|=1\} \\
& =\sup \{|\mu|: \mu \in W(A)\}
\end{aligned}
$$

is the numerical radius of A (for more information, see [1,20-22]). It is well known that

$$
\operatorname{Ber}(A) \subset W(A) \text { and } \operatorname{ber}(A) \leq w(A)
$$

for any $A \in \mathcal{B}(\mathcal{H})$. More information about ber (A) and relations between ber $(A), w(A)$ and $\|A\|$ can be found in Karaev [16, 18], and also in [3-5, 9-15, 17, 19, 23-25].

In this paper, we will use some known operator inequalities to prove some new inequalities for the Berezin number of operators acting on the RKHS $\mathcal{H}=\mathcal{H}(\Omega)$. Some other related questions also will be studied. In general, the present paper is motivated by the paper of Garayev [16], where the McCarthy, Hölder-McCarthy and Kantorovich operator inequalities were extensively used to get some new inequalities for the Berezin number of operators and their powers. Recall that for any positive operator A (i.e., $\langle A x, x\rangle \geq 0$ for any $x \in \mathcal{H}$, shortly $A \geq 0$), there exists a unique positive operator R such that $R^{2}=A$ (denoted by $R=A^{\frac{1}{2}}$). An operator $T \in \mathcal{B}(\mathcal{H})$ can be decomposed into $T=U P$, where U is a partial isometry and $P=|T|:=\left(T^{*} T\right)^{\frac{1}{2}}$ (moduli of operator T) with $\operatorname{ker}(T)=\operatorname{ker}(P)$ and the last condition uniquely determines U and P of the polar decomposition $T=U P$ (see Furuta [8]). In general, we will refer to the book of Furuta [8] for main definitions and notations.

2. Hölder-McCarthy Type Inequalities and Berezin number

In this section, by using the Hölder-McCarthy inequality, we prove some inequalities for the Berezin number of some operators on the RKHS \mathcal{H}.

Theorem 2.1. Let $A \in \mathcal{B}(\mathcal{H})$ be a positive operator. Then :

1) $\operatorname{ber}\left(A^{\mu}\right) \geq \operatorname{ber}(A)^{\mu}$ for any $\mu>1$.
2) $\operatorname{ber}\left(A^{\mu}\right) \leq \operatorname{ber}(A)^{\mu}$ for any $\mu \in[0,1]$.
3) If A is invertible, then $\operatorname{ber}\left(A^{\mu}\right) \geq \operatorname{ber}(A)^{\mu}$ for any $\mu<0$.

Proof. First we prove 2). Indeed, assume that 2) holds for some $\alpha, \beta \in[0,1]$. Then we only have to prove 2) holds for $\frac{\alpha+\beta}{2} \in[0,1]$ by continuity of an operator. In fact, we have for any $\lambda \in \Omega$ that

$$
\begin{aligned}
& \left|\left\langle A^{\frac{\alpha+\beta}{2}} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2} \\
& =\left|\left\langle A^{\frac{\alpha}{2}} \widehat{k}_{\lambda}, A^{\frac{\beta}{2}} \widehat{k}_{\lambda}\right\rangle\right|^{2} \text { (by Cauchy-Schwarz inequality) } \\
& \leq\left\langle A^{\alpha} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\left\langle A^{\widehat{\beta} k_{\lambda}}, \widehat{k}_{\lambda}\right\rangle \text { (by assumption) } \\
& \leq\left\langle A \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{\alpha+\beta}
\end{aligned}
$$

so that $\widetilde{A^{\frac{\alpha+\beta}{2}}}(\lambda) \leq \widetilde{A}(\lambda)^{\frac{\alpha+\beta}{2}}$ holds for $\frac{\alpha+\beta}{2} \in[0,1]$. This implies the desired inequality $\operatorname{ber}\left(A^{\mu}\right) \leq \operatorname{ber}(A)^{\mu}$ for any $\mu \in[0,1]$.

1) Let $\mu>1$. Then $\frac{1}{\mu} \in[0,1]$. For any $\lambda \in \Omega$

$$
\begin{aligned}
\left\langle A \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle & =\left\langle A^{\left.\mu^{\frac{1}{\mu}} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle}\right. \\
& \left.\leq\left\langle A^{\mu} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{\frac{1}{\mu}} \text { by } 2\right),
\end{aligned}
$$

hence $\left\langle A^{\mu} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle \geqslant\left\langle\widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{\mu}$ for any $\mu>1$, which shows that $\operatorname{ber}\left(A^{\mu}\right) \geqslant \operatorname{ber}(A)^{\mu}$ for any $\mu>1$, as desired.
3) Since A is invertible, we have the following for any $\lambda \in \Omega$ that

$$
\begin{aligned}
1 & =\left\|\widehat{k}_{\lambda}\right\|^{4}=\left|\left\langle A^{\frac{1}{2}} \widehat{k}_{\lambda}, A^{-\frac{1}{2}} \widehat{k}_{\lambda}\right\rangle\right|^{2} \\
& \leq\left\|A^{\frac{1}{2}} \widehat{k}_{\lambda}\right\|^{2}\left\|A^{-\frac{1}{2}} \widehat{k}_{\lambda}\right\|^{2} \\
& =\left\langle\widehat{A \widehat{k}_{\lambda}}, \widehat{k}_{\lambda}\right\rangle\left\langle A^{-1} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle \\
& =\widetilde{A}(\lambda) \widehat{A^{-1}}(\lambda),
\end{aligned}
$$

and hence

$$
\begin{equation*}
1 \leq \widetilde{A}(\lambda) \widetilde{A^{-1}}(\lambda) \text { for any } \lambda \in \Omega \tag{1}
\end{equation*}
$$

which gives us

$$
\operatorname{ber}(A) \operatorname{ber}\left(A^{-1}\right) \geqslant 1 \text {, }
$$

or equivalently

$$
\operatorname{ber}\left(A^{-1}\right) \geqslant \operatorname{ber}(A)^{-1} .
$$

Case: $\mu \in(-\infty,-1)$. Then we have the following for any $\lambda \in \Omega$ that

$$
\begin{aligned}
\left\langle A^{\mu} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle & =\left\langle A^{\left.-|\mu| \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle}\right. \\
& \left.\geqslant\left\langle A^{-1} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{\mu}(\text { by } 1) \text { since }|\mu|>1\right) \\
& \geqslant\left\langle A \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{-|\mu|}(\text { by }(1)) \\
& =\left\langle A \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{\mu}
\end{aligned}
$$

which implies that $\operatorname{ber}\left(A^{\mu}\right) \geqslant \operatorname{ber}(A)^{\mu}$, as desired.
Case: $\mu \in[-1,0)$. For every $\lambda \in \Omega$ we have

$$
\begin{aligned}
\widetilde{A}^{\mu}(\lambda) & =\left\langle A^{\mu} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle=\left\langle A^{-|\mu|} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle \\
& \geqslant\left\langle A^{\left.|\mu| \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{-1}(b y(1))}\right. \\
& \geqslant\left\langle\widehat{A}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{-|\mu|}=\left\langle A \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{\mu}=(\widetilde{A}(\lambda))^{\mu}
\end{aligned}
$$

and the last inequality follows by 2) since $|\mu| \in[0,1]$ and taking inverses of both sides. The theorem is proved.
Next result proves the equivalence of Hölder-McCarthy type inequality and Young type inequality.

Theorem 2.2. For a positive operator $A \in \mathcal{B}(\mathcal{H})$ and $\mu \in[0,1]$ the following inequalities are equivalent: Hölder-McCarthy type inequality:

$$
\begin{equation*}
\widetilde{A}(\lambda)^{\mu} \geqslant \widetilde{A^{\mu}}(\lambda) \text { for all } \lambda \in \Omega \tag{2}
\end{equation*}
$$

Young type inequality:

$$
\begin{equation*}
[\mu A+I-\mu]^{\sim} \geqslant \widetilde{A^{\mu}} \tag{3}
\end{equation*}
$$

Proof. Let us define a scalar function

$$
f(t):=\mu t+1-\mu-t^{\mu}
$$

for positive numbers t and $\mu \in[0,1]$. Then it is easy to see that $f(t)$ is a nonnegative convex function with the minimum value $f(1)=0$, so we have

$$
\begin{equation*}
\mu a+1-\mu \geqslant a^{\mu} \tag{4}
\end{equation*}
$$

for positive a and $\mu \in[0,1]$.
(2) \Rightarrow (3). Replacing a by $\widetilde{A}(\lambda) \geqslant 0$ and $\mu \in[0,1]$ in (4), we obtain

$$
\mu \widetilde{A}(\lambda)+1-\mu \geqslant A(\lambda)^{\mu} \geqslant \widetilde{A^{\mu}}(\lambda) \text { by }(2)
$$

so we have (3).
(3) \Rightarrow (2). We may assume $\mu \in(0,1]$. In (3), replace A by $k^{\frac{1}{\mu}} A$ for a positive number k, then

$$
\begin{equation*}
\mu k^{\frac{1}{\mu}} \widetilde{A}(\lambda)+1-\mu \geqslant k \widetilde{A^{\mu}}(\lambda) \tag{5}
\end{equation*}
$$

for $\lambda \in \Omega$ by (3). We put $k=\widetilde{A}(\lambda)^{-\mu}$ in (5) if $\widetilde{A}(\lambda) \neq 0$, then we have

$$
\mu \widetilde{A}(\lambda)^{-1} \widetilde{A}(\lambda)+1-\mu \geqslant \widetilde{A}(\lambda)^{-\mu} \widetilde{A^{\mu}}(\lambda)
$$

that is $A(\lambda)^{\mu} \geqslant \widetilde{A^{\mu}}(\lambda)$ for all $\lambda \in \Omega$ and we get (2). If $\widetilde{A}(\lambda)=0$, then it means that $A^{\frac{1}{2}} \widehat{k_{\lambda}}=0$, so $A^{\mu} \widehat{k_{\lambda}}=0$ for $\mu \in(0,1]$ by the induction and continuity of A, and thus we have (2). The theorem is proved.

Proposition 2.3. Let $A \in \mathcal{B}(\mathcal{H})$ be a positive invertible operator and $B \in \mathcal{B}(\mathcal{H})$ be an invertible operator. Then for any real number μ, we have

$$
\begin{equation*}
\operatorname{ber}\left(\left(B A B^{*}\right)^{\mu}\right)=\operatorname{ber}\left(B A^{\frac{1}{2}}\left(A^{\frac{1}{2}} B^{*} B A^{\frac{1}{2}}\right)^{\mu-1} A^{\frac{1}{2}} B^{*}\right) \tag{6}
\end{equation*}
$$

Proof. Let $B A^{\frac{1}{2}}=U P$ be the polar decomposition of $B A^{\frac{1}{2}}$, where U is unitary and $P=\left|B A^{\frac{1}{2}}\right|$. Then it is easy to see that:

$$
\begin{aligned}
\left(B A B^{*}\right)^{\mu} & =\left(U P^{2} U^{*}\right)^{\mu}=B A^{\frac{1}{2}} P^{-1} P^{2 \mu} P^{-1} A^{\frac{1}{2}} B^{*} \\
& =B A^{\frac{1}{2}}\left(A^{\frac{1}{2}} B^{*} B A^{\frac{1}{2}}\right)^{\mu-1} A^{\frac{1}{2}} B^{*}
\end{aligned}
$$

Now (6) is immediate from this equality.

3. Paranormal operators and related problems

Recall that an operator A on a Hilbert space H is called paranormal if $\left\|A^{2} x\right\| \geq\|A x\|^{2}$ for every unit vector $x \in H$.
Definition 3.1. We will say that A is a quasi-paranormal operator on a $R K H S \mathcal{H}=\mathcal{H}(\Omega)$, if $\left\|A^{2} \widehat{k}_{\lambda}\right\| \geq\left\|A \widehat{k}_{\lambda}\right\|^{2}$ for any $\lambda \in \Omega$.

Definition 3.2. An operator T belongs to class $\widetilde{\mathcal{A}}$ if $\widetilde{\left|T^{2}\right|} \geq \widetilde{|T|^{2}}$.
Definition 3.3. For each $k>0$, an operator T is absolute- k-quasi-paranormal if

$$
\begin{equation*}
\left\||T|^{k} T \widehat{k_{\lambda}}\right\| \geq\left\|T \widehat{k_{\lambda}}\right\|^{k+1} \tag{7}
\end{equation*}
$$

for every $\lambda \in \Omega$.
It follows from these definitions that:
(a) If A is quasi-paranormal, then

$$
\operatorname{ber}\left(\left|A^{2}\right|^{2}\right) \geq \operatorname{ber}\left(|A|^{2}\right)^{2}
$$

(b) If A belongs to class $\widetilde{\mathcal{A}}$, then

$$
\operatorname{ber}\left(\left|A^{2}\right|\right) \geq \operatorname{ber}\left(|A|^{2}\right) ;
$$

(c) If A is absolute- k-quasi-paranormal, then

$$
\operatorname{ber}\left(\left||A|^{k} A\right|^{2}\right) \geq \operatorname{ber}(|A|)^{k+1}
$$

In this section, to prove some inequalities for the Berezin number of such operators, we need to other properties of these operators.
Proposition 3.4. Every operator in $\widetilde{\mathcal{F}}$ is a quasi-paranormal operator on a RKHS.
Proof. Suppose $A \in \widetilde{\mathcal{F}}$, i.e.,

$$
\begin{equation*}
\widetilde{\left|A^{2}\right|} \geq \widetilde{|A|^{2}} \tag{8}
\end{equation*}
$$

Then for every $\lambda \in \Omega$, we have $\widetilde{A^{2} \mid}(\lambda) \geq \widetilde{|A|^{2}}(\lambda)$, and therefore it follows from the proof of Theorem 2.1 that

$$
\begin{aligned}
\left\|A^{2} \widehat{k_{\lambda}}\right\|^{2} & =\left\langle A^{2} \widehat{k}_{\lambda}, A^{2} \widehat{k}_{\lambda}\right\rangle=\left\langle\left(A^{2}\right)^{*} A^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle \\
& \left.=\left.\langle | A^{2}\right|^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle \\
& \left.\geq\langle | A^{2}\left|\widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{2} \quad \text { see the proof of Theorem 2.1, 1) }\right) \\
& \left.\geq\left.\langle | A\right|^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{2} \quad(\text { by }(8)) \\
& =\left\|A \widehat{\widehat{k}_{\lambda}}\right\|^{4}
\end{aligned}
$$

Hence

$$
\left\|A^{2} \widehat{k}_{\lambda}\right\| \geq\left\|A \widehat{k}_{\lambda}\right\|^{2}
$$

for every $\lambda \in \Omega$, so that A is quasi-paranormal, which proves the proposition.

Definition 3.5. For each $k>0$, we say that an operator A belongs to class $\widetilde{\mathcal{A}}(k)$ if

$$
\left(\left(A^{*}|A|^{2 k} A\right)^{\frac{1}{k+1}}\right)^{\sim} \geq \widetilde{|A|^{2}}
$$

The proof of Theorem 2.1 allows us also prove the following.
Proposition 3.6. (a) Every quasi-paranormal operator on a $R K H S \mathcal{H}=\mathcal{H}(\Omega)$ is an absolute-k-quasi-paranormal operator for $k \geq 1$.
(b) For each $k>0$, every class $\widetilde{\mathcal{A}}(k)$ operator is an absolute- k-quasi-paranormal operator.

Proof. (a) Suppose that A is a quasi-paranormal operator on a RKHS $\mathcal{H}=\mathcal{H}(\Omega)$. Then, for any $\lambda \in \Omega$ and $k \geq 1$, we have

$$
\begin{aligned}
\left\||A|^{k} A \widehat{k}_{\lambda}\right\|^{2} & \left.=\left.\langle | A\right|^{2 k} A \widehat{k}_{\lambda}, A \widehat{k}_{\lambda}\right\rangle \\
& \left.\geq\left.\langle | A\right|^{2} A \widehat{k}_{\lambda}, \widehat{A \widehat{k}_{\lambda}}\right\rangle^{k}\left\|A \widehat{k_{\lambda}}\right\|^{2(1-k)} \text { (see the proof of Theorem 2.1, 1)) } \\
& =\left\|A^{2} \widehat{k}_{\lambda}\right\|^{2 k}\left\|A \widehat{k}_{\lambda}\right\|^{2(1-k)} \\
& \geq\left\|A \widehat{k}_{\lambda}\right\|^{4 k}\left\|A \widehat{k}_{\lambda}\right\|^{2(1-k)} \text { (by quasi-paranormality of } A \text {) } \\
& \geq\left\|A \widehat{k}_{\lambda}\right\|^{2(k+1)},
\end{aligned}
$$

and hence

$$
\left\||A|^{k} A \widehat{k}_{\lambda}\right\| \geq\left\|A \widehat{k}_{\lambda}\right\|^{k+1}
$$

for all $\lambda \in \Omega$ and $k \geq 1$, so that A is absolute- k-quasi-paranormal operator for $k \geq 1$.
(b) Let $A \in \widetilde{\mathcal{A}}(k)$ for $k>0$, that is

$$
\begin{equation*}
\left(\left(A^{*}|A|^{2 k} A\right)^{\frac{1}{k+1}}\right)^{\sim} \geq \widetilde{|A|^{2}} \text { for } k>0 \tag{9}
\end{equation*}
$$

Then for any $\lambda \in \Omega$,

$$
\begin{aligned}
\left\||A|^{k} A \widehat{k}_{\lambda}\right\|^{2} & \left.=\left.\left\langle A^{*}\right| A\right|^{2 k} \widehat{A k_{\lambda}}, \widehat{k}_{\lambda}\right\rangle \\
& \geq\left\langle\left(A^{*}|A|^{2 k} A\right)^{\frac{1}{k+1}} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{k+1} \\
& \left.\geq\left.\langle | A\right|^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{k+1}(\text { by }(9)) \\
& =\left\|A \widehat{k}_{\lambda}\right\|^{2(k+1)},
\end{aligned}
$$

from which

$$
\left\||A|^{k} A \widehat{k}_{\lambda}\right\| \geq\left\|A \widehat{k}_{\lambda}\right\|^{k+1} \text { for all } \lambda \in \Omega
$$

so that A is absolute- k-quasi-paranormal operator for $k>0$. This completes the proof.
As further extension of previous results, we prove the following result.

Theorem 3.7. Let $A \in \mathcal{B}(\mathcal{H}(\Omega))$ be an absolute-k-quasi-paranormal operator for $k>0$. Then for every $\lambda \in \Omega$,

$$
F(\ell)=\left\||A|^{\ell} A \widehat{k}_{\lambda}\right\|^{\frac{1}{\ell+1}}
$$

is increasing for $\ell>k>0$, and the following inequality holds:

$$
F(\ell) \geq\left\|A \widehat{k}_{\lambda}\right\|
$$

i.e., A is absolute- ℓ-quasi-paranormal operator for $\ell \geq k>0$.

Proof. Assume that A is an absolute- k-quasi-paranormal operator on $\mathcal{H}=\mathcal{H}(\Omega)$ for $k>0$, i.e.,

$$
\begin{equation*}
\left\||A|^{k} A \widehat{k}_{\lambda}\right\| \geq\left\|A \widehat{k}_{\lambda}\right\|^{k+1} \tag{10}
\end{equation*}
$$

for every $\lambda \in \Omega$. Clearly, (10) holds if and only if

$$
F(k)=\left\||A|^{k} A \widehat{k_{\lambda}}\right\|^{\frac{1}{k+1}} \geq\left\|A \widehat{k}_{\lambda}\right\|
$$

for any $\lambda \in \Omega$. Then for every $\lambda \in \Omega$ and any ℓ such that $\ell \geq k>0$, we have

$$
\begin{aligned}
F(\ell) & \left.=\left\||A|^{\ell} A \widehat{k}_{\lambda}\right\|^{\frac{1}{k+1}}=\left.\langle | A\right|^{2 \ell} A \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle^{\frac{1}{2(t+1)}} \\
& \left.\geq\left\{\left.\langle | A\right|^{2 k} A \widehat{k}_{\lambda}, A \widehat{k}_{\lambda}\right\rangle^{\frac{1}{k}}\left\|A \widehat{k}_{\lambda}\right\|^{2\left(1-\frac{1}{k}\right)}\right\}^{\frac{1}{2(t+1)}} \\
& \geq\left\{\left\|A \widehat{k_{\lambda}}\right\|^{\frac{2(k+1)}{k}}\left\|A \widehat{k}_{\lambda}\right\|^{2\left(1-\frac{1}{k}\right)}\right\}^{\frac{1}{2(t+1)}}(\text { by }(10)) \\
& =\left\|A \widehat{k_{\lambda}}\right\|
\end{aligned}
$$

and hence

$$
\begin{equation*}
F(\ell)=\left\||A|^{\ell} \widehat{A k_{\lambda}}\right\|^{\frac{1}{\ell+1}} \geq\left\|A \widehat{A k}_{\lambda}\right\| \tag{11}
\end{equation*}
$$

for every $\lambda \in \Omega$ and $\ell \geq k$, so that A is absolute- ℓ-quasi-paranormal for $\ell \geq k>0$.
Now we prove that, $F(\ell)$ is increasing for $\ell \geq k>0$. Indeed, for any $\lambda \in \Omega, m$ and ℓ such that $m \geq \ell \geq k>0$, we have:

$$
\begin{aligned}
F(m) & \left.=\left\||A|^{m} A \widehat{k_{\lambda}}\right\|^{\frac{1}{m+1}}=\left.\langle | A\right|^{2 m} A \widehat{k}_{\lambda}, \widehat{A \widehat{k}_{\lambda}}\right\rangle^{\frac{1}{2(m+1)}} \\
& \left.=\left\{|A|^{2 \ell} \widehat{A k_{\lambda}}, \widehat{A k_{\lambda}}\right\rangle^{\frac{m}{\ell}}\left\|A \widehat{k}_{\lambda}\right\|^{2\left(1-\frac{m}{\ell}\right)}\right\}^{\frac{1}{2(m+1)}} \\
& =\left\{\left\||A|^{\ell} A \widehat{k}_{\lambda}\right\|^{\frac{2 m}{l}}\left\|A \widehat{k}_{\lambda}\right\|^{2\left(1-\frac{m}{l}\right)}\right\}^{\frac{1}{2(m+1)}} \\
& \geq\left\{\left\||A|^{\ell} A \widehat{k}_{\lambda}\right\|^{\frac{2 m}{\ell}}\left\||A|^{\ell} A \widehat{k}_{\lambda}\right\|^{\frac{2}{t+1}\left(1-\frac{m}{\ell}\right)}\right\}^{\frac{1}{2(m+1)}}(\text { by }(11)) \\
& =\left\||A|^{\ell} \widehat{A k_{\lambda}}\right\|^{\frac{1}{\ell+1}}=F(\ell)
\end{aligned}
$$

hence $F(m) \geq F(\ell)$, that is $F(\ell)$ is increasing for $\ell \geq k>0$. This proves the theorem.

Corollary 3.8. $F(\ell) \geq \sqrt{\operatorname{ber}\left(|A|^{2}\right)}$ for $\ell \geq k>0$.
The following lemma is well known (see, for instance, [8]).
Lemma 3.9. Let a and b be positive real numbers. Then,

$$
a^{\lambda} b^{\mu} \leq \lambda a+\mu b
$$

holds for $\lambda>0$ and $\mu>0$ such that $\lambda+\mu=1$.
Our next result characterizes absolute- k-quasi-paranormal operators A on the RKHS $\mathcal{H}=\mathcal{H}(\Omega)$.
Theorem 3.10. For each $k>0$, an operator A on \mathcal{H} is absolute- k-quasi-paranormal if and only if

$$
\left(A^{*}|A|^{2 k} A-(k+1) \alpha^{k}|A|^{2}+k \alpha^{k+1}\right)^{\sim} \geq 0
$$

holds for all $\alpha>0$.
Proof. \Rightarrow. Suppose that A is absolute- k-quasi-paranormal for $k>0$, i.e.,

$$
\begin{equation*}
\left\||A|^{k} A \widehat{k_{\lambda}}\right\| \geq\left\|A \widehat{k}_{\lambda}\right\|^{k+1} \tag{12}
\end{equation*}
$$

for every $\lambda \in \Omega$. Inequality (12) holds if and only if

$$
\left\||A|^{k} A k_{\lambda}\right\|^{\frac{1}{k+1}}\left\|k_{\lambda}\right\|^{\frac{k}{k+1}} \geq\left\|A k_{\lambda}\right\|
$$

for all $\lambda \in \Omega$, or equivalently

$$
\left.\left.\left.\left\langle A^{*}\right| A\right|^{2 k} A k_{\lambda}, k_{\lambda}\right\rangle^{\frac{1}{k+1}}\left\langle k_{\lambda}, k_{\lambda}\right\rangle^{\frac{k}{k+1}} \geq\left.\langle | A\right|^{2} k_{\lambda}, k_{\lambda}\right\rangle
$$

for all $\lambda \in \Omega$. By Lemma 3.9, we have:

$$
\begin{align*}
& \left.\left.\left\langle A^{*}\right| A\right|^{2 k} A k_{\lambda}, k_{\lambda}\right\rangle^{\frac{1}{k+1}}\left\langle k_{\lambda}, k_{\lambda}\right\rangle^{\frac{k}{k+1}} \\
& \left.=\left\{\left.\left(\frac{1}{\alpha}\right)^{k}\left\langle A^{*}\right| A\right|^{2 k} A k_{\lambda}, k_{\lambda}\right\rangle\right\}^{\frac{1}{k+1}}\left\{\alpha\left\langle k_{\lambda}, k_{\lambda}\right\rangle\right\}^{\frac{k}{k+1}} \tag{13}\\
& \left.\leq\left.\frac{1}{k+1} \frac{1}{\alpha^{k}}\left\langle A^{*}\right| A\right|^{2 k} A k_{\lambda}, k_{\lambda}\right\rangle+\frac{k}{k+1} \alpha\left\langle k_{\lambda}, k_{\lambda}\right\rangle
\end{align*}
$$

for all $\lambda \in \Omega$ and $\alpha>0$, so that (12) ensures the following inequality by (13) :

$$
\begin{equation*}
\left.\left.\left.\frac{1}{k+1} \frac{1}{\alpha^{k}}\left\langle A^{*}\right| A\right|^{2 k} A k_{\lambda}, k_{\lambda}\right\rangle+\frac{k}{k+1} \alpha\left\langle k_{\lambda}, k_{\lambda}\right\rangle \geq\left.\langle | A\right|^{2} k_{\lambda}, k_{\lambda}\right\rangle \tag{14}
\end{equation*}
$$

for all $\lambda \in \Omega$ and $\alpha>0$.
Conversely, (14) implies (12) by putting $\alpha=\left\{\frac{\left\langle A^{*} \mid A A^{2 k} A k_{\lambda}, k_{\lambda}\right\rangle}{\left\langle k_{\lambda}, k_{\lambda}\right\rangle}\right\}^{\frac{1}{k+1}}$; in case $\left.\left.\left\langle A^{*}\right| A\right|^{2 k} A k_{\lambda}, k_{\lambda}\right\rangle=0$, let $\alpha \rightarrow 0$. Hence (14) holds if and only if

$$
\left(A^{*}|A|^{2 k} A-(k+1) \alpha^{k}|A|^{2}+k \alpha^{k+1}\right)^{\sim} \geq 0
$$

holds for all $\alpha>0$, which completes the proof of the theorem.
Since absolute-1-quasi-paranormal is quasi-paranormal, the following is immediate from Theorem 3.10.

Corollary 3.11. An operator A is quasi-paranormal if and only if

$$
\left(A^{* 2} A^{2}-2 \alpha A^{*} A+\alpha^{2}\right)^{\sim} \geq 0
$$

holds for all $\alpha>0$.

Acknowledgement

The authors would like to express their hearty thanks to the anonymous reviewer for his/her valuable comments.

References

[1] A. Abu-Omar and F. Kittaneh, Numerical radius inequalities for products and commutators of operators, Houston J. Math., 41(4) (2015), 1163-1173
[2] N. Aronzajn, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68(1950), 337-404.
[3] M. Bakherad, Some Berezin Number Inequalities for Operator Matrices, Czech. Math. J., 68 (2018), 997-1009..
[4] M. Bakherad and M.T. Garayev, Berezin number inequalities for operators, Concr. Oper., 6 (2019), 33-43.
[5] H. Başaran, M. Gürdal and A.N. Güncan, Some operator inequalities associated with Kantorovich and Hölder-McCarthy inequalities and their applications, Turkish J. Math., 43(1) (2019), 523-532.
[6] F.A. Berezin, Covariant and contravariant symbols for operators, Math. USSR-Izv., 6(1972), 1117-1151.
[7] F.A. Berezin, Quantization, Math. USSR-Izv., 8(1974), 1109-1163.
[8] T. Furuta, Invitation to Linear Operators, Taylor \& Francis, London, p.266, 2001.
[9] M. Gürdal, M. Garayev, S. Saltan and U. Yamancı, On some numerical characteristics of operators, Arab J. Math. Sci., 21(1) (2015), 118-126.
[10] M. Garayev, F. Bouzeffour, M. Gürdal and C.M. Yangöz, Refinements of Kantorovich type, Schwarz and Berezin number inequalities, Extracta Math., 35(1) (2020), 1-20.
[11] M.T. Garayev, M. Gürdal and M.B. Huban, Reproducing kernels, Engliš algebras and some applications, Studia Math., 232(2) (2016), 113-141.
[12] M.T. Garayev, M. Gürdal and A. Okudan, Hardy-Hilbert's inequality and power inequalities for Berezin numbers of operators, Math. Inequal. Appl., 19(3) (2016), 883-891
[13] M.T. Garayev, M. Gürdal and S. Saltan, Hardy type inequality for reproducing kernel Hilbert space operators and related problems, Positivity, 21(4) (2017), 1615-1623.
[14] M.T. Garayev, M. Gürdal and U. Yamancı and B. Halouani, Boundary behaivor of Berezin symbols and related results, Filomat, 33(14) (2019), 4433-4439.
[15] M. Garayev, S. Saltan, F. Bouzeffour and B. Aktan, Some inequalities involving Berezin symbols of operator means and related questions, RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., 114(85) (2020), 1-17.
[16] M.T. Garayev, Berezin symbols, Hölder-McCarthy and Young inequalities and their applications, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 43(2) (2017), 287-295.
[17] M. Hajmohamadi, R. Lashkaripour and M. Bakherad, Improvements of Berezin number inequalities, Linear Multilinear Algebra, 68(6) (2020), 1218-1229.
[18] M.T. Karaev, Reproducing kernels and Berezin symbols techniques in various questions of operator theory, Complex Anal. Oper. Theory, 7(4) (2013), 983-1018.
[19] M.T. Karaev and S. Saltan, Some results on Berezin symbols, Complex Variables: Theory and Appl., 50 (2005), 185-193.
[20] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math., 168 (1) (2005), 73-80.
[21] F. Kittaneh, M.S. Moslehian and T. Yamazaki, Cartesian decomposition and numerical radius inequalities, Linear Algebra Appl., 471 (2015), 46-53.
[22] S. Sahoo, N. Das and D. Mishra, Numerical radius inequalities for operator matrices, Adv. Oper. Theory, 4 (2019), 197-214.
[23] U. Yamanci and M. Gürdal, On numerical radius and Berezin number inequalities for reproducing kernel Hilbert space, New York J. Math., 23 (2017), 1531-1537.
[24] U. Yamanc1, M. Gürdal and M.T. Garayev, Berezin Number Inequality for Convex Function in Reproducing Kernel Hilbert Space, Filomat, 31(18) (2017), 5711-5717.
[25] U. Yamancı, R. Tunç and M. Gürdal, Berezin numbers, Grüss type inequalities and their applications, Bull. Malays. Math. Sci. Soc., 43 (2020), 2287-2296.

[^0]: 2010 Mathematics Subject Classification. Primary 47A63; Secondary 26D15, 47B10
 Keywords. Reproducing kernel Hilbert space, Berezin symbol, Berezin number, quasi-paranormal operator, Hölder-McCarthy type inequality, Young type inequality

 Received: 07 July 2020; Accepted: 20 December 2020
 Communicated by Fuad Kittaneh
 This paper was supported by TÜBA through Young Scientist Award Program (TÜBA-GEBIP/2015).
 Email addresses: muallahuban@isparta.edu.tr (Mualla Birgül Huban), gurdalmehmet@sdu.edu.tr (Mehmet Gürdal), havvatilki32@gmail.com (Havva Tilki)

